Search Results

Search found 1993 results on 80 pages for 'james hay'.

Page 5/80 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Using an object in an if statement... (Android)

    - by James Rattray
    I have an object variable Object test = Spinner.getSelectedItem(); -It gets the selected item from the Spinner (called spinner) and names the item 'test' I want to do an if statement related to that object e.g: 'if (test = "hello") { //do something }' But it appears not to work.... Can someone give me some help? -Do I have to use a different if? or convert the object to string etc.? Thanks alot... James

    Read the article

  • PHP cron script with twitter (problem with oauth)

    - by James Lin
    Hi guys, I am trying to write an php twitter script which will be run by crontab, what the script does is to get the tweets from a dedicated twitter account. I have looked at some of the php twitter oauth libraries, all of them seem to use redirect to a twitter page to get a token, then goes back to a callback link. In my case I don't want to have any user interaction at all. Could anyone please tell me what I should do? Regards James

    Read the article

  • Why is System.arraycopy native in Java?

    - by James B
    I was surprised to see in the Java source that System.arraycopy is a native method. Of course the reason is because it's faster. But what native tricks is the code able to employ that make it faster? Why not just loop over the original array and copy each pointer to the new array - surely this isn't that slow and cumbersome? Thanks, -James

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Agile Development

    - by James Oloo Onyango
    Alot of literature has and is being written about agile developement and its surrounding philosophies. In my quest to find the best way to express the importance of agile methodologies, i have found Robert C. Martin's "A Satire Of Two Companies" to be both the most concise and thorough! Enjoy the read! Rufus Inc Project Kick Off Your name is Bob. The date is January 3, 2001, and your head still aches from the recent millennial revelry. You are sitting in a conference room with several managers and a group of your peers. You are a project team leader. Your boss is there, and he has brought along all of his team leaders. His boss called the meeting. "We have a new project to develop," says your boss's boss. Call him BB. The points in his hair are so long that they scrape the ceiling. Your boss's points are just starting to grow, but he eagerly awaits the day when he can leave Brylcream stains on the acoustic tiles. BB describes the essence of the new market they have identified and the product they want to develop to exploit this market. "We must have this new project up and working by fourth quarter October 1," BB demands. "Nothing is of higher priority, so we are cancelling your current project." The reaction in the room is stunned silence. Months of work are simply going to be thrown away. Slowly, a murmur of objection begins to circulate around the conference table.   His points give off an evil green glow as BB meets the eyes of everyone in the room. One by one, that insidious stare reduces each attendee to quivering lumps of protoplasm. It is clear that he will brook no discussion on this matter. Once silence has been restored, BB says, "We need to begin immediately. How long will it take you to do the analysis?" You raise your hand. Your boss tries to stop you, but his spitwad misses you and you are unaware of his efforts.   "Sir, we can't tell you how long the analysis will take until we have some requirements." "The requirements document won't be ready for 3 or 4 weeks," BB says, his points vibrating with frustration. "So, pretend that you have the requirements in front of you now. How long will you require for analysis?" No one breathes. Everyone looks around to see whether anyone has some idea. "If analysis goes beyond April 1, we have a problem. Can you finish the analysis by then?" Your boss visibly gathers his courage: "We'll find a way, sir!" His points grow 3 mm, and your headache increases by two Tylenol. "Good." BB smiles. "Now, how long will it take to do the design?" "Sir," you say. Your boss visibly pales. He is clearly worried that his 3 mms are at risk. "Without an analysis, it will not be possible to tell you how long design will take." BB's expression shifts beyond austere.   "PRETEND you have the analysis already!" he says, while fixing you with his vacant, beady little eyes. "How long will it take you to do the design?" Two Tylenol are not going to cut it. Your boss, in a desperate attempt to save his new growth, babbles: "Well, sir, with only six months left to complete the project, design had better take no longer than 3 months."   "I'm glad you agree, Smithers!" BB says, beaming. Your boss relaxes. He knows his points are secure. After a while, he starts lightly humming the Brylcream jingle. BB continues, "So, analysis will be complete by April 1, design will be complete by July 1, and that gives you 3 months to implement the project. This meeting is an example of how well our new consensus and empowerment policies are working. Now, get out there and start working. I'll expect to see TQM plans and QIT assignments on my desk by next week. Oh, and don't forget that your crossfunctional team meetings and reports will be needed for next month's quality audit." "Forget the Tylenol," you think to yourself as you return to your cubicle. "I need bourbon."   Visibly excited, your boss comes over to you and says, "Gosh, what a great meeting. I think we're really going to do some world shaking with this project." You nod in agreement, too disgusted to do anything else. "Oh," your boss continues, "I almost forgot." He hands you a 30-page document. "Remember that the SEI is coming to do an evaluation next week. This is the evaluation guide. You need to read through it, memorize it, and then shred it. It tells you how to answer any questions that the SEI auditors ask you. It also tells you what parts of the building you are allowed to take them to and what parts to avoid. We are determined to be a CMM level 3 organization by June!"   You and your peers start working on the analysis of the new project. This is difficult because you have no requirements. But from the 10-minute introduction given by BB on that fateful morning, you have some idea of what the product is supposed to do.   Corporate process demands that you begin by creating a use case document. You and your team begin enumerating use cases and drawing oval and stick diagrams. Philosophical debates break out among the team members. There is disagreement as to whether certain use cases should be connected with <<extends>> or <<includes>> relationships. Competing models are created, but nobody knows how to evaluate them. The debate continues, effectively paralyzing progress.   After a week, somebody finds the iceberg.com Web site, which recommends disposing entirely of <<extends>> and <<includes>> and replacing them with <<precedes>> and <<uses>>. The documents on this Web site, authored by Don Sengroiux, describes a method known as stalwart-analysis, which claims to be a step-by-step method for translating use cases into design diagrams. More competing use case models are created using this new scheme, but again, people can't agree on how to evaluate them. The thrashing continues. More and more, the use case meetings are driven by emotion rather than by reason. If it weren't for the fact that you don't have requirements, you'd be pretty upset by the lack of progress you are making. The requirements document arrives on February 15. And then again on February 20, 25, and every week thereafter. Each new version contradicts the previous one. Clearly, the marketing folks who are writing the requirements, empowered though they might be, are not finding consensus.   At the same time, several new competing use case templates have been proposed by the various team members. Each template presents its own particularly creative way of delaying progress. The debates rage on. On March 1, Prudence Putrigence, the process proctor, succeeds in integrating all the competing use case forms and templates into a single, all-encompassing form. Just the blank form is 15 pages long. She has managed to include every field that appeared on all the competing templates. She also presents a 159- page document describing how to fill out the use case form. All current use cases must be rewritten according to the new standard.   You marvel to yourself that it now requires 15 pages of fill-in-the-blank and essay questions to answer the question: What should the system do when the user presses Return? The corporate process (authored by L. E. Ott, famed author of "Holistic Analysis: A Progressive Dialectic for Software Engineers") insists that you discover all primary use cases, 87 percent of all secondary use cases, and 36.274 percent of all tertiary use cases before you can complete analysis and enter the design phase. You have no idea what a tertiary use case is. So in an attempt to meet this requirement, you try to get your use case document reviewed by the marketing department, which you hope will know what a tertiary use case is.   Unfortunately, the marketing folks are too busy with sales support to talk to you. Indeed, since the project started, you have not been able to get a single meeting with marketing, which has provided a never-ending stream of changing and contradictory requirements documents.   While one team has been spinning endlessly on the use case document, another team has been working out the domain model. Endless variations of UML documents are pouring out of this team. Every week, the model is reworked.   The team members can't decide whether to use <<interfaces>> or <<types>> in the model. A huge disagreement has been raging on the proper syntax and application of OCL. Others on the team just got back from a 5-day class on catabolism, and have been producing incredibly detailed and arcane diagrams that nobody else can fathom.   On March 27, with one week to go before analysis is to be complete, you have produced a sea of documents and diagrams but are no closer to a cogent analysis of the problem than you were on January 3. **** And then, a miracle happens.   **** On Saturday, April 1, you check your e-mail from home. You see a memo from your boss to BB. It states unequivocally that you are done with the analysis! You phone your boss and complain. "How could you have told BB that we were done with the analysis?" "Have you looked at a calendar lately?" he responds. "It's April 1!" The irony of that date does not escape you. "But we have so much more to think about. So much more to analyze! We haven't even decided whether to use <<extends>> or <<precedes>>!" "Where is your evidence that you are not done?" inquires your boss, impatiently. "Whaaa . . . ." But he cuts you off. "Analysis can go on forever; it has to be stopped at some point. And since this is the date it was scheduled to stop, it has been stopped. Now, on Monday, I want you to gather up all existing analysis materials and put them into a public folder. Release that folder to Prudence so that she can log it in the CM system by Monday afternoon. Then get busy and start designing."   As you hang up the phone, you begin to consider the benefits of keeping a bottle of bourbon in your bottom desk drawer. They threw a party to celebrate the on-time completion of the analysis phase. BB gave a colon-stirring speech on empowerment. And your boss, another 3 mm taller, congratulated his team on the incredible show of unity and teamwork. Finally, the CIO takes the stage to tell everyone that the SEI audit went very well and to thank everyone for studying and shredding the evaluation guides that were passed out. Level 3 now seems assured and will be awarded by June. (Scuttlebutt has it that managers at the level of BB and above are to receive significant bonuses once the SEI awards level 3.)   As the weeks flow by, you and your team work on the design of the system. Of course, you find that the analysis that the design is supposedly based on is flawedno, useless; no, worse than useless. But when you tell your boss that you need to go back and work some more on the analysis to shore up its weaker sections, he simply states, "The analysis phase is over. The only allowable activity is design. Now get back to it."   So, you and your team hack the design as best you can, unsure of whether the requirements have been properly analyzed. Of course, it really doesn't matter much, since the requirements document is still thrashing with weekly revisions, and the marketing department still refuses to meet with you.     The design is a nightmare. Your boss recently misread a book named The Finish Line in which the author, Mark DeThomaso, blithely suggested that design documents should be taken down to code-level detail. "If we are going to be working at that level of detail," you ask, "why don't we simply write the code instead?" "Because then you wouldn't be designing, of course. And the only allowable activity in the design phase is design!" "Besides," he continues, "we have just purchased a companywide license for Dandelion! This tool enables 'Round the Horn Engineering!' You are to transfer all design diagrams into this tool. It will automatically generate our code for us! It will also keep the design diagrams in sync with the code!" Your boss hands you a brightly colored shrinkwrapped box containing the Dandelion distribution. You accept it numbly and shuffle off to your cubicle. Twelve hours, eight crashes, one disk reformatting, and eight shots of 151 later, you finally have the tool installed on your server. You consider the week your team will lose while attending Dandelion training. Then you smile and think, "Any week I'm not here is a good week." Design diagram after design diagram is created by your team. Dandelion makes it very difficult to draw these diagrams. There are dozens and dozens of deeply nested dialog boxes with funny text fields and check boxes that must all be filled in correctly. And then there's the problem of moving classes between packages. At first, these diagram are driven from the use cases. But the requirements are changing so often that the use cases rapidly become meaningless. Debates rage about whether VISITOR or DECORATOR design patterns should be used. One developer refuses to use VISITOR in any form, claiming that it's not a properly object-oriented construct. Someone refuses to use multiple inheritance, since it is the spawn of the devil. Review meetings rapidly degenerate into debates about the meaning of object orientation, the definition of analysis versus design, or when to use aggregation versus association. Midway through the design cycle, the marketing folks announce that they have rethought the focus of the system. Their new requirements document is completely restructured. They have eliminated several major feature areas and replaced them with feature areas that they anticipate customer surveys will show to be more appropriate. You tell your boss that these changes mean that you need to reanalyze and redesign much of the system. But he says, "The analysis phase is system. But he says, "The analysis phase is over. The only allowable activity is design. Now get back to it."   You suggest that it might be better to create a simple prototype to show to the marketing folks and even some potential customers. But your boss says, "The analysis phase is over. The only allowable activity is design. Now get back to it." Hack, hack, hack, hack. You try to create some kind of a design document that might reflect the new requirements documents. However, the revolution of the requirements has not caused them to stop thrashing. Indeed, if anything, the wild oscillations of the requirements document have only increased in frequency and amplitude.   You slog your way through them.   On June 15, the Dandelion database gets corrupted. Apparently, the corruption has been progressive. Small errors in the DB accumulated over the months into bigger and bigger errors. Eventually, the CASE tool just stopped working. Of course, the slowly encroaching corruption is present on all the backups. Calls to the Dandelion technical support line go unanswered for several days. Finally, you receive a brief e-mail from Dandelion, informing you that this is a known problem and that the solution is to purchase the new version, which they promise will be ready some time next quarter, and then reenter all the diagrams by hand.   ****   Then, on July 1 another miracle happens! You are done with the design!   Rather than go to your boss and complain, you stock your middle desk drawer with some vodka.   **** They threw a party to celebrate the on-time completion of the design phase and their graduation to CMM level 3. This time, you find BB's speech so stirring that you have to use the restroom before it begins. New banners and plaques are all over your workplace. They show pictures of eagles and mountain climbers, and they talk about teamwork and empowerment. They read better after a few scotches. That reminds you that you need to clear out your file cabinet to make room for the brandy. You and your team begin to code. But you rapidly discover that the design is lacking in some significant areas. Actually, it's lacking any significance at all. You convene a design session in one of the conference rooms to try to work through some of the nastier problems. But your boss catches you at it and disbands the meeting, saying, "The design phase is over. The only allowable activity is coding. Now get back to it."   ****   The code generated by Dandelion is really hideous. It turns out that you and your team were using association and aggregation the wrong way, after all. All the generated code has to be edited to correct these flaws. Editing this code is extremely difficult because it has been instrumented with ugly comment blocks that have special syntax that Dandelion needs in order to keep the diagrams in sync with the code. If you accidentally alter one of these comments, the diagrams will be regenerated incorrectly. It turns out that "Round the Horn Engineering" requires an awful lot of effort. The more you try to keep the code compatible with Dandelion, the more errors Dandelion generates. In the end, you give up and decide to keep the diagrams up to date manually. A second later, you decide that there's no point in keeping the diagrams up to date at all. Besides, who has time?   Your boss hires a consultant to build tools to count the number of lines of code that are being produced. He puts a big thermometer graph on the wall with the number 1,000,000 on the top. Every day, he extends the red line to show how many lines have been added. Three days after the thermometer appears on the wall, your boss stops you in the hall. "That graph isn't growing quickly enough. We need to have a million lines done by October 1." "We aren't even sh-sh-sure that the proshect will require a m-million linezh," you blather. "We have to have a million lines done by October 1," your boss reiterates. His points have grown again, and the Grecian formula he uses on them creates an aura of authority and competence. "Are you sure your comment blocks are big enough?" Then, in a flash of managerial insight, he says, "I have it! I want you to institute a new policy among the engineers. No line of code is to be longer than 20 characters. Any such line must be split into two or more preferably more. All existing code needs to be reworked to this standard. That'll get our line count up!"   You decide not to tell him that this will require two unscheduled work months. You decide not to tell him anything at all. You decide that intravenous injections of pure ethanol are the only solution. You make the appropriate arrangements. Hack, hack, hack, and hack. You and your team madly code away. By August 1, your boss, frowning at the thermometer on the wall, institutes a mandatory 50-hour workweek.   Hack, hack, hack, and hack. By September 1st, the thermometer is at 1.2 million lines and your boss asks you to write a report describing why you exceeded the coding budget by 20 percent. He institutes mandatory Saturdays and demands that the project be brought back down to a million lines. You start a campaign of remerging lines. Hack, hack, hack, and hack. Tempers are flaring; people are quitting; QA is raining trouble reports down on you. Customers are demanding installation and user manuals; salespeople are demanding advance demonstrations for special customers; the requirements document is still thrashing, the marketing folks are complaining that the product isn't anything like they specified, and the liquor store won't accept your credit card anymore. Something has to give.    On September 15, BB calls a meeting. As he enters the room, his points are emitting clouds of steam. When he speaks, the bass overtones of his carefully manicured voice cause the pit of your stomach to roll over. "The QA manager has told me that this project has less than 50 percent of the required features implemented. He has also informed me that the system crashes all the time, yields wrong results, and is hideously slow. He has also complained that he cannot keep up with the continuous train of daily releases, each more buggy than the last!" He stops for a few seconds, visibly trying to compose himself. "The QA manager estimates that, at this rate of development, we won't be able to ship the product until December!" Actually, you think it's more like March, but you don't say anything. "December!" BB roars with such derision that people duck their heads as though he were pointing an assault rifle at them. "December is absolutely out of the question. Team leaders, I want new estimates on my desk in the morning. I am hereby mandating 65-hour work weeks until this project is complete. And it better be complete by November 1."   As he leaves the conference room, he is heard to mutter: "Empowermentbah!" * * * Your boss is bald; his points are mounted on BB's wall. The fluorescent lights reflecting off his pate momentarily dazzle you. "Do you have anything to drink?" he asks. Having just finished your last bottle of Boone's Farm, you pull a bottle of Thunderbird from your bookshelf and pour it into his coffee mug. "What's it going to take to get this project done? " he asks. "We need to freeze the requirements, analyze them, design them, and then implement them," you say callously. "By November 1?" your boss exclaims incredulously. "No way! Just get back to coding the damned thing." He storms out, scratching his vacant head.   A few days later, you find that your boss has been transferred to the corporate research division. Turnover has skyrocketed. Customers, informed at the last minute that their orders cannot be fulfilled on time, have begun to cancel their orders. Marketing is re-evaluating whether this product aligns with the overall goals of the company. Memos fly, heads roll, policies change, and things are, overall, pretty grim. Finally, by March, after far too many sixty-five hour weeks, a very shaky version of the software is ready. In the field, bug-discovery rates are high, and the technical support staff are at their wits' end, trying to cope with the complaints and demands of the irate customers. Nobody is happy.   In April, BB decides to buy his way out of the problem by licensing a product produced by Rupert Industries and redistributing it. The customers are mollified, the marketing folks are smug, and you are laid off.     Rupert Industries: Project Alpha   Your name is Robert. The date is January 3, 2001. The quiet hours spent with your family this holiday have left you refreshed and ready for work. You are sitting in a conference room with your team of professionals. The manager of the division called the meeting. "We have some ideas for a new project," says the division manager. Call him Russ. He is a high-strung British chap with more energy than a fusion reactor. He is ambitious and driven but understands the value of a team. Russ describes the essence of the new market opportunity the company has identified and introduces you to Jane, the marketing manager, who is responsible for defining the products that will address it. Addressing you, Jane says, "We'd like to start defining our first product offering as soon as possible. When can you and your team meet with me?" You reply, "We'll be done with the current iteration of our project this Friday. We can spare a few hours for you between now and then. After that, we'll take a few people from the team and dedicate them to you. We'll begin hiring their replacements and the new people for your team immediately." "Great," says Russ, "but I want you to understand that it is critical that we have something to exhibit at the trade show coming up this July. If we can't be there with something significant, we'll lose the opportunity."   "I understand," you reply. "I don't yet know what it is that you have in mind, but I'm sure we can have something by July. I just can't tell you what that something will be right now. In any case, you and Jane are going to have complete control over what we developers do, so you can rest assured that by July, you'll have the most important things that can be accomplished in that time ready to exhibit."   Russ nods in satisfaction. He knows how this works. Your team has always kept him advised and allowed him to steer their development. He has the utmost confidence that your team will work on the most important things first and will produce a high-quality product.   * * *   "So, Robert," says Jane at their first meeting, "How does your team feel about being split up?" "We'll miss working with each other," you answer, "but some of us were getting pretty tired of that last project and are looking forward to a change. So, what are you people cooking up?" Jane beams. "You know how much trouble our customers currently have . . ." And she spends a half hour or so describing the problem and possible solution. "OK, wait a second" you respond. "I need to be clear about this." And so you and Jane talk about how this system might work. Some of her ideas aren't fully formed. You suggest possible solutions. She likes some of them. You continue discussing.   During the discussion, as each new topic is addressed, Jane writes user story cards. Each card represents something that the new system has to do. The cards accumulate on the table and are spread out in front of you. Both you and Jane point at them, pick them up, and make notes on them as you discuss the stories. The cards are powerful mnemonic devices that you can use to represent complex ideas that are barely formed.   At the end of the meeting, you say, "OK, I've got a general idea of what you want. I'm going to talk to the team about it. I imagine they'll want to run some experiments with various database structures and presentation formats. Next time we meet, it'll be as a group, and we'll start identifying the most important features of the system."   A week later, your nascent team meets with Jane. They spread the existing user story cards out on the table and begin to get into some of the details of the system. The meeting is very dynamic. Jane presents the stories in the order of their importance. There is much discussion about each one. The developers are concerned about keeping the stories small enough to estimate and test. So they continually ask Jane to split one story into several smaller stories. Jane is concerned that each story have a clear business value and priority, so as she splits them, she makes sure that this stays true.   The stories accumulate on the table. Jane writes them, but the developers make notes on them as needed. Nobody tries to capture everything that is said; the cards are not meant to capture everything but are simply reminders of the conversation.   As the developers become more comfortable with the stories, they begin writing estimates on them. These estimates are crude and budgetary, but they give Jane an idea of what the story will cost.   At the end of the meeting, it is clear that many more stories could be discussed. It is also clear that the most important stories have been addressed and that they represent several months worth of work. Jane closes the meeting by taking the cards with her and promising to have a proposal for the first release in the morning.   * * *   The next morning, you reconvene the meeting. Jane chooses five cards and places them on the table. "According to your estimates, these cards represent about one perfect team-week's worth of work. The last iteration of the previous project managed to get one perfect team-week done in 3 real weeks. If we can get these five stories done in 3 weeks, we'll be able to demonstrate them to Russ. That will make him feel very comfortable about our progress." Jane is pushing it. The sheepish look on her face lets you know that she knows it too. You reply, "Jane, this is a new team, working on a new project. It's a bit presumptuous to expect that our velocity will be the same as the previous team's. However, I met with the team yesterday afternoon, and we all agreed that our initial velocity should, in fact, be set to one perfectweek for every 3 real-weeks. So you've lucked out on this one." "Just remember," you continue, "that the story estimates and the story velocity are very tentative at this point. We'll learn more when we plan the iteration and even more when we implement it."   Jane looks over her glasses at you as if to say "Who's the boss around here, anyway?" and then smiles and says, "Yeah, don't worry. I know the drill by now."Jane then puts 15 more cards on the table. She says, "If we can get all these cards done by the end of March, we can turn the system over to our beta test customers. And we'll get good feedback from them."   You reply, "OK, so we've got our first iteration defined, and we have the stories for the next three iterations after that. These four iterations will make our first release."   "So," says Jane, can you really do these five stories in the next 3 weeks?" "I don't know for sure, Jane," you reply. "Let's break them down into tasks and see what we get."   So Jane, you, and your team spend the next several hours taking each of the five stories that Jane chose for the first iteration and breaking them down into small tasks. The developers quickly realize that some of the tasks can be shared between stories and that other tasks have commonalities that can probably be taken advantage of. It is clear that potential designs are popping into the developers' heads. From time to time, they form little discussion knots and scribble UML diagrams on some cards.   Soon, the whiteboard is filled with the tasks that, once completed, will implement the five stories for this iteration. You start the sign-up process by saying, "OK, let's sign up for these tasks." "I'll take the initial database generation." Says Pete. "That's what I did on the last project, and this doesn't look very different. I estimate it at two of my perfect workdays." "OK, well, then, I'll take the login screen," says Joe. "Aw, darn," says Elaine, the junior member of the team, "I've never done a GUI, and kinda wanted to try that one."   "Ah, the impatience of youth," Joe says sagely, with a wink in your direction. "You can assist me with it, young Jedi." To Jane: "I think it'll take me about three of my perfect workdays."   One by one, the developers sign up for tasks and estimate them in terms of their own perfect workdays. Both you and Jane know that it is best to let the developers volunteer for tasks than to assign the tasks to them. You also know full well that you daren't challenge any of the developers' estimates. You know these people, and you trust them. You know that they are going to do the very best they can.   The developers know that they can't sign up for more perfect workdays than they finished in the last iteration they worked on. Once each developer has filled his or her schedule for the iteration, they stop signing up for tasks.   Eventually, all the developers have stopped signing up for tasks. But, of course, tasks are still left on the board.   "I was worried that that might happen," you say, "OK, there's only one thing to do, Jane. We've got too much to do in this iteration. What stories or tasks can we remove?" Jane sighs. She knows that this is the only option. Working overtime at the beginning of a project is insane, and projects where she's tried it have not fared well.   So Jane starts to remove the least-important functionality. "Well, we really don't need the login screen just yet. We can simply start the system in the logged-in state." "Rats!" cries Elaine. "I really wanted to do that." "Patience, grasshopper." says Joe. "Those who wait for the bees to leave the hive will not have lips too swollen to relish the honey." Elaine looks confused. Everyone looks confused. "So . . .," Jane continues, "I think we can also do away with . . ." And so, bit by bit, the list of tasks shrinks. Developers who lose a task sign up for one of the remaining ones.   The negotiation is not painless. Several times, Jane exhibits obvious frustration and impatience. Once, when tensions are especially high, Elaine volunteers, "I'll work extra hard to make up some of the missing time." You are about to correct her when, fortunately, Joe looks her in the eye and says, "When once you proceed down the dark path, forever will it dominate your destiny."   In the end, an iteration acceptable to Jane is reached. It's not what Jane wanted. Indeed, it is significantly less. But it's something the team feels that can be achieved in the next 3 weeks.   And, after all, it still addresses the most important things that Jane wanted in the iteration. "So, Jane," you say when things had quieted down a bit, "when can we expect acceptance tests from you?" Jane sighs. This is the other side of the coin. For every story the development team implements,   Jane must supply a suite of acceptance tests that prove that it works. And the team needs these long before the end of the iteration, since they will certainly point out differences in the way Jane and the developers imagine the system's behaviour.   "I'll get you some example test scripts today," Jane promises. "I'll add to them every day after that. You'll have the entire suite by the middle of the iteration."   * * *   The iteration begins on Monday morning with a flurry of Class, Responsibilities, Collaborators sessions. By midmorning, all the developers have assembled into pairs and are rapidly coding away. "And now, my young apprentice," Joe says to Elaine, "you shall learn the mysteries of test-first design!"   "Wow, that sounds pretty rad," Elaine replies. "How do you do it?" Joe beams. It's clear that he has been anticipating this moment. "OK, what does the code do right now?" "Huh?" replied Elaine, "It doesn't do anything at all; there is no code."   "So, consider our task; can you think of something the code should do?" "Sure," Elaine said with youthful assurance, "First, it should connect to the database." "And thereupon, what must needs be required to connecteth the database?" "You sure talk weird," laughed Elaine. "I think we'd have to get the database object from some registry and call the Connect() method. "Ah, astute young wizard. Thou perceives correctly that we requireth an object within which we can cacheth the database object." "Is 'cacheth' really a word?" "It is when I say it! So, what test can we write that we know the database registry should pass?" Elaine sighs. She knows she'll just have to play along. "We should be able to create a database object and pass it to the registry in a Store() method. And then we should be able to pull it out of the registry with a Get() method and make sure it's the same object." "Oh, well said, my prepubescent sprite!" "Hay!" "So, now, let's write a test function that proves your case." "But shouldn't we write the database object and registry object first?" "Ah, you've much to learn, my young impatient one. Just write the test first." "But it won't even compile!" "Are you sure? What if it did?" "Uh . . ." "Just write the test, Elaine. Trust me." And so Joe, Elaine, and all the other developers began to code their tasks, one test case at a time. The room in which they worked was abuzz with the conversations between the pairs. The murmur was punctuated by an occasional high five when a pair managed to finish a task or a difficult test case.   As development proceeded, the developers changed partners once or twice a day. Each developer got to see what all the others were doing, and so knowledge of the code spread generally throughout the team.   Whenever a pair finished something significant whether a whole task or simply an important part of a task they integrated what they had with the rest of the system. Thus, the code base grew daily, and integration difficulties were minimized.   The developers communicated with Jane on a daily basis. They'd go to her whenever they had a question about the functionality of the system or the interpretation of an acceptance test case.   Jane, good as her word, supplied the team with a steady stream of acceptance test scripts. The team read these carefully and thereby gained a much better understanding of what Jane expected the system to do. By the beginning of the second week, there was enough functionality to demonstrate to Jane. She watched eagerly as the demonstration passed test case after test case. "This is really cool," Jane said as the demonstration finally ended. "But this doesn't seem like one-third of the tasks. Is your velocity slower than anticipated?"   You grimace. You'd been waiting for a good time to mention this to Jane but now she was forcing the issue. "Yes, unfortunately, we are going more slowly than we had expected. The new application server we are using is turning out to be a pain to configure. Also, it takes forever to reboot, and we have to reboot it whenever we make even the slightest change to its configuration."   Jane eyes you with suspicion. The stress of last Monday's negotiations had still not entirely dissipated. She says, "And what does this mean to our schedule? We can't slip it again, we just can't. Russ will have a fit! He'll haul us all into the woodshed and ream us some new ones."   You look Jane right in the eyes. There's no pleasant way to give someone news like this. So you just blurt out, "Look, if things keep going like they're going, we're not going to be done with everything by next Friday. Now it's possible that we'll figure out a way to go faster. But, frankly, I wouldn't depend on that. You should start thinking about one or two tasks that could be removed from the iteration without ruining the demonstration for Russ. Come hell or high water, we are going to give that demonstration on Friday, and I don't think you want us to choose which tasks to omit."   "Aw forchrisakes!" Jane barely manages to stifle yelling that last word as she stalks away, shaking her head. Not for the first time, you say to yourself, "Nobody ever promised me project management would be easy." You are pretty sure it won't be the last time, either.   Actually, things went a bit better than you had hoped. The team did, in fact, have to drop one task from the iteration, but Jane had chosen wisely, and the demonstration for Russ went without a hitch. Russ was not impressed with the progress, but neither was he dismayed. He simply said, "This is pretty good. But remember, we have to be able to demonstrate this system at the trade show in July, and at this rate, it doesn't look like you'll have all that much to show." Jane, whose attitude had improved dramatically with the completion of the iteration, responded to Russ by saying, "Russ, this team is working hard, and well. When July comes around, I am confident that we'll have something significant to demonstrate. It won't be everything, and some of it may be smoke and mirrors, but we'll have something."   Painful though the last iteration was, it had calibrated your velocity numbers. The next iteration went much better. Not because your team got more done than in the last iteration but simply because the team didn't have to remove any tasks or stories in the middle of the iteration.   By the start of the fourth iteration, a natural rhythm has been established. Jane, you, and the team know exactly what to expect from one another. The team is running hard, but the pace is sustainable. You are confident that the team can keep up this pace for a year or more.   The number of surprises in the schedule diminishes to near zero; however, the number of surprises in the requirements does not. Jane and Russ frequently look over the growing system and make recommendations or changes to the existing functionality. But all parties realize that these changes take time and must be scheduled. So the changes do not cause anyone's expectations to be violated. In March, there is a major demonstration of the system to the board of directors. The system is very limited and is not yet in a form good enough to take to the trade show, but progress is steady, and the board is reasonably impressed.   The second release goes even more smoothly than the first. By now, the team has figured out a way to automate Jane's acceptance test scripts. The team has also refactored the design of the system to the point that it is really easy to add new features and change old ones. The second release was done by the end of June and was taken to the trade show. It had less in it than Jane and Russ would have liked, but it did demonstrate the most important features of the system. Although customers at the trade show noticed that certain features were missing, they were very impressed overall. You, Russ, and Jane all returned from the trade show with smiles on your faces. You all felt as though this project was a winner.   Indeed, many months later, you are contacted by Rufus Inc. That company had been working on a system like this for its internal operations. Rufus has canceled the development of that system after a death-march project and is negotiating to license your technology for its environment.   Indeed, things are looking up!

    Read the article

  • ScatterViewItems Containing Surface Interactive Elements

    - by James Hay
    This is an age old problem of interactive elements inside interactive elements, but I want a ScatterViewItem to contain other surface interactive elements such as a SurfaceButton or SurfaceCheckBox. I've got all my elements in there and they react to taps etc. The problem is that I only get the normal ScatterView behavior once I click on an area that does not contain a control. Is there an elegant solution to allow dragging even when the contact is on a SurfaceButton or SurfaceCheckbox? e.g. <s:ScatterView > <Grid Width="200" Height="200"> <s:SurfaceButton /> </Grid> </s:ScatterView>

    Read the article

  • Error when using StaticResource

    - by James Hay
    Hi, I'm getting this error Attribute {StaticResource StoryboardIntroAnimation} value is out of range when I try and use a staic resource as the Storyboard property of a BeginStoryboard object. The markup looks a little like this: <UserControl ...> <UserControl.Resources> <Storyboard x:Key="StoryboardIntroAnimation"> ... </Storyboard> </UserControl.Resources> <UserControl.Triggers> <EventTrigger> <EventTrigger.Actions> <BeginStoryboard Storyboard="{StaticResource StoryboardIntroAnimation}" /> </EventTrigger.Actions> </EventTrigger> </UserControl.Triggers> ... </UserControl> Does anyone know why this is happening?

    Read the article

  • How can I dispatch an PropertyChanged event from a subscription to an Interval based IObservable

    - by James Hay
    I'm getting an 'UnauthorizedAccesExpection - Invalid cross-thread access' exception when I try to raise a PropertyChanged event from within a subscription to an IObservable collection created through Observable.Interval(). With my limited threading knowledge I'm assuming that the interval is happening on some other thread while the event wants to happen on the UI thread??? An explanation of the problem would be very useful. The code looks a little like: var subscriber = Observable.Interval(TimeSpan.FromSeconds(1)) .Subscribe(x => { Prop = x; // setting property raises a PropertyChanged event }); Any solutions?

    Read the article

  • Help with split

    - by Andeeh
    I have something that splits each line of a file. here is a sample of a line it might split "James","Project5","15/05/2010","3" I have this code Private Sub Command1_Click() Open jobs For Input As #1 Do While Not EOF(1) Line Input #1, tmpstring splititems = Split(tmpstring, ",") Form1.Print splititems(0) Form1.Print splititems(1); Form1.Print splititems(2); Form1.Print splititems(3) Loop Close #1 End Sub I would like it to instead of outputting a name each time there is a name, just put the project under the name that is already there. e.g. if there was another line in the file with the name james and he had been working on project 2 in that line I would like it to just put project 2 under the "James" that had already been put on the form. Any help would be fantastic

    Read the article

  • missing value true / false: error in loop not in one-off

    - by vincent hay
    I am new on R and I have a problem with a test in a loop that I want to code. With a data frame (tabetest) like the one here after: Date 25179M103 1 14977 77.7309 2 14978 77.2567 3 14979 77.7507 I have: if(tabetest[3,"Date"]-tabetest[1,"Date"]1){print("ok")} [1] "ok" But: j=1 > position = 1 > price=tabetest for (i in 1:nrow(tabetest)-position){if(tabetest[i+position,"Date"]-tabetest[position,"Date"]>20){price[i+position,j]=price[i+position,j]/price[position,j]-1};position=position+1} Returns an error. R says that there is a missing value where true/false is required in: if (tabetest[i + position, "Date"] - tabetest[position, "Date"] > I have spent quite some time on that error but still don't understand where it comes from. Thanks for your help, Vincent

    Read the article

  • Getting mysql row that doesn't conflict with another row

    - by user939951
    I have two tables that link together through an id one is "submit_moderate" and one is "submit_post" The "submit_moderate" table looks like this id moderated_by post 1 James 60 2 Alice 32 3 Tim 18 4 Michael 60 Im using a simple query to get data from the "submit_post" table according to the "submit_moderate" table. $get_posts = mysql_query("SELECT * FROM submit_moderate WHERE moderated_by!='$user'"); $user is the person who is signed in. Now my problem is when I run this query, with the user 'Michael' it will retrieve this 1 James 60 2 Alice 32 3 Tim 18 Now technically this is correct however I don't want to retrieve the first row because 60 is associated with Michael as well as James. Basically I don't want to retrieve that value '60'. I know why this is happening however I can't figure out how to do this. I appreciate any hints or advice I can get.

    Read the article

  • Posting an image and textual based data to a wcf service

    - by James Hay
    I have a requirement to write a web service that allows me to post an image to a server along with some additional information about that image. I'm completely new to developing web services (normally client side dev) so I'm a little stumped as to what I need to look into and try. How do you post binary data and plain text into a servic? What RequestFormat should I use? It looks like my options are xml or json. Can I use either of these? Bit of a waffly question but I just need some direction rather than a solution as I can't seem to find much online.

    Read the article

  • Adding events to ScatterViewItems when implicitly creating them

    - by James Hay
    Not sure there's too many surface developers on here but hey ho... If i have a scatterview which implicity creates the ScatterViewItem objects (see below), is it possible to retireve the contact events for each scatterViewItem? Also when i wrap tyhe image object in a ScatterViewItem explicitly the item no longer works. Could anyone advise as to why this is the case? <s:ScatterView ItemsSource="{StaticResource DummyData}" > <s:ScatterView.ItemTemplate> <DataTemplate> <Image Source="{Binding Path=ImagePath}" /> </DataTemplate> </s:ScatterView.ItemTemplate> </s:ScatterView>

    Read the article

  • What is the Action returned by the subscribe parameter of IObservable.Create actually for?

    - by James Hay
    The method definition of IObservable.Create is: public static IObservable<TSource> Create<TSource>( Func<IObserver<TSource>, Action> subscribe ) I get that the function is called once the observable is subscribed to, where by I can then call OnNext, OnError and OnComplete on the observer. But why do I need to return an Action from the subscibe parameter and when will it actually be called?

    Read the article

  • Can I change the binding source to another source in XAML?

    - by No hay Problema
    Hi guys, I want to do a very simple thing, can you point me on the right direction? I want to change the source in XAML to another object source, let me put you an example: I have a Listview, bound to a "Model A", it has many properties, but one is called "Total". This property is not shown on the View Each ListviewItem has its own source (ItemsSource), BUT, one of the fields should show "Total" from "Model A" Caveat: I am implementing MVVM, so the "Model A" is assigned as a VM DataSource, XAML knows nothing about it. So, in my perfect world the XAML should look like this: <GridViewColumn Header="Total" Width="150"> <GridViewColumn.CellTemplate> <DataTemplate> <Label Content="{Binding Source=<The source of LISTVIEW> Path=Total}"/> </DataTemplate> </GridViewColumn.CellTemplate> </GridViewColumn> I have tried RelativeSource but that points me to the XAML object, I want the source of it, is it possible? Thanks

    Read the article

  • How do I construct a request for a WCF http post call?

    - by James Hay
    I have a really simple service that I'm messing about with defined by: [OperationContract] [WebInvoke(UriTemplate = "Review/{val}", RequestFormat = WebMessageFormat.Xml, Method = "POST", BodyStyle=WebMessageBodyStyle.Bare)] void SubmitReview(string val, UserReview review); UserReview is, at the moment, a class with no properties. All very basic. When I try and test this in Fiddler I get a bad request status (400) message. I'm trying to call the service using the details: POST http://127.0.0.1:85/Service.svc/Review/hello Headers User-Agent: Fiddler Content-Type: application/xml Host: 127.0.0.1:85 Content-Length: 25 Body <UserReview></UserReview> I would think i'm missing something fairly obvious. Any pointers?

    Read the article

  • Why use buffers to read/write Streams

    - by James Hay
    Following reading various questions on reading and writing Streams, all the various answers define something like this as the correct way to do it: private void CopyStream(Stream input, Stream output) { byte[] buffer = new byte[16 * 1024]; int read; while ((read = input.Read(buffer, 0, buffer.Length)) > 0) { output.Write(buffer, 0, read); } } Two questions: Why read and write in these smaller chunks? What is the significance of the buffer size used?

    Read the article

  • Can I enable PreviewClick using InputBindings in WPF?

    - by No hay Problema
    I want to detect when a user clicks on an item on a listview, without using events as I do command binding and I don't like all the nonsense of the behaviours. I have tried this: <ListView x:Name="MainList" Margin="2,8,6,8" Background="Black" ItemsSource="{Binding Path=AssetsVM.Data, Mode=OneWay}" BorderBrush="{x:Null}" > <ListView.InputBindings> <MouseBinding Command="{Binding Path=AssetsVM.SelectActivo}" CommandParameter="{Binding ElementName=MainList, Path=SelectedItem}" MouseAction="LeftClick" /> </ListView.InputBindings> This works fine if I click on the listview but does not work on the items, what I need is either a way to enable "Preview" or have a MouseAction/Gesture that behaves as preview, is it possible? Thanks

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >