Search Results

Search found 912 results on 37 pages for 'jeffrey west'.

Page 5/37 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • GoldenGate 12c Trail Encryption and Credentials with Oracle Wallet

    - by hamsun
    I have been asked more than once whether the Oracle Wallet supports GoldenGate trail encryption. Although GoldenGate has supported encryption with the ENCKEYS file for years, Oracle GoldenGate 12c now also supports encryption using the Oracle Wallet. This helps improve security and makes it easier to administer. Two types of wallets can be configured in Oracle GoldenGate 12c: The wallet that holds the master keys, used with trail or TCP/IP encryption and decryption, stored in the new 12c dirwlt/cwallet.sso file.   The wallet that holds the Oracle Database user IDs and passwords stored in the ‘credential store’ stored in the new 12c dircrd/cwallet.sso file.   A wallet can be created using a ‘create wallet’  command.  Adding a master key to an existing wallet is easy using ‘open wallet’ and ‘add masterkey’ commands.   GGSCI (EDLVC3R27P0) 42> open wallet Opened wallet at location 'dirwlt'. GGSCI (EDLVC3R27P0) 43> add masterkey Master key 'OGG_DEFAULT_MASTERKEY' added to wallet at location 'dirwlt'.   Existing GUI Wallet utilities that come with other products such as the Oracle Database “Oracle Wallet Manager” do not work on this version of the wallet. The default Oracle Wallet can be changed.   GGSCI (EDLVC3R27P0) 44> sh ls -ltr ./dirwlt/* -rw-r----- 1 oracle oinstall 685 May 30 05:24 ./dirwlt/cwallet.sso GGSCI (EDLVC3R27P0) 45> info masterkey Masterkey Name:                 OGG_DEFAULT_MASTERKEY Creation Date:                  Fri May 30 05:24:04 2014 Version:        Creation Date:                  Status: 1               Fri May 30 05:24:04 2014        Current   The second wallet file is used for the credential used to connect to a database, without exposing the user id or password. Once it is configured, this file can be copied so that credentials are available to connect to the source or target database.   GGSCI (EDLVC3R27P0) 48> sh cp ./dircrd/cwallet.sso $GG_EURO_HOME/dircrd GGSCI (EDLVC3R27P0) 49> sh ls -ltr ./dircrd/* -rw-r----- 1 oracle oinstall 709 May 28 05:39 ./dircrd/cwallet.sso   The encryption wallet file can also be copied to the target machine so the replicat has access to the master key to decrypt records that are encrypted in the trail. Similar to the old ENCKEYS file, the master keys wallet created on the source host must either be stored in a centrally available disk or copied to all GoldenGate target hosts. The wallet is in a platform-independent format, although it is not certified for the iSeries, z/OS, and NonStop platforms.   GGSCI (EDLVC3R27P0) 50> sh cp ./dirwlt/cwallet.sso $GG_EURO_HOME/dirwlt   The new 12c UserIdAlias parameter is used to locate the credential in the wallet so the source user id and password does not need to be stored as a parameter as long as it is in the wallet.   GGSCI (EDLVC3R27P0) 52> view param extwest extract extwest exttrail ./dirdat/ew useridalias gguamer table west.*; The EncryptTrail parameter is used to encrypt the trail using the Advanced Encryption Standard and can be used with a primary extract or pump extract. GGSCI (EDLVC3R27P0) 54> view param pwest extract pwest encrypttrail AES256 rmthost easthost, mgrport 15001 rmttrail ./dirdat/pe passthru table west.*;   Once the extracts are running, records can be encrypted using the wallet.   GGSCI (EDLVC3R27P0) 60> info extract *west EXTRACT    EXTWEST   Last Started 2014-05-30 05:26   Status RUNNING Checkpoint Lag       00:00:17 (updated 00:00:01 ago) Process ID           24982 Log Read Checkpoint  Oracle Integrated Redo Logs                      2014-05-30 05:25:53                      SCN 0.0 (0) EXTRACT    PWEST     Last Started 2014-05-30 05:26   Status RUNNING Checkpoint Lag       24:02:32 (updated 00:00:05 ago) Process ID           24983 Log Read Checkpoint  File ./dirdat/ew000004                      2014-05-29 05:23:34.748949  RBA 1483   The ‘info masterkey’ command is used to confirm the wallet contains the key after copying it to the target machine. The key is needed to decrypt the data in the trail before the replicat applies the changes to the target database.   GGSCI (EDLVC3R27P0) 41> open wallet Opened wallet at location 'dirwlt'. GGSCI (EDLVC3R27P0) 42> info masterkey Masterkey Name:                 OGG_DEFAULT_MASTERKEY Creation Date:                  Fri May 30 05:24:04 2014 Version:        Creation Date:                  Status: 1               Fri May 30 05:24:04 2014        Current   Once the replicat is running, records can be decrypted using the wallet.   GGSCI (EDLVC3R27P0) 44> info reast REPLICAT   REAST     Last Started 2014-05-30 05:28   Status RUNNING INTEGRATED Checkpoint Lag       00:00:00 (updated 00:00:02 ago) Process ID           25057 Log Read Checkpoint  File ./dirdat/pe000004                      2014-05-30 05:28:16.000000  RBA 1546   There is no need for the DecryptTrail parameter when using the Oracle Wallet, unlike when using the ENCKEYS file.   GGSCI (EDLVC3R27P0) 45> view params reast replicat reast assumetargetdefs discardfile ./dirrpt/reast.dsc, purge useridalias ggueuro map west.*, target east.*;   Once a record is inserted into the source table and committed, the encryption can be verified using logdump and then querying the target table.   AMER_SQL>insert into west.branch values (50, 80071); 1 row created.   AMER_SQL>commit; Commit complete.   The following encrypted record can be found using logdump. Logdump 40 >n 2014/05/30 05:28:30.001.154 Insert               Len    28 RBA 1546 Name: WEST.BRANCH After  Image:                                             Partition 4   G  s    0a3e 1ba3 d924 5c02 eade db3f 61a9 164d 8b53 4331 | .>...$\....?a..M.SC1   554f e65a 5185 0257                               | UO.ZQ..W  Bad compressed block, found length of  7075 (x1ba3), RBA 1546   GGS tokens: TokenID x52 'R' ORAROWID         Info x00  Length   20  4141 4157 7649 4141 4741 4141 4144 7541 4170 0001 | AAAWvIAAGAAAADuAAp..  TokenID x4c 'L' LOGCSN           Info x00  Length    7  3231 3632 3934 33                                 | 2162943  TokenID x36 '6' TRANID           Info x00  Length   10  3130 2e31 372e 3135 3031                          | 10.17.1501  The replicat automatically decrypted this record from the trail and then inserted the row to the target table using the wallet. This select verifies the row was inserted into the target database and the data is not encrypted. EURO_SQL>select * from branch where branch_number=50; BRANCH_NUMBER                  BRANCH_ZIP -------------                                   ----------    50                                              80071   Book a seat in an upcoming Oracle GoldenGate 12c: Fundamentals for Oracle course now to learn more about GoldenGate 12c new features including how to use GoldenGate with the Oracle wallet, credentials, integrated extracts, integrated replicats, the Oracle Universal Installer, and other new features. Looking for another course? View all Oracle GoldenGate training.   Randy Richeson joined Oracle University as a Senior Principal Instructor in March 2005. He is an Oracle Certified Professional (10g-12c) and a GoldenGate Certified Implementation Specialist (10-11g). He has taught GoldenGate since 2010 and also has experience teaching other technical curriculums including GoldenGate Monitor, Veridata, JD Edwards, PeopleSoft, and the Oracle Application Server.

    Read the article

  • Using SEO to hide a website in a specific location?

    - by mickburkejnr
    Hi everyone, A friend of mine wants to build a website, but doesn't want people in the West Midlands area of the UK to be able to see it, but wants areas outside of the West Midlands to be able to see it. Is this possible? I know SEO can be used to target specific countries to improve search results, but could it be used to target specific areas inside a country and to basically remove the website from Google listings for a specific area? Cheers!

    Read the article

  • Small adventure game

    - by Nick Rosencrantz
    I'm making a small adventure game where the player can walk through Dungeons and meet scary characters: The whole thing is 20 java classes and I'm making this a standalone frame while it could very well be an applet I don't want to make another applet since I might want to recode this in C/C++ if the game or game engine turns out a success. The engine is the most interesting part of the game, it controls players and computer-controlled characters such as Zombies, Reptile Warriors, Trolls, Necromancers, and other Persons. These persons can sleep or walk around in the game and also pick up and move things. I didn't add many things so I suppose that is the next thing to do is to add things that can get used now that I already added many different types of walking persons. What do you think I should add and do with things in the game? The things I have so far is: package adventure; /** * The data type for things. Subclasses will be create that takes part of the story */ public class Thing { /** * The name of the Thing. */ public String name; /** * @param name The name of the Thing. */ Thing( String name ) { this.name = name; } } public class Scroll extends Thing { Scroll (String name) { super(name); } } class Key extends Thing { Key (String name) { super(name); } } The key is the way to win the game if you figure our that you should give it to a certain person and the scroll can protect you from necromancers and trolls. If I make this game more Dungeons and Dragons-inspired, do you think will be any good? Any other ideas that you think I could use here? The Threadwhich steps time forward and wakes up persons is called simulation. Do you think I could do something more advanced with this class? package adventure; class Simulation extends Thread { private PriorityQueue Eventqueue; Simulation() { Eventqueue = new PriorityQueue(); start(); } public void wakeMeAfter(Wakeable SleepingObject, double time) { Eventqueue.enqueue(SleepingObject, System.currentTimeMillis()+time); } public void run() { while(true) { try { sleep(5); //Sov i en halv sekund if (Eventqueue.getFirstTime() <= System.currentTimeMillis()) { ((Wakeable)Eventqueue.getFirst()).wakeup(); Eventqueue.dequeue(); } } catch (InterruptedException e ) { } } } } And here is the class that makes up the actual world: package adventure; import java.awt.*; import java.net.URL; /** * Subklass to World that builds up the Dungeon World. */ public class DungeonWorld extends World { /** * * @param a Reference to adventure game. * */ public DungeonWorld(Adventure a) { super ( a ); // Create all places createPlace( "Himlen" ); createPlace( "Stairs3" ); createPlace( "IPLab" ); createPlace( "Dungeon3" ); createPlace( "Stairs5" ); createPlace( "C2M2" ); createPlace( "SANS" ); createPlace( "Macsal" ); createPlace( "Stairs4" ); createPlace( "Dungeon2" ); createPlace( "Datorsalen" ); createPlace( "Dungeon");//, "Ljushallen.gif" ); createPlace( "Cola-automaten", "ColaAutomat.gif" ); createPlace( "Stairs2" ); createPlace( "Fable1" ); createPlace( "Dungeon1" ); createPlace( "Kulverten" ); // Create all connections between places connect( "Stairs3", "Stairs5", "Down", "Up" ); connect( "Dungeon3", "SANS", "Down", "Up" ); connect( "Dungeon3", "IPLab", "West", "East" ); connect( "IPLab", "Stairs3", "West", "East" ); connect( "Stairs5", "Stairs4", "Down", "Up" ); connect( "Macsal", "Stairs5", "South", "Norr" ); connect( "C2M2", "Stairs5", "West", "East" ); connect( "SANS", "C2M2", "West", "East" ); connect( "Stairs4", "Dungeon", "Down", "Up" ); connect( "Datorsalen", "Stairs4", "South", "Noth" ); connect( "Dungeon2", "Stairs4", "West", "East" ); connect( "Dungeon", "Stairs2", "Down", "Up" ); connect( "Dungeon", "Cola-automaten", "South", "North" ); connect( "Stairs2", "Kulverten", "Down", "Up" ); connect( "Stairs2", "Fable1", "East", "West" ); connect( "Fable1", "Dungeon1", "South", "North" ); // Add things // --- Add new things here --- getPlace("Cola-automaten").addThing(new CocaCola("Ljummen cola")); getPlace("Cola-automaten").addThing(new CocaCola("Avslagen Cola")); getPlace("Cola-automaten").addThing(new CocaCola("Iskall Cola")); getPlace("Cola-automaten").addThing(new CocaCola("Cola Light")); getPlace("Cola-automaten").addThing(new CocaCola("Cuba Cola")); getPlace("Stairs4").addThing(new Scroll("Scroll")); getPlace("Dungeon3").addThing(new Key("Key")); Simulation sim = new Simulation(); // Load images to be used as appearance-parameter for persons Image studAppearance = owner.loadPicture( "Person.gif" ); Image asseAppearance = owner.loadPicture( "Asse.gif" ); Image trollAppearance = owner.loadPicture( "Loke.gif" ); Image necromancerAppearance = owner.loadPicture( "Necromancer.gif" ); Image skeletonAppearance = owner.loadPicture( "Reptilewarrior.gif" ); Image reptileAppearance = owner.loadPicture( "Skeleton.gif" ); Image zombieAppearance = owner.loadPicture( "Zombie.gif" ); // --- Add new persons here --- new WalkingPerson(sim, this, "Peter", studAppearance); new WalkingPerson(sim, this, "Zombie", zombieAppearance ); new WalkingPerson(sim, this, "Zombie", zombieAppearance ); new WalkingPerson(sim, this, "Skeleton", skeletonAppearance ); new WalkingPerson(sim, this, "John", studAppearance ); new WalkingPerson(sim, this, "Skeleton", skeletonAppearance ); new WalkingPerson(sim, this, "Skeleton", skeletonAppearance ); new WalkingPerson(sim, this, "Skeleton", skeletonAppearance ); new WalkingPerson(sim, this, "Sean", studAppearance ); new WalkingPerson(sim, this, "Reptile", reptileAppearance ); new LabAssistant(sim, this, "Kate", asseAppearance); new LabAssistant(sim, this, "Jenna", asseAppearance); new Troll(sim, this, "Troll", trollAppearance); new Necromancer(sim, this, "Necromancer", necromancerAppearance); } /** * * The place where persons are placed by default * *@return The default place. * */ public Place defaultPlace() { return getPlace( "Datorsalen" ); } private void connect( String p1, String p2, String door1, String door2) { Place place1 = getPlace( p1 ); Place place2 = getPlace( p2 ); place1.addExit( door1, place2 ); place2.addExit( door2, place1 ); } } Thanks

    Read the article

  • E-Business Suite, ADF, Mobile and Eclipse: Oracle OpenWorld is Here!

    - by Juan Camilo Ruiz
    Oracle OpenWorld 2012 is around the corner! Lots of exciting news and content awaits for all attendees next week - the theme of my participation: ADF and E-Business Suite integration, together with ADF development in Oracle Enterprise Eclipse Package and JDeveloper.If you are coming to San Francisco and are a reader of this blog, you might be wondering what I'll be doing next week and also what should you attend? So, the following is the list of activities where I'll be participating or that I recommend you should not miss:First and foremost: On Thursday Oct. 4: Using Oracle ADF with Oracle E-Business Suite: The Full Integration View.  11.15 a.m - Moscone West 3003:  This is an emerging hot topic among both ADF and Oracle E-Business Suite Customers. In this session I'll be doing a presentation with Sara Woodhull from the Applications Technology Group (ATG) in Oracle E-Business Suite and Siva Puthurkattil from Lake County, Illinois. Sunday, Sept. 30:  I'll be hanging out at the ADF EMG User Day, learning directly from our users and Gurus. Monday, Oct. 1: Don't miss Chris Tonas's keynote for developers - at 10:45 am. Salon 8 at the Marriot - The Future of Development for Oracle Fusion—From Desktop to Mobile to Cloud. Then: At 12.15 p.m. Moscone West 3014 - Extend Oracle Fusion Apps to Tablets/Smartphones with Oracle Mobile Technology Followed by: At 1.45 p.m. Moscone West 3002/3004 -  Extend Oracle Applications to Mobile Devices with Oracle’s Mobile Technologies I'll be participating in a couple of Hands-On Labs: Build Mobile Applications for Oracle E-Business Suite 1:45 PM- Marriott Marquis - Salon 10A And: Introduction to ADF 3.15 p.m - Marrriott Marquis - Salon 3/4. Tuesday, Oct. 2: I'll be at the Oracle Enterprise Pack for Eclipse demo booth showing some nice demos on ADF development with Eclipse. Wednesday, Oct. 3: Mobile Apps for Oracle E-Business Suite with Oracle ADF Mobile and Oracle SOA Suite 10:15 AM - Moscone West - 3001. Let's have a beer at the Oracle ADF Developer Meetup. OTN Louge 4:30 p.,m - 5.30 p.m! Thursday, Oct. 4: After my session, come to experience ADF development in Eclipse at the Oracle ADF for Java EE Developers with Oracle Enterprise Pack for Eclipse HandsOn Lab 12.45 p,m - Marriot room 3/4. All the Oracle OpenWorld related sessions can be found here: ADF - http://goo.gl/eJFNi Mobile: http://goo.gl/mGoRM E-Business Suite: http://goo.gl/5NqMd

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • Good Customer Service Example

    - by MightyZot
    Here’s another good customer service example for you! My wife purchased a Galaxy last week and she loves the phone.  She asked me to add it to our AT&T Microcell last night. I purchased the AT&T Microcell a couple of years ago, because cell signal out where I live sucks! Since microcells are managed on the AT&T web site, I went to the site and tried to sign in. Naturally, having not managed that microcell in a couple of years…and much to my chagrin…I discovered that I didn’t know my password OR my user ID. So, I decided to call and see if I could get my account reset that late in the day (we’re talking last night, so it was well after 7pm.) I called the technical support line, touched the appropriate numbers to navigate to microcell support, turned on my speaker phone, and prepared for the long wait. After about 45 seconds I was delighted to hear “Jeffrey” break in and ask what he could help me with. I explained that I have not managed my microcell for some time and had forgotten the user name and password.  “No problem”, he replied, and he asked me for the line I used to register the microcell. After confirming the last four digits of my IMEI number, he asked me for my wife’s number. I gave him my wife’s number and he said, “I’ve taken care of it Mr Pope. Just have her reboot her phone and you should see your microcell.” We rebooted her phone, it connected to the microcell, and voila, she was online! “Is there anything else I can help you with while I’ve got you on the line”, he said. “Nope”, I replied. “Ok, have a great night.” What made this a great customer service experience for me was that “Jeffrey” didn’t stop at giving me my user account and password, which I would probably forget anyway after setting up my wife’s new phone. Instead, he solved the real problem for me – adding my wife’s new phone to my microcell. Great job Jeffrey!

    Read the article

  • Public-to-Public IPSec tunnel: NAT confusion

    - by WuckaChucka
    I know this is possible -- and apparently fairly common with larger companies that don't/can't route private addresses for overlap reasons -- but I can't wrap my head around how to get this to work. I'm playing around with pfSense, Vyatta and a Cisco 5505 right now, hardware-wise. So here's my setup: WEST: Vyatta outside: 10.0.0.254/24 inside: 172.16.0.1/24 machine a: 172.16.0.200/24 EAST: Cisco 5505 outside: 10.0.0.210/24 inside: 192.168.10.1 machine b (webserver): 192.168.10.2 So what we're trying to do is this: route traffic across the tunnel from machine A to machine B without using private addresses. i.e. 172.16.0.200 makes a TCP request to 10.0.0.210:80, and as far as EAST is concerned, it sees a src IP of 10.0.0.254. On WEST, I have your typical many-to-one Source NAT to translate 172.16.0.0/24 to 10.0.0.254 and that's confirmed to be working. Also on WEST, I have the following IPSec config: Local IP: 10.0.0.254 Peer IP: 10.0.0.210 local subnet: 10.0.0.254/32 remote subnet: 10.0.0.210/32 I have the reversed configuration on EAST. What happens when I make a request from machine A to 10.0.0.210:80 is that the SNAT translates the private address of machine A to 10.0.0.254 and it's routed out (and discarded at the other end) without establishing the tunnel. What I'm assuming is happening is that the inside interface on WEST receives a packet from 172.16.0.200 and since this doesn't match the local subnet defined in the tunnel configuration, it's not processed by the IPSec engine and the tunnel is not established. How do you make this work? Seems like a chicken and egg thing with the NAT and IPSec and I just can't wrap my head around how this can be done: can I say, "if a packet is received on the inside interface with a destination of 10.0.0.210, translate it to 10.0.0.254 before the IPSec engine inspects it"?

    Read the article

  • A tiny Utility to recycle an IIS Application Pool

    - by Rick Strahl
    In the last few weeks I've annoyingly been having problems with an area on my Web site. It's basically ancient articles that are using ASP classic pages and for reasons unknown ASP classic locks up on these pages frequently. It's not an individual page, but ALL ASP classic pages lock up. Ah yes, gotta old tech gone bad. It's not super critical since the content is really old, but still a hassle since it's linked content that still gets quite a bit of traffic. When it happens all ASP classic in that AppPool dies. I've been having a hard time tracking this one down - I suspect an errant COM object I have a Web Monitor running on the server that's checking for failures and while the monitor can detect the failures when the timeouts occur, I didn't have a good way to just restart that particular application pool. I started putzing around with PowerShell, but - as so often seems the case - I can never get the PowerShell syntax right - I just don't use it enough and have to dig out cheat sheets etc. In any case, after about 20 minutes of that I decided to just create a small .NET Console Application that does the trick instead, and in a few minutes I had this:using System; using System.Collections.Generic; using System.Text; using System.DirectoryServices; namespace RecycleApplicationPool { class Program { static void Main(string[] args) { string appPoolName = "DefaultAppPool"; string machineName = "LOCALHOST"; if (args.Length > 0) appPoolName = args[0]; if (args.Length > 1) machineName = args[1]; string error = null; DirectoryEntry root = null; try { Console.WriteLine("Restarting Application Pool " + appPoolName + " on " + machineName + "..."); root = new DirectoryEntry("IIS://" + machineName + "/W3SVC/AppPools/" +appPoolName); Console.WriteLine(root.InvokeGet("Name")); root.Invoke("Recycle"); Console.WriteLine("Application Pool recycling complete..."); } catch(Exception ex) { error = "Error: Unable to access AppPool: " + ex.Message; } if ( !string.IsNullOrEmpty(error) ) { Console.WriteLine(error); return; } } } } To run in you basically provide the name of the ApplicationPool and optionally a machine name if it's not on the local box. RecyleApplicationPool.exe "WestWindArticles" And off it goes. What's nice about AppPool recycling versus doing a full IISRESET is that it only affects the AppPool, and more importantly AppPool recycles happen in a staggered fashion - the existing instance isn't shut down immediately until requests finish while a new instance is fired up to handle new requests. So, now I can easily plug this Executable into my West Wind Web Monitor as an action to take when the site is not responding or timing out which is a big improvement than hanging for an unspecified amount of time. I'm posting this fairly trivial bit of code just in case somebody (maybe myself a few months down the road) is searching for ApplicationPool recyling code. It's clearly trivial, but I've written batch files for this a bunch of times before and actually having a small utility around without having to worry whether Powershell is installed and configured right is actually an improvement. Next time I think about using PowerShell remind me that it's just easier to just build a small .NET Console app, 'k? :-) Resources Download Executable and VS Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in IIS7  .NET  Windows   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Cannot connect to MySQL Server on RHEL 5.7

    - by Jeffrey Wong
    I have a standard MySQL Server running on Red hat 5.7. I have edited /etc/my.cnf to specify the bind address as my server's public IP address. [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql # Default to using old password format for compatibility with mysql 3.x # clients (those using the mysqlclient10 compatibility package). old_passwords=1 # Disabling symbolic-links is recommended to prevent assorted security risks ; # to do so, uncomment this line: # symbolic-links=0 [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid bind-address=171.67.88.25 port=3306 And I have also restarted my firewall sudo /sbin/iptables -A INPUT -i eth0 -p tcp --destination-port 3306 -j ACCEPT /sbin/service iptables save The network administrator has already opened port 3306 for this box. When connecting from a remote computer (running Ubuntu 10.10, server is running RHEL 5.7), I issue mysql -u jeffrey -p --host=171.67.88.25 --port=3306 --socket=/var/lib/mysql/mysql.sock but receive a ERROR 2003 (HY000): Can't connect to MySQL server on '171.67.88.25' (113). I've noticed that the socket file /var/lib/mysql/mysql.sock is blank. Should this be the case? UPDATE The result of netstat -an | grep 3306 tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN Result of sudo netstat -tulpen Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State User Inode PID/Program name tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN 0 7602 3168/hpiod tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 27 7827 3298/mysqld tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 0 5110 2802/portmap tcp 0 0 0.0.0.0:8787 0.0.0.0:* LISTEN 0 8431 3326/rserver tcp 0 0 0.0.0.0:915 0.0.0.0:* LISTEN 0 5312 2853/rpc.statd tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 0 7655 3188/sshd tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 0 7688 3199/cupsd tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 0 8025 3362/sendmail: acce tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN 0 7620 3173/python udp 0 0 0.0.0.0:909 0.0.0.0:* 0 5300 2853/rpc.statd udp 0 0 0.0.0.0:912 0.0.0.0:* 0 5309 2853/rpc.statd udp 0 0 0.0.0.0:68 0.0.0.0:* 0 4800 2598/dhclient udp 0 0 0.0.0.0:36177 0.0.0.0:* 70 8314 3476/avahi-daemon: udp 0 0 0.0.0.0:5353 0.0.0.0:* 70 8313 3476/avahi-daemon: udp 0 0 0.0.0.0:111 0.0.0.0:* 0 5109 2802/portmap udp 0 0 0.0.0.0:631 0.0.0.0:* 0 7691 3199/cupsd Result of sudo /sbin/iptables -L -v -n Chain INPUT (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 6373 2110K RH-Firewall-1-INPUT all -- * * 0.0.0.0/0 0.0.0.0/0 Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 RH-Firewall-1-INPUT all -- * * 0.0.0.0/0 0.0.0.0/0 Chain OUTPUT (policy ACCEPT 1241 packets, 932K bytes) pkts bytes target prot opt in out source destination Chain RH-Firewall-1-INPUT (2 references) pkts bytes target prot opt in out source destination 572 861K ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0 1 28 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmp type 255 0 0 ACCEPT esp -- * * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT ah -- * * 0.0.0.0/0 0.0.0.0/0 46 6457 ACCEPT udp -- * * 0.0.0.0/0 224.0.0.251 udp dpt:5353 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:631 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:631 782 157K ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 2 120 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:443 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:23 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:80 4970 1086K REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited Result of nmap -P0 -p3306 171.67.88.25 Host is up (0.027s latency). PORT STATE SERVICE 3306/tcp filtered mysql Nmap done: 1 IP address (1 host up) scanned in 0.09 seconds Solution When everything else fails, go GUI! system-config-securitylevel and add port 3306. All done!

    Read the article

  • GridBagConstraints problem-moved to left and size isn't the same

    - by Damir
    I have in Java two panels which need to have same layout, there is my functions for initializations panels. private void InitializePanelCom(){ pnlCom=new JPanel(); pnlCom.setSize(300,160); pnlCom.setLocation(10, 60); add(pnlCom); GridBagLayout gb=new GridBagLayout(); GridBagConstraints gc=new GridBagConstraints(); pnlCom.setLayout(gb); jLabelcommPort = setJLabel("Com Port : "); jLabelbaudRate = setJLabel("Baud Rate : "); jLabelplcAddress = setJLabel("Plc Address : "); jLabelsendTime = setJLabel("Send Time : "); jLabelx50 = setJLabel(" x 50 ms (2 - 99)"); jComboBoxcommPort = setJComboBox(commPortList); jComboBoxbaudRate = setJComboBox(bitRateList); jTextAreaPlcAddress = setJTextField(""); jTextAreaSendTime = setJTextField(""); gc.insets = new Insets(10,0,0,0); gc.ipadx = 120; gc.weightx = 1; gc.gridx = 0; gc.gridy = 0; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelcommPort,gc); gc.insets = new Insets(10,0,0,0); gc.ipadx = 120; gc.weightx = 1; gc.gridx = 1; gc.gridy = 0; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jComboBoxcommPort,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=0; gc.gridy=1; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelbaudRate,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=1; gc.gridy=1; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jComboBoxbaudRate,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=0; gc.gridy=2; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelplcAddress,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=1; gc.gridy=2; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jTextAreaPlcAddress,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=0; gc.gridy=3; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelsendTime,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=1; gc.gridy=3; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jTextAreaSendTime,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=2; gc.gridy=3; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelx50,gc); } ![alt text][1] private void InitializePanelTcp(){ pnlTcp=new JPanel(); pnlTcp.setSize(300,160); pnlTcp.setLocation(10, 60); add(pnlTcp); GridBagLayout gb=new GridBagLayout(); GridBagConstraints gc=new GridBagConstraints(); pnlTcp.setLayout(gb); lblIPAddress=setJLabel("IP Address : "); txtIPAddress=setJTextField(""); lblPort=setJLabel("Port : "); txtPort=setJTextField(""); cmbBaudRateTCP = setJComboBox(bitRateList); lblBaudRateTCP = setJLabel("Baud Rate : "); lblParityCheck=setJLabel("Parity check : "); txtParityCheck=setJTextField(""); gc.insets = new Insets(10,0,0,0); //gc.ipadx = 20; gc.weightx = 0.3; gc.gridx = 0; gc.gridy = 0; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblIPAddress,gc); gc.insets = new Insets(10,0,0,0); //gc.ipadx = 80; gc.weightx = 0.7; gc.gridx = 1; gc.gridy = 0; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(txtIPAddress,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=120; gc.weightx=0.3; gc.gridx=0; gc.gridy=1; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblPort,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=80; gc.weightx=0.7; gc.gridx=1; gc.gridy=1; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(txtPort,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=120; gc.weightx=0.3; gc.gridx=0; gc.gridy=2; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblBaudRateTCP,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=0; gc.weightx=0.7; gc.gridx=1; gc.gridy=2; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(cmbBaudRateTCP,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=120; gc.weightx=0.3; gc.gridx=0; gc.gridy=3; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblParityCheck,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=0; gc.weightx=1.7; gc.gridx=1; gc.gridy=3; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(txtParityCheck,gc); } Problem is that second panel (initializetcp, second picture doesn't look the same, labels are moved at left , it is different ). Can anybody help, I am new with GridBagContsraints at all ?

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • SmtpClient and Locked File Attachments

    - by Rick Strahl
    Got a note a couple of days ago from a client using one of my generic routines that wraps SmtpClient. Apparently whenever a file has been attached to a message and emailed with SmtpClient the file remains locked after the message has been sent. Oddly this particular issue hasn’t cropped up before for me although these routines are in use in a number of applications I’ve built. The wrapper I use was built mainly to backfit an old pre-.NET 2.0 email client I built using Sockets to avoid the CDO nightmares of the .NET 1.x mail client. The current class retained the same class interface but now internally uses SmtpClient which holds a flat property interface that makes it less verbose to send off email messages. File attachments in this interface are handled by providing a comma delimited list for files in an Attachments string property which is then collected along with the other flat property settings and eventually passed on to SmtpClient in the form of a MailMessage structure. The jist of the code is something like this: /// <summary> /// Fully self contained mail sending method. Sends an email message by connecting /// and disconnecting from the email server. /// </summary> /// <returns>true or false</returns> public bool SendMail() { if (!this.Connect()) return false; try { // Create and configure the message MailMessage msg = this.GetMessage(); smtp.Send(msg); this.OnSendComplete(this); } catch (Exception ex) { string msg = ex.Message; if (ex.InnerException != null) msg = ex.InnerException.Message; this.SetError(msg); this.OnSendError(this); return false; } finally { // close connection and clear out headers // SmtpClient instance nulled out this.Close(); } return true; } /// <summary> /// Configures the message interface /// </summary> /// <param name="msg"></param> protected virtual MailMessage GetMessage() { MailMessage msg = new MailMessage(); msg.Body = this.Message; msg.Subject = this.Subject; msg.From = new MailAddress(this.SenderEmail, this.SenderName); if (!string.IsNullOrEmpty(this.ReplyTo)) msg.ReplyTo = new MailAddress(this.ReplyTo); // Send all the different recipients this.AssignMailAddresses(msg.To, this.Recipient); this.AssignMailAddresses(msg.CC, this.CC); this.AssignMailAddresses(msg.Bcc, this.BCC); if (!string.IsNullOrEmpty(this.Attachments)) { string[] files = this.Attachments.Split(new char[2] { ',', ';' }, StringSplitOptions.RemoveEmptyEntries); foreach (string file in files) { msg.Attachments.Add(new Attachment(file)); } } if (this.ContentType.StartsWith("text/html")) msg.IsBodyHtml = true; else msg.IsBodyHtml = false; msg.BodyEncoding = this.Encoding; … additional code omitted return msg; } Basically this code collects all the property settings of the wrapper object and applies them to the SmtpClient and in GetMessage() to an individual MailMessage properties. Specifically notice that attachment filenames are converted from a comma-delimited string to filenames from which new attachments are created. The code as it’s written however, will cause the problem with file attachments not being released properly. Internally .NET opens up stream handles and reads the files from disk to dump them into the email send stream. The attachments are always sent correctly but the local files are not immediately closed. As you probably guessed the issue is simply that some resources are not automatcially disposed when sending is complete and sure enough the following code change fixes the problem: // Create and configure the message using (MailMessage msg = this.GetMessage()) { smtp.Send(msg); if (this.SendComplete != null) this.OnSendComplete(this); // or use an explicit msg.Dispose() here } The Message object requires an explicit call to Dispose() (or a using() block as I have here) to force the attachment files to get closed. I think this is rather odd behavior for this scenario however. The code I use passes in filenames and my expectation of an API that accepts file names is that it uses the files by opening and streaming them and then closing them when done. Why keep the streams open and require an explicit .Dispose() by the calling code which is bound to lead to unexpected behavior just as my customer ran into? Any API level code should clean up as much as possible and this is clearly not happening here resulting in unexpected behavior. Apparently lots of other folks have run into this before as I found based on a few Twitter comments on this topic. Odd to me too is that SmtpClient() doesn’t implement IDisposable – it’s only the MailMessage (and Attachments) that implement it and require it to clean up for left over resources like open file handles. This means that you couldn’t even use a using() statement around the SmtpClient code to resolve this – instead you’d have to wrap it around the message object which again is rather unexpected. Well, chalk that one up to another small unexpected behavior that wasted a half an hour of my time – hopefully this post will help someone avoid this same half an hour of hunting and searching. Resources: Full code to SmptClientNative (West Wind Web Toolkit Repository) SmtpClient Documentation MSDN © Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  

    Read the article

  • Getting the innermost .NET Exception

    - by Rick Strahl
    Here's a trivial but quite useful function that I frequently need in dynamic execution of code: Finding the innermost exception when an exception occurs, because for many operations (for example Reflection invocations or Web Service calls) the top level errors returned can be rather generic. A good example - common with errors in Reflection making a method invocation - is this generic error: Exception has been thrown by the target of an invocation In the debugger it looks like this: In this case this is an AJAX callback, which dynamically executes a method (ExecuteMethod code) which in turn calls into an Amazon Web Service using the old Amazon WSE101 Web service extensions for .NET. An error occurs in the Web Service call and the innermost exception holds the useful error information which in this case points at an invalid web.config key value related to the System.Net connection APIs. The "Exception has been thrown by the target of an invocation" error is the Reflection APIs generic error message that gets fired when you execute a method dynamically and that method fails internally. The messages basically says: "Your code blew up in my face when I tried to run it!". Which of course is not very useful to tell you what actually happened. If you drill down the InnerExceptions eventually you'll get a more detailed exception that points at the original error and code that caused the exception. In the code above the actually useful exception is two innerExceptions down. In most (but not all) cases when inner exceptions are returned, it's the innermost exception that has the information that is really useful. It's of course a fairly trivial task to do this in code, but I do it so frequently that I use a small helper method for this: /// <summary> /// Returns the innermost Exception for an object /// </summary> /// <param name="ex"></param> /// <returns></returns> public static Exception GetInnerMostException(Exception ex) { Exception currentEx = ex; while (currentEx.InnerException != null) { currentEx = currentEx.InnerException; } return currentEx; } This code just loops through all the inner exceptions (if any) and assigns them to a temporary variable until there are no more inner exceptions. The end result is that you get the innermost exception returned from the original exception. It's easy to use this code then in a try/catch handler like this (from the example above) to retrieve the more important innermost exception: object result = null; string stringResult = null; try { if (parameterList != null) // use the supplied parameter list result = helper.ExecuteMethod(methodToCall,target, parameterList.ToArray(), CallbackMethodParameterType.Json,ref attr); else // grab the info out of QueryString Values or POST buffer during parameter parsing // for optimization result = helper.ExecuteMethod(methodToCall, target, null, CallbackMethodParameterType.Json, ref attr); } catch (Exception ex) { Exception activeException = DebugUtils.GetInnerMostException(ex); WriteErrorResponse(activeException.Message, ( HttpContext.Current.IsDebuggingEnabled ? ex.StackTrace : null ) ); return; } Another function that is useful to me from time to time is one that returns all inner exceptions and the original exception as an array: /// <summary> /// Returns an array of the entire exception list in reverse order /// (innermost to outermost exception) /// </summary> /// <param name="ex">The original exception to work off</param> /// <returns>Array of Exceptions from innermost to outermost</returns> public static Exception[] GetInnerExceptions(Exception ex) {     List<Exception> exceptions = new List<Exception>();     exceptions.Add(ex);       Exception currentEx = ex;     while (currentEx.InnerException != null)     {         exceptions.Add(ex);     }       // Reverse the order to the innermost is first     exceptions.Reverse();       return exceptions.ToArray(); } This function loops through all the InnerExceptions and returns them and then reverses the order of the array returning the innermost exception first. This can be useful in certain error scenarios where exceptions stack and you need to display information from more than one of the exceptions in order to create a useful error message. This is rare but certain database exceptions bury their exception info in mutliple inner exceptions and it's easier to parse through them in an array then to manually walk the exception stack. It's also useful if you need to log errors and want to see the all of the error detail from all exceptions. None of this is rocket science, but it's useful to have some helpers that make retrieval of the critical exception info trivial. Resources DebugUtils.cs utility class in the West Wind Web Toolkit© Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  .NET  

    Read the article

  • WPB .Net User Group 11/29 Meeting - Kinect SDK with Joe Healy - New Meeting Location

    - by Sam Abraham
    We are excited to share great news and updates regarding the West Palm Beach .Net User Group. Our upcoming meeting will feature Joe Healy from Microsoft as speaker for the November 29th, 2011 6:30 PM meeting.   He will be covering the Kinect SDK and answering all our questions regarding the latest Windows Phone 7 Release. We will be also raffling many valuable items as part of our usual free raffle and hope each of our members leaves with a freebie.   We are also honored to share that we will be hosting our special meeting at a new location:   PC Professor 6080 Okeechobee Blvd.,  #200 West Palm Beach, FL 33417 Phone: 561-684-3333.   This is right by the Florida Turnpike entrance on Okeechobee Blvd.   PC Professor will be also providing our free pizza/soda and some additional surprise items for this meeting to mark the debut of our meetings at their location!   We would like to use this opportunity to thank our current host, CompTec, for its generous support and for hosting us for the past 2 years and look forward to their continued support and sponsorship.   A lot of work and effort is put into hosting a meeting that we hope translates into added value and benefit for our membership. We always welcome your feedback and participation as we strive to continuously improve the group.   Special thanks to our group member, Zack Weiner, for helping us find this new location.   For more details and to register please visit: http://www.fladotnet.com/Reg.aspx?EventID=536   Hope to see you all there.   --Sam Abraham & Venkat Subramanian Site Directors – West Palm Beach .Net User Group

    Read the article

  • Cutting Paper through Visualization and Collaboration

    - by [email protected]
    It's hard not to hear about "Going Green" these days. Many are working to be more environmentally conscious in their personal lives, and this has extended to the corporate world as well. I know I'm always looking for new ways. Environmental responsibility is important at Oracle too, and we have an entire section of our website dedicated to our solutions around the Eco-Enterprise. You can check it out here: http://www.oracle.com/green/index.html Perhaps the biggest and most obvious challenge in the world of business is the fact that we use so much paper. There are many good reasons why we print today too. For example: Printing off a document, spreadsheet, or CAD design that will be reviewed and marked up while on a plane Having a printout of a facility when a field engineer performs on-site maintenance During a multi-party design review where a number of people will review a drawing in a meeting room, scribbling onto a large scale drawing print to provide their collaborative comments These are just a few potential use cases, and they're valid ones. However, there's a way in which you can turn these paper processes into digital ones. AutoVue allows you to view, mark-up, and collaborate on all the data you would print. Indeed, this is the core of what AutoVue does. So if we take the examples above, we could address each as follows: Allow you to view the document, spreadsheet, or CAD drawing in AutoVue on your laptop. Even if you originally had this data vaulted in some time of system of record (like an ECM solution) and view your data from there, AutoVue allows you to "Work Offline" and take the documents you need to review on your laptop. From there, the many annotation tools in AutoVue will give you what you need to comment upon the documents that you are reviewing. The challenge with the mobile workforce is always access to information. People who perform maintenance and repair operations often are in locations with little to no Internet connectivity. However, technology is coming to these people in the form of laptops, tablet PCs, and other portable devices too. AutoVue can address situations with limited bandwidth through our streaming technology for viewing, meaning that the most up to date information can be pulled up from the central server - without the need for large data transfer. When there is no connectivity at all, the "Work Offline" option will handle this. For a design review session, the Real-Time Collaboration capabilities of AutoVue will let all the participants view the same document in a synchronized view, allowing each person to be able to mark-up the document at the same time. Since this is done in a web-based manner, not only is it not necessary to print the document, but you benefit by reducing the travel needed for these sessions. Not only are trees spared, but jet fuel as well. There are many steps involved with "Going Green", but each step is a necessary one. What we do today will directly influence our future generations, and we're looking to help.

    Read the article

  • Open World 2012

    - by jeffrey.waterman
    For those of you fortunate enough to be attending this year's Oracle OpenWorld here is a sessions I recommend carving time out of your hectic schedule to attend: Public Sector General Session (session ID#: GEN8536) Wednesday, October 3, 10:15 a.m.–11:15 a.m., Westin San Francisco, Metropolitan III Room Speakers, Mark Johnson, SVP Oracle Public Sector; Peter Doolan, CTO Oracle Public Sector; Robert Livingston, founding partner of Livingston Group and former member of the US Congress. Join Mark Johnson for an update on Oracle in government. Mark will be joined by Peter Doolan and Robert Livingston to discuss current topics facing governments and how Oracle can help organizations achieve their goals. I'll be posting more interesting sessions as I peruse the conference agenda over the next week or so.  If you see an interesting session, please feel free to share your suggestions in the comments section.

    Read the article

  • How often are comments used in XML documents?

    - by Jeffrey Sweeney
    I'm currently developing a web-based XML managing program for a client (though I may 'market' it for future clients). Currently, it reads an XML document, converts it into manageable Javascript objects, and ultimately spits out indented, easy to read XML code. Edit: The program would be used by clients that don't feel like learning XML to add items or tags, but I (or another XML developer) may use the raw data for quick changes without using an editor. I feel like fundamentally, its ready for release, but I'm wondering if I should go the extra mile and allow support for remembering (and perhaps making) comments before generating the resulting XML. Considering that these XML files will probably never be read without a program interpreting it, should I really bother adding support for comments? I'll probably be the only one looking at raw files, and I usually don't use comments for XML anyway. So, are comments common/important in most XML documents?

    Read the article

  • Get Ready to Meet Oracle GoldenGate 11gR2 at OpenWorld

    - by Irem Radzik
      Oracle GoldenGate 11g Release 2 could not come at a better time. At Oracle OpenWorld 2012 we have a great set of sessions and demos for Oracle GoldenGate users: deep dives into the new features of Oracle GoldenGate 11gR2, as well as great customer presentations from Comcast, Bank of America, Turk Telekom, Ticketmaster, St. Jude Medical Center, and more. Here are 3 must-attend sessions for GoldenGate users and for those who want to get to know GoldenGate’s capabilities: Real-World Zero-Downtime Operations with Oracle GoldenGate: Customer Panel Oct 1st 1:45 PM Moscone West – 3005 Oracle GoldenGate 11g Release 2 New Features Oct 1st 3:15 PM Moscone West – 3005 Real-World Operational Reporting with Oracle GoldenGate: Customer Panel Oct 2nd 11:45 AM Moscone West - 3005 For a full list of GoldenGate and data integration sessions, please check out our Focus-On for Data Integration. Similar to last year, Hands-on-Labs will be available for those who want to experience the power of GoldenGate first hand. One of these instructor-led sessions provides “Deep Dive into Oracle GoldenGate” will be held on Thursday Oct 4th 11:15am at Marriott Marquis - Salon ½. I expect the spots will fill out fast in this session. Oracle GoldenGate Demos will be running Monday through Wednesday in Moscone South in both Oracle Database and Oracle Fusion Middleware sections of the Oracle demo grounds. We will be showcasing: Monitoring Oracle GoldenGate for End-to-End Visibility Oracle GoldenGate 11gR2 New Features Oracle GoldenGate 11gR2: Real-Time, Transactional Database Replication Oracle GoldenGate Veridata Oracle Maximum Availability Architecture If you are not able to attend OpenWorld, you should not miss this week’s live webcast introducing Oracle GoldenGate 11g Release 2. On Wednesday the webcast will present the new features of GoldenGate and attendees will have a long, live Q&A panel session with the PM team.  I also recommend checking out the resources for GoldenGate to download new white papers. The whole team is looking forward to sharing with you the latest and greatest features of GoldenGate at the launch webcast and at OpenWorld.

    Read the article

  • Focus on Identity Management at Oracle OpenWorld12

    - by Tanu Sood
    Heading to Oracle OpenWorld 2012? Then we have Identity Management and relevant sessions all mapped out for you to help you navigate Oracle OpenWorld. Do make use of Focus On Identity Management document online or if you’d like to have a copy handy, use the pdf version instead. In the meantime, here are the 3 must-attend Identity Management sessions for this year: Trends in Identity Management Monday, October 1, at 10:45 a.m., Moscone West L3, room 3003, (session ID# CON9405) Led by Amit Jasuja, this session focuses on how the latest release of Oracle Identity Management addresses emerging identity management requirements for mobile, social, and cloud computing. It also explores how existing Oracle Identity Management customers are simplifying implementations and reducing total cost of ownership. Mobile Access Management Tuesday, October 2, at 10:15 a.m., Moscone West L3, room 3022, (session ID# CON9437) There are now more than 5 billion mobile devices on the planet, including an increasing number of personal devices being used to access corporate data and applications. This session focuses on ways to extend your existing identity management infrastructure and policies to securely and seamlessly enable mobile user access. Evolving Identity Management Thursday, October 4, at 12:45 p.m., Moscone West L3, room 3008, (session ID# CON9640) Identity management requirements have evolved and are continuing to evolve as organizations seek to secure cloud and mobile access. This session explores emerging requirements and shares best practices for evolving your identity management implementation, including the value of a service-oriented, platform approach. For a complete listing of all identity management sessions, hands-on labs, and more, see Focus on Identity Management now. See you at OOW12. 

    Read the article

  • Thursday at OpenWorld: Identity Management

    - by Tanu Sood
    Before you know it, we are at the last day at Oracle OpenWorld. But just the same, Thursday is packed with informational, educational and networking opportunities. Here’s what is in store for you today: Thursday, October 4, 2012 CON5749: Solutions for Migration of Oracle Waveset to Oracle Identity Manager 11:15 a.m. – 12:15 p.m., Moscone West 3008 Many customers of Oracle Waveset (formerly Sun Identity Manager) are planning a migration to the strategic provisioning product Oracle Identity Manager. There are several approaches to migrating to Oracle Identity Manager. Presented by Hub City Media and Oracle, this session covers these various approaches to help you select the optimum choice for your implementation. CON9640: Evolving Identity Management 12:45 p.m. – 1:45 p.m., Moscone West 3008 Identity management requirements have evolved and are continuing to evolve as organizations seek to secure cloud and mobile access.  Customers are seeing good success reducing costs and supporting business growth with by embracing a service-oriented, platform approach to addressing identity management requirements.  This session will explore these emerging requirements and share best practices for evolving your implementation. CON9662: Securing Oracle Applications with the Oracle Enterprise Identity Management Platform 2:15 p.m. – 3:15 p.m., Moscone West 3008 Oracle Enterprise Identity Management solutions are designed to secure access and simplify compliance to Oracle Applications.  Whether you are an EBS customer looking to upgrade from Oracle Single Sign-on or a Fusion Application customer seeking to leverage the Identity instance as an enterprise security platform, this session with Qualcomm and Oracle will help you understand how to get the most out of your investment. HOL10479: Integrated Identity Governance 12:45 p.m. – 1:45 p.m., Marriott Marquis – Salon 1/2 This hands-on lab demonstrates Oracle’s integrated and self-service-oriented identity governance solution, which includes simple access request, business-user-friendly access certification, closed-loop remediation, and both standard and privileged accounts. For a complete listing, refer to the Focus on Identity Management document. And as always, you can find us on @oracleidm on twitter and FaceBook. Use #oow and #idm to join in the conversation.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Security Controls on data for P6 Analytics

    - by Jeffrey McDaniel
    The Star database and P6 Analytics calculates security based on P6 security using OBS, global, project, cost, and resource security considerations. If there is some concern that users are not seeing expected data in P6 Analytics here are some areas to review: 1. Determining if a user has cost security is based on the Project level security privileges - either View Project Costs/Financials or Edit EPS Financials. If expecting to see costs make sure one of these permissions are allocated.  2. User must have OBS access on a Project. Not WBS level. WBS level security is not supported. Make sure user has OBS on project level.  3. Resource Access is determined by what is granted in P6. Verify the resource access granted to this user in P6. Resource security is hierarchical. Project access will override Resource access based on the way security policies are applied. 4. Module access must be given to a P6 user for that user to come over into Star/P6 Analytics. For earlier version of RDB there was a report_user_flag on the Users table. This flag field is no longer used after P6 Reporting Database 2.1. 5. For P6 Reporting Database versions 2.2 and higher, the Extended Schema Security service must be run to calculate all security. Any changes to privileges or security this service must be rerun before any ETL. 6. In P6 Analytics 2.0 or higher, a Weblogic user must exist that matches the P6 username. For example user Tim must exist in P6 and Weblogic users for Tim to be able to log into P6 Analytics and access data based on  P6 security.  In earlier versions the username needed to exist in RPD. 7. Cache in OBI is another area that can sometimes make it seem a user isn't seeing the data they expect. While cache can be beneficial for performance in OBI. If the data is outdated it can retrieve older, stale data. Clearing or turning off cache when rerunning a query can determine if the returned result set was from cache or from the database.

    Read the article

  • VBO and shaders confusion, what's their connection?

    - by Jeffrey
    Considering OpenGL 2.1 VBOs and 1.20 GLSL shaders: When creating an entity like "Zombie", is it good to initialize just the VBO buffer with the data once and do N glDrawArrays() calls per each N zombies? Is there a more efficient way? (With a single call we cannot pass different uniforms to the shader to calculate an offset, see point 3) When dealing with logical object (player, tree, cube etc), should I always use the same shader or should I customize (or be able to customize) the shaders per each object? Considering an entity class, should I create and define the shader at object initialization? When having a movable object such as a human, is there any more powerful way to deal with its coordinates than to initialize its VBO object at 0,0 and define an uniform offset to pass to the shader to calculate its real position? Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombielist class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >