Search Results

Search found 1638 results on 66 pages for 'multithreading'.

Page 5/66 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Efficiency concerning thread granularity

    - by MaelmDev
    Lately, I've been thinking of ways to use multithreading to improve the speed of different parts of a game engine. What confuses me is the appropriate granularity of threads, especially when dealing with single-instruction-multiple-data (SIMD) tasks. Let's use line-of-sight detection as an example. Each AI actor must be able to detect objects of interest around them and mark them. There are three basic ways to go about this with multithreading: Don't use threading at all. Create a thread for each actor. Create a thread for each actor-object combination. Option 1 is obviously going to be the least efficient method. However, choosing between the next two options is more difficult. Only using one thread per actor is still running through every object in series instead of in parallel. However, are CPU's able to create and join threads in the granularity posed in Option 3 efficiently? It seems like that many calls to the OS could be really slow, and varying enormously between different hardware.

    Read the article

  • State Changes in a Component Based Architecture [closed]

    - by Maxem
    I'm currently working on a game and using the naive component based architecture thingie (Entities are a bag of components, entity.Update() calls Update on each updateable component), while the addition of new features is really simple, it makes a few things really difficult: a) multithreading / currency b) networking c) unit testing. Multithreading / Concurrency is difficult because I basically have to do poor mans concurrency (running the entity updates in separate threads while locking only stuff that crashes (like lists) and ignoring the staleness of read state (some states are already updated, others aren't)) Networking: There are no explicit state changes that I could efficiently push over the net. Unit testing: All updates may or may not conflict, so automated testing is at least awkward. I was thinking about these issues a bit and would like your input on these changes / idea: Switch from the naive cba to a cba with sub systems that work on lists of components Make all state changes explicit Combine 1 and 2 :p Example world update: statePostProcessing.Wait() // ensure that post processing has finished Apply(postProcessedState) state = new StateBag() Concurrently( () => LifeCycleSubSystem.Update(state), // populates the state bag () => MovementSubSystem.Update(state), // populates the state bag .... }) statePostProcessing = Future(() => PostProcess(state)) statePostProcessing.Start() // Tick is finished, the post processing happens in the background So basically the changes are (consistently) based on the data for the last tick; the post processing can a) generate network packages and b) fix conflicts / remove useless changes (example: entity has been destroyed - ignore movement etc.). EDIT: To clarify the granularity of the state changes: If I save these post processed state bags and apply them to an empty world, I see exactly what has happened in the game these state bags originated from - "Free" replay capability. EDIT2: I guess I should have used the term Event instead of State Change and point out that I kind of want to use the Event Sourcing pattern

    Read the article

  • Does MultiThreading in Java takes much time for task completion?

    - by Geeta
    I have to search for a string in 10 large size files (in zip format 70 MB) and have to print the lines with the search string to corresponding 10 output files.(i.e. file 1 output should be in output_file1...file2--- output_file2). The same program takes 15 mins for a single file. But if use 10 threads to read 10 files and to write in 10 different files it should complete in 15 mins but its taking 40 mins. How can I solve this. Or multithreading will take this much time only?

    Read the article

  • Is multithreading the right way to go for my case?

    - by Julien Lebosquain
    Hello, I'm currently designing a multi-client / server application. I'm using plain good old sockets because WCF or similar technology is not what I need. Let me explain: it isn't the classical case of a client simply calling a service; all clients can 'interact' with each other by sending a packet to the server, which will then do some action, and possible re-dispatch an answer message to one or more clients. Although doable with WCF, the application will get pretty complex with hundreds of different messages. For each connected client, I'm of course using asynchronous methods to send and receive bytes. I've got the messages fully working, everything's fine. Except that for each line of code I'm writing, my head just burns because of multithreading issues. Since there could be around 200 clients connected at the same time, I chose to go the fully multithreaded way: each received message on a socket is immediately processed on the thread pool thread it was received, not on a single consumer thread. Since each client can interact with other clients, and indirectly with shared objects on the server, I must protect almost every object that is mutable. I first went with a ReaderWriterLockSlim for each resource that must be protected, but quickly noticed that there are more writes overall than reads in the server application, and switched to the well-known Monitor to simplify the code. So far, so good. Each resource is protected, I have helper classes that I must use to get a lock and its protected resource, so I can't use an object without getting a lock. Moreover, each client has its own lock that is entered as soon as a packet is received from its socket. It's done to prevent other clients from making changes to the state of this client while it has some messages being processed, which is something that will happen frequently. Now, I don't just need to protect resources from concurrent accesses. I must keep every client in sync with the server for some collections I have. One tricky part that I'm currently struggling with is the following: I have a collection of clients. Each client has its own unique ID. When a client connects, it must receive the IDs of every connected client, and each one of them must be notified of the newcomer's ID. When a client disconnects, every other client must know it so that its ID is no longer valid for them. Every client must always have, at a given time, the same clients collection as the server so that I can assume that everybody knows everybody. This way if I'm sending a message to client #1 telling "Client #2 has done something", I know that it will always be correctly interpreted: Client 1 will never wonder "but who is Client 2 anyway?". My first attempt for handling the connection of a new client (let's call it X) was this pseudo-code (remember that newClient is already locked here): lock (clients) { foreach (var client in clients) { lock (client) { client.Send("newClient with id X has connected"); } } clients.Add(newClient); newClient.Send("the list of other clients"); } Now imagine that in the same time, another client has sent a packet that translates into a message that must be broadcasted to every connected client, the pseudo-code will be something like this (remember that the current client - let's call it Y - is already locked here): lock (clients) { foreach (var client in clients) { lock (client) { client.Send("something"); } } } An obvious deadlock occurs here: on one thread X is locked, the clients lock has been entered, started looping through the clients, and at one moment must get Y's lock... which is already acquired on the second thread, itself waiting for the clients collection lock to be released! This is not the only case like this in the server application. There are other collections which must be kept in sync with the clients, some properties on a client can be changed by another one, etc. I tried other types of locks, lock-free mechanisms and a bunch of other things. Either there were obvious deadlocks when I'm using too much locks for safety, or obvious race conditions otherwise. When I finally find a good middle point between the two, it usually comes with very subtle race conditions / dead locks and other multi-threading issues... my head hurts very quickly since for any single line of code I'm writing I have to review almost the whole application to ensure everything will behave correctly with any number of threads. So here's my final question: how would you resolve this specific case, the general case, and more importantly: aren't I going the wrong way here? I have little problems with the .NET framework, C#, simple concurrency or algorithms in general. Still, I'm lost here. I know I could use only one thread processing the incoming requests and everything will be fine. However, that won't scale well at all with more clients... But I'm thinking more and more to go this simple way. What do you think? Thanks in advance to you, StackOverflow people which have taken the time to read this huge question. I really had to explain the whole context if I want to get some help.

    Read the article

  • Using the Parallel class to make multithreading easy

    - by thycotic
    Kevin has posted about the Parallel class and how to use it to easily do multiple operations at once without radically changing the structure of your code.  Very neat stuff.   Jonathan Cogley is the CEO of Thycotic Software, an agile software services and product development company based in Washington DC.  Secret Server is our flagship enterprise password vault.

    Read the article

  • Is true multithreading really necessary?

    - by Jonathan Graef
    So yeah, I'm creating a programming language. And the language allows multiple threads. But, all threads are synchronized with a global interpreter lock, which means only one thread is allowed to execute at a time. The only way to get the threads to switch off is to explicitly tell the current thread to wait, which allows another thread to execute. Parallel processing is of course possible by spawning multiple processes, but the variables and objects in one process cannot be accessed from another. However the language does have a fairly efficient IPC interface for communicating between processes. My question is: Would there ever be a reason to have multiple, unsynchronized threads within a single process (thus circumventing the GIL)? Why not just put thread.wait() statements in key positions in the program logic (presuming thread.wait() isn't a CPU hog, of course)? I understand that certain other languages that use a GIL have processor scheduling issues (cough Python), but they have all been resolved.

    Read the article

  • In which object should I implement wait()/notify()?

    - by Christopher Francisco
    I'm working in an Android project with multithreading. Basically I have to wait to the server to respond before sending more data. The data sending task is delimited by the flag boolean hasServerResponded so the Thread will loop infinitely without doing anything until the flag becomes true. Since this boolean isn't declared as volatile (yet), and also looping without doing anything wastes resources, I thought maybe I should use AtomicBoolean and also implement wait() / notify() mechanism. Should I use the AtomicBoolean object notify() and wait() methods or should I create a lock Object?

    Read the article

  • Is there a limit on the number of threads that can be spawned simultaneously?

    - by georgesl
    Yesterday I came across this question: How can i call robocopy within a python script to bulk copy multiple folders?, and I though it might be a good exercise for multithreading. I though of spawning as many threads as files needed to be copied, each routine having an exception handling system to prevent the whole copying process from crashing (and log -using mutex on the log file - if there was an error). My question: Is there a limit on the number of thread you can spawn almost simultaneously? If yes, what is the limiting factor? My question is focused on PC desktop, but I welcome any answer on different hardware (embedded systems, calculus clusters, etc.).

    Read the article

  • Threading iPhone

    - by bobobobo
    Say I have a group of large meshes that I have to intersect rays against. Assume also, for whatever reason, I cannot further simplify/reduce poly check count by spatial subdivisioning. I can do this in parallel: bool intersects( list of meshes ) // a mesh is a group of triangles { create n threads foreach mesh in meshes assign to a thread in threads wait until ( threads.run() ) ; // run asynchronously // when they're all done // pull out intersected triangles // from per-thread context data } Can you do this in ios for games? Or is the overhead of thread creation and mutex waiting going to beat-out the benefit of multithreading?

    Read the article

  • What is the best way to exploit multicores when making multithread games?

    - by Keeper
    Many people suggest to write a program, and then start optimizing it. But I think that when it's coming to multithreading with multicore, a little think ahead is required. I've read about using threads, and experienced it myself during some courses at the university (still a student). The big question is simple, but a bit abstract: What thread related steps in game design do I need to take, before implementation? Now trying to be more specific. Let's say, as an example, that I'm making a small board game (like Monopoly) that I want to be multithreaded. My goal Is that this multithreaded game will exploit the best of the multicore system, lets say 4-6 cores (like in i7 processors). My answer to this question at the moment is, one thread for each of these four basic components: GUI User Input / Output AI (computer rival) Other game related calculations (like shortest path from A to B, or level up status change) I'm not an expert (yet!), and I'm sure there are better answers out there. Any suggestion, answer, different approach will be helpful. Some thoughts: Maybe splitting the main database is a good way.. (or total disaster.. )

    Read the article

  • Recursive function MultiThreading to perform one task at a time.

    - by Ajay
    Hi, I am writing a program to crawl the websites. The crawl function is a recursive one and may consume more time to complete, So I used Multi Threading to perform the crawl for multiple websites. What exactly I need is, after completion crawling one website it call next one (which should be in Queqe) instead multiple websites crawling at a time. I am using C# and ASP.NET.

    Read the article

  • Multithreading - are the multi-core processors really doing parallel processing?

    - by so.very.tired
    Are the modern multi-core processors really doing parallel processing? Like, take for example, Intel's core i7 processors. some of them has #of Cores: 4 and #of Threads: 8 (taken from Intel's specifications pages). If I to write a program (say in Java or C) that has multiple threads of execution, will they really be processed concurrently? My instructor said that "it is not always the case with multi-core processors", but didn't gave to much details. And why do Intel have to specify both #of Cores and #of Threads? Isn't thread just a term that describe a program-related abstraction, unlike "cores" which are actual hardware? ("Every thread runs on different core").

    Read the article

  • When to Multithread and when not to Multithread c++ applications?

    - by Ashwin
    I have been in an assumption that multithreading gives a lot of flexibility and power to make efficient programs. But I am wrong. Multithreading is sometimes not desirable as it will create serious impact on the way the actual program behaves. My question? I am not sure of when to use and when not to use multithreads in applications. Please update this thread and give your opinions on multithreading and suggestions on its usage scenarios.

    Read the article

  • Multithreading for loop while maintaining order

    - by David
    I started messing around with multithreading for a CPU intensive batch process I'm running. Essentially I'm trying to condense multiple single page tiffs into single PDF documents. This works fine with a foreach loop or standard iteration but can be very slow for several 100 page documents. I tried the following based on a some examples I found to use multithreading and it has significant performance improvements however it obliterates the page order instead of 1,2,3,4 it will be 1,3,4,2,6,5 on what thread completes first. My question is how would I utilize this technique while maintaining the page order and if I can will it negate the performance benefit of the multithreading? Thank you in advance. PdfDocument doc = new PdfDocument(); string mail = textBox1.Text; string[] split = mail.Split(new string[] { Environment.NewLine }, StringSplitOptions.None); int counter = split.Count(); // Source must be array or IList. var source = Enumerable.Range(0, 100000).ToArray(); // Partition the entire source array. var rangePartitioner = Partitioner.Create(0, counter); double[] results = new double[counter]; // Loop over the partitions in parallel. Parallel.ForEach(rangePartitioner, (range, loopState) => { // Loop over each range element without a delegate invocation. for (int i = range.Item1; i < range.Item2; i++) { f_prime = split[i].Replace(" " , ""); PdfPage page = doc.AddPage(); XGraphics gfx = XGraphics.FromPdfPage(page); XImage image = XImage.FromFile(f_prime); double x = 0; gfx.DrawImage(image, x, 0); } });

    Read the article

  • Using the BackgroundWorker in a Silverlight MVVM Application

    - by axshon
    With Silverlight 4 and the Entity Framework you get a lot of work done on your behalf in terms of standard UI CRUD-style operations. Validations and I/O are pretty easy to accommodate out of the box. But sometimes you need to perform some long running tasks either on the client or on the server via service calls. To prevent your UI from hanging and annoying your users, you should consider placing these operations on a background thread. The BackgroundWorker object is the perfect solution for this...(read more)

    Read the article

  • Error in code of basic game using multiple sprites and surfaceView [on hold]

    - by Khagendra Nath Mahato
    I am a beginner to android and i was trying to make a basic game with the help of an online video tutorial. I am having problem with the multi-sprites and how to use with surfaceview.The application fails launching. Here is the code of the game.please help me. package com.example.killthemall; import java.util.ArrayList; import java.util.List; import java.util.Random; import android.app.Activity; import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Canvas; import android.graphics.Rect; import android.os.Bundle; import android.view.SurfaceHolder; import android.view.SurfaceView; import android.widget.Toast; public class Game extends Activity { KhogenView View1; @Override protected void onPause() { // TODO Auto-generated method stub super.onPause(); while(true){ try { OurThread.join(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); }} } Thread OurThread; int herorows = 4; int herocolumns = 3; int xpos, ypos; int xspeed; int yspeed; int herowidth; int widthnumber = 0; int heroheight; Rect src; Rect dst; int round; Bitmap bmp1; // private Bitmap bmp1;//change name public List<Sprite> sprites = new ArrayList<Sprite>() { }; @Override protected void onCreate(Bundle savedInstanceState) { // TODO Auto-generated method stub super.onCreate(savedInstanceState); View1 = new KhogenView(this); setContentView(View1); sprites.add(createSprite(R.drawable.image)); sprites.add(createSprite(R.drawable.bad1)); sprites.add(createSprite(R.drawable.bad2)); sprites.add(createSprite(R.drawable.bad3)); sprites.add(createSprite(R.drawable.bad4)); sprites.add(createSprite(R.drawable.bad5)); sprites.add(createSprite(R.drawable.bad6)); sprites.add(createSprite(R.drawable.good1)); sprites.add(createSprite(R.drawable.good2)); sprites.add(createSprite(R.drawable.good3)); sprites.add(createSprite(R.drawable.good4)); sprites.add(createSprite(R.drawable.good5)); sprites.add(createSprite(R.drawable.good6)); } private Sprite createSprite(int image) { // TODO Auto-generated method stub bmp1 = BitmapFactory.decodeResource(getResources(), image); return new Sprite(this, bmp1); } public class KhogenView extends SurfaceView implements Runnable { SurfaceHolder OurHolder; Canvas canvas = null; Random rnd = new Random(); { xpos = rnd.nextInt(canvas.getWidth() - herowidth)+herowidth; ypos = rnd.nextInt(canvas.getHeight() - heroheight)+heroheight; xspeed = rnd.nextInt(10 - 5) + 5; yspeed = rnd.nextInt(10 - 5) + 5; } public KhogenView(Context context) { super(context); // TODO Auto-generated constructor stub OurHolder = getHolder(); OurThread = new Thread(this); OurThread.start(); } @Override public void run() { // TODO Auto-generated method stub herowidth = bmp1.getWidth() / 3; heroheight = bmp1.getHeight() / 4; boolean isRunning = true; while (isRunning) { if (!OurHolder.getSurface().isValid()) continue; canvas = OurHolder.lockCanvas(); canvas.drawRGB(02, 02, 50); for (Sprite sprite : sprites) { if (widthnumber == 3) widthnumber = 0; update(); getdirection(); src = new Rect(widthnumber * herowidth, round * heroheight, (widthnumber + 1) * herowidth, (round + 1)* heroheight); dst = new Rect(xpos, ypos, xpos + herowidth, ypos+ heroheight); canvas.drawBitmap(bmp1, src, dst, null); } widthnumber++; OurHolder.unlockCanvasAndPost(canvas); } } public void update() { try { Thread.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } if (xpos + xspeed <= 0) xspeed = 40; if (xpos >= canvas.getWidth() - herowidth) xspeed = -50; if (ypos + yspeed <= 0) yspeed = 45; if (ypos >= canvas.getHeight() - heroheight) yspeed = -55; xpos = xpos + xspeed; ypos = ypos + yspeed; } public void getdirection() { double angleinteger = (Math.atan2(yspeed, xspeed)) / (Math.PI / 2); round = (int) (Math.round(angleinteger) + 2) % herorows; // Toast.makeText(this, String.valueOf(round), // Toast.LENGTH_LONG).show(); } } public class Sprite { Game game; private Bitmap bmp; public Sprite(Game game, Bitmap bmp) { // TODO Auto-generated constructor stub this.game = game; this.bmp = bmp; } } } Here is the LogCat if it helps.... 08-22 23:18:06.980: D/AndroidRuntime(28151): Shutting down VM 08-22 23:18:06.980: W/dalvikvm(28151): threadid=1: thread exiting with uncaught exception (group=0xb3f6f4f0) 08-22 23:18:06.980: D/AndroidRuntime(28151): procName from cmdline: com.example.killthemall 08-22 23:18:06.980: E/AndroidRuntime(28151): in writeCrashedAppName, pkgName :com.example.killthemall 08-22 23:18:06.980: D/AndroidRuntime(28151): file written successfully with content: com.example.killthemall StringBuffer : ;com.example.killthemall 08-22 23:18:06.990: I/Process(28151): Sending signal. PID: 28151 SIG: 9 08-22 23:18:06.990: E/AndroidRuntime(28151): FATAL EXCEPTION: main 08-22 23:18:06.990: E/AndroidRuntime(28151): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.example.killthemall/com.example.killthemall.Game}: java.lang.NullPointerException 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1647) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:1663) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.ActivityThread.access$1500(ActivityThread.java:117) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:931) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.os.Handler.dispatchMessage(Handler.java:99) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.os.Looper.loop(Looper.java:130) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.ActivityThread.main(ActivityThread.java:3683) 08-22 23:18:06.990: E/AndroidRuntime(28151): at java.lang.reflect.Method.invokeNative(Native Method) 08-22 23:18:06.990: E/AndroidRuntime(28151): at java.lang.reflect.Method.invoke(Method.java:507) 08-22 23:18:06.990: E/AndroidRuntime(28151): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:880) 08-22 23:18:06.990: E/AndroidRuntime(28151): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:638) 08-22 23:18:06.990: E/AndroidRuntime(28151): at dalvik.system.NativeStart.main(Native Method) 08-22 23:18:06.990: E/AndroidRuntime(28151): Caused by: java.lang.NullPointerException 08-22 23:18:06.990: E/AndroidRuntime(28151): at com.example.killthemall.Game$KhogenView.<init>(Game.java:96) 08-22 23:18:06.990: E/AndroidRuntime(28151): at com.example.killthemall.Game.onCreate(Game.java:58) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1049) 08-22 23:18:06.990: E/AndroidRuntime(28151): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1611) 08-22 23:18:06.990: E/AndroidRuntime(28151): ... 11 more 08-22 23:18:18.050: D/AndroidRuntime(28191): Shutting down VM 08-22 23:18:18.050: W/dalvikvm(28191): threadid=1: thread exiting with uncaught exception (group=0xb3f6f4f0) 08-22 23:18:18.050: I/Process(28191): Sending signal. PID: 28191 SIG: 9 08-22 23:18:18.050: D/AndroidRuntime(28191): procName from cmdline: com.example.killthemall 08-22 23:18:18.050: E/AndroidRuntime(28191): in writeCrashedAppName, pkgName :com.example.killthemall 08-22 23:18:18.050: D/AndroidRuntime(28191): file written successfully with content: com.example.killthemall StringBuffer : ;com.example.killthemall 08-22 23:18:18.050: E/AndroidRuntime(28191): FATAL EXCEPTION: main 08-22 23:18:18.050: E/AndroidRuntime(28191): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.example.killthemall/com.example.killthemall.Game}: java.lang.NullPointerException 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1647) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:1663) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.ActivityThread.access$1500(ActivityThread.java:117) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:931) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.os.Handler.dispatchMessage(Handler.java:99) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.os.Looper.loop(Looper.java:130) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.ActivityThread.main(ActivityThread.java:3683) 08-22 23:18:18.050: E/AndroidRuntime(28191): at java.lang.reflect.Method.invokeNative(Native Method) 08-22 23:18:18.050: E/AndroidRuntime(28191): at java.lang.reflect.Method.invoke(Method.java:507) 08-22 23:18:18.050: E/AndroidRuntime(28191): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:880) 08-22 23:18:18.050: E/AndroidRuntime(28191): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:638) 08-22 23:18:18.050: E/AndroidRuntime(28191): at dalvik.system.NativeStart.main(Native Method) 08-22 23:18:18.050: E/AndroidRuntime(28191): Caused by: java.lang.NullPointerException 08-22 23:18:18.050: E/AndroidRuntime(28191): at com.example.killthemall.Game$KhogenView.<init>(Game.java:96) 08-22 23:18:18.050: E/AndroidRuntime(28191): at com.example.killthemall.Game.onCreate(Game.java:58) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1049) 08-22 23:18:18.050: E/AndroidRuntime(28191): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1611) 08-22 23:18:18.050: E/AndroidRuntime(28191): ... 11 more

    Read the article

  • Reading and conditionally updating N rows, where N > 100,000 for DNA Sequence processing

    - by makerofthings7
    I have a proof of concept application that uses Azure tables to associate DNA sequences to "something". Table 1 is the master table. It uniquely lists every DNA sequence. The PK is a load balanced hash of the RK. The RK is the unique encoded value of the DNA sequence. Additional tables are created per subject. Each subject has a list of N DNA sequences that have one reference in the Master table, where N is 100,000. It is possible for many tables to reference the same DNA sequence, but in this case only one entry will be present in the Master table. My Azure dilemma: I need to lock the reference in the Master table as I work with the data. I need to handle timeouts, and prevent other threads from overwriting my data as one C# thread is working with the information. Other threads need to realise that this is locked, and move onto other unlocked records and do the work. Ideally I'd like to get some progress report of how my computation is going, and have the option to cancel the process (and unwind the locks). Question What is the best approach for this? I'm looking at these code snippets for inspiration: http://blogs.msdn.com/b/jimoneil/archive/2010/10/05/azure-home-part-7-asynchronous-table-storage-pagination.aspx http://stackoverflow.com/q/4535740/328397

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >