Search Results

Search found 1638 results on 66 pages for 'multithreading'.

Page 6/66 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Why not Green Threads?

    - by redjamjar
    Whilst I know questions on this have been covered already (e.g. http://stackoverflow.com/questions/5713142/green-threads-vs-non-green-threads), I don't feel like I've got a satisfactory answer. The question is: why don't JVM's support green threads anymore? It says this on the code-style Java FAQ: A green thread refers to a mode of operation for the Java Virtual Machine (JVM) in which all code is executed in a single operating system thread. And this over on java.sun.com: The downside is that using green threads means system threads on Linux are not taken advantage of and so the Java virtual machine is not scalable when additional CPUs are added. It seems to me that the JVM could have a pool of system processes equal to the number of cores, and then run green threads on top of that. This could offer some big advantages when you have a very number large of threads which block often (mostly because current JVM's cap the number of threads). Thoughts?

    Read the article

  • Creating the concept of Time

    - by Jamie Dixon
    So I've reached the point in my exploration of gaming where I'd like to impliment the concept of time into my little demo I've been building. What are some common methodologies for creating the concept of time passing within a game? My thoughts so far: My game loop tendes to spend a fair bit of time sitting around waiting or user input so any time system will likely need to be run in a seperate thread. What I've currently done is create a BackgroundWorker passing in a method that contains a loop triggering every second. This is working fine and I can output information to the console from here etc. Inside this loop I have a DateTime object that is incrimented by 1 minute for every realtime second. (the game begins in the year 01/01/01) Is this a standard way of acheiving this result or are there more tried and tested methods? I'm also curious about how to go about performing time based actions (reducing player energy, moving entities around the game board, life/death etc). Thanks for any pointers or advice. I've searched around however I'm not familiar enough with the terms and so my searches are yeilding little result on this one.

    Read the article

  • Multi threaded game - updating, rendering, and how to split them

    - by CodeBunny
    From the StackOverflow post (it was recommended I move this): So, I'm working on a game engine, and I've made pretty good progress. However, my engine is single-threaded, and the advantages of splitting updating and rendering into separate threads sounds like a very good idea. How should I do this? Single threaded game engines are (conceptually) very easy to make, you have a loop where you update - render - sleep - repeat. However, I can't think of a good way to break updating and rendering apart, especially if I change their update rates (say I go through the update loop 25x a second, and have 60fps for rendering) - what if I begin updating halfway through a render loop, or vice versa?

    Read the article

  • libssh2 and simultaneous connections

    - by Florian Margaine
    I'm writing a node.js C++ module using the C library libssh2. The module is supposed to be a bridge to connect to SSH over HTTPS. Right now, I'm still in the design/learning phase of v8 API and C++, and I have a design question: libssh2 is a C library, all its methods are global. From what I see in the examples, libssh2 can only handle one connection at a time. If I want to allow simultaneous connections to different SSH servers, do I have to fork a process to completely separate the libssh2 "instances", or is forking a thread enough? I don't know enough of the separation limit used there. Any idea on how to handle this is appreciated.

    Read the article

  • Can I implement the readers and writers algorithm in OpenMP by replacing counting semaphores with another feature?

    - by DeveloperDon
    After reading about OpenMP and not finding functions to support semaphores, I did an internet search for OpenMP and the readers and writers problem, but found no suitable matches. Is there a general method for replacing counting semaphores in OpenMP with something that it supports? Or is there just a gap in the environment where it does not permit things that are asymmetrical like the third readers and writers problem shown on the following page? http://en.wikipedia.org/wiki/Readers-writers_problem#The_third_readers-writers_problem

    Read the article

  • xna download website source code

    - by Emre Canbazoglu
    I have to download the html code of a web site during the game. I am taking the poster url of a movie from the imdb web site by scrapping the html ( also other informations ). I have to do the download process many times during the game for different movies. I can download and scrap the html but downloading the html takes too much time and it causes the game to slow down(freeze while downloading). How can I solve this problem? My one approach is to download and scrap all the information and store them in a database before the game and during the game access this information from the database. I think this will work properly but that is not what I exactly want. It would be better if it is dynamic. I also thought of using multi-threading but I am a bit confused about how to implement threading in xna. I read some articles about it but it is not so clear. I mean when should I start the thread and what about the update function etc. I need your help guys

    Read the article

  • Good approach for hundreds of comsumers and big files

    - by ????? ???????
    I have several files (nearly 1GB each) with data. Data is a string line. I need to process each of these files with several hundreds of consumers. Each of these consumers does some processing that differs from others. Consumers do not write anywhere concurrently. They only need input string. After processing they update their local buffers. Consumers can easily be executed in parallel. Important: With one specific file each consumer has to process all lines (without skipping) in correct order (as they appear in file). The order of processing different files doesn't matter. Processing of a single line by one consumer is comparably fast. I expect less than 50 microseconds on Corei5. So now I'm looking for the good approach to this problem. This is going to be be a part of a .NET project, so please let's stick with .NET only (C# is preferable). I know about TPL and DataFlow. I guess that the most relevant would be BroadcastBlock. But i think that the problem here is that with each line I'll have to wait for all consumers to finish in order to post the new one. I guess that it would be not very efficient. I think that ideally situation would be something like this: One thread reads from file and writes to the buffer. Each consumer, when it is ready, reads the line from the buffer concurrently and processes it. The entry from the buffer shouldn't be deleted as one consumer reads it. It can be deleted only when all consumers have processed it. TPL schedules consumer threads itself. If one consumer outperforms the others, it shouldn't wait and can read more recent entries from the buffer. Am i right with this kind of approach? Whether yes or not, how can i implement the good solution? A bit was already discussed on StackOverflow: link

    Read the article

  • What are the best resources for learning about concurrency and multi-threaded applications?

    - by Zepee
    I realised I have a massive knowledge gap when it comes to multi-threaded applications and concurrent programming. I've covered some basics in the past, but most of it seems to be gone from my mind, and it is definitely a field that I want, and need, to be more knowledgeable about. What are the best resources for learning about building concurrent applications? I'm a very practical oriented person, so if said book contains concrete examples the better, but I'm open to suggestions. I personally prefer to work in pseudocode or C++, and a slant toward game development would be best, but not required.

    Read the article

  • Thread safe double buffering

    - by kdavis8
    I am trying to implement a draw map method that will draw the tiled image across the surface of the component. I'm having issue with this code. The double buffering does not seem to be working, because the sprite flickers like crazy; my source code: package myPackage; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; public class GameView extends JFrame implements Runnable { public BufferedImage backbuffer; public Graphics2D g2d; public Image img; Thread gameloop; Scene scene; public GameView() { super("Game View"); setSize(600, 600); setVisible(true); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); backbuffer = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_RGB); g2d = backbuffer.createGraphics(); Toolkit tk = Toolkit.getDefaultToolkit(); img = tk.getImage(this.getClass().getResource("cage.png")); scene = new Scene(g2d, this); gameloop = new Thread(this); gameloop.start(); } public static void main(String args[]) { new GameView(); } public void paint(Graphics g) { g.drawImage(backbuffer, 0, 0, this); repaint(); } @Override public void run() { // TODO Auto-generated method stub Thread t = Thread.currentThread(); while (t == gameloop) { scene.getScene("dirtmap"); g2d.drawImage(img, 80, 80,this![enter image description here][1]); } } private void drawScene(String string) { // TODO Auto-generated method stub // g2d.setColor(Color.white); // g2d.fillRect(0, 0, getWidth(), getHeight()); scene.getScene(string); } } package myPackage; import java.awt.Color; import java.awt.Component; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Toolkit; public class Scene { Graphics g2d; Component c; boolean loaded = false; public Scene(Graphics2D gr, Component co) { g2d = gr; c = co; } public void getScene(String mapName) { Toolkit tk = Toolkit.getDefaultToolkit(); Image tile = tk.getImage(this.getClass().getResource("dirt.png")); // g2d.setColor(Color.red); for (int y = 0; y <= 18; y++) { for (int x = 0; x <= 18; x += 1) { g2d.drawImage(tile, x * 32, y * 32, c); } } loaded = true; } }

    Read the article

  • Naming Convention for Dedicated Thread Locking objects

    - by Chris Sinclair
    A relatively minor question, but I haven't been able to find official documentation or even blog opinion/discussions on it. Simply put: when I have a private object whose sole purpose is to serve for private lock, what do I name that object? class MyClass { private object LockingObject = new object(); void DoSomething() { lock(LockingObject) { //do something } } } What should we name LockingObject here? Also consider not just the name of the variable but how it looks in-code when locking. I've seen various examples, but seemingly no solid go-to advice: Plenty of usages of SyncRoot (and variations such as _syncRoot). Code Sample: lock(SyncRoot), lock(_syncRoot) This appears to be influenced by VB's equivalent SyncLock statement, the SyncRoot property that exists on some of the ICollection classes and part of some kind of SyncRoot design pattern (which arguably is a bad idea) Being in a C# context, not sure if I'd want to have a VBish naming. Even worse, in VB naming the variable the same as the keyword. Not sure if this would be a source of confusion or not. thisLock and lockThis from the MSDN articles: C# lock Statement, VB SyncLock Statement Code Sample: lock(thisLock), lock(lockThis) Not sure if these were named minimally purely for the example or not Kind of weird if we're using this within a static class/method. Several usages of PadLock (of varying casing) Code Sample: lock(PadLock), lock(padlock) Not bad, but my only beef is it unsurprisingly invokes the image of a physical "padlock" which I tend to not associate with the abstract threading concept. Naming the lock based on what it's intending to lock Code Sample: lock(messagesLock), lock(DictionaryLock), lock(commandQueueLock) In the VB SyncRoot MSDN page example, it has a simpleMessageList example with a private messagesLock object I don't think it's a good idea to name the lock against the type you're locking around ("DictionaryLock") as that's an implementation detail that may change. I prefer naming around the concept/object you're locking ("messagesLock" or "commandQueueLock") Interestingly, I very rarely see this naming convention for locking objects in code samples online or on StackOverflow. Question: What's your opinion generally about naming private locking objects? Recently, I've started naming them ThreadLock (so kinda like option 3), but I'm finding myself questioning that name. I'm frequently using this locking pattern (in the code sample provided above) throughout my applications so I thought it might make sense to get a more professional opinion/discussion about a solid naming convention for them. Thanks!

    Read the article

  • UDP Code client server architecture

    - by GameBuilder
    Hi I have developed a game on android.Now I want to play it on wifi or 3G. I have game packets which i want to send it form client(mobile) to server then to another client2(mobile). I don't know how to write code in Java to send the playPackets continuously to server and receive the playPacket continuously from the server to the clients. I guess i have to use two thread one for sending and one for receiving. Can someone help me with the code, or the procedure to write code for it. Thanks in advance.

    Read the article

  • Confusion related to sigwait in multiprocess system

    - by user34790
    I am having difficulty in understanding IPC in multiprocess system. I have this system where there are three child processes that send two types of signals to their process group. There are four types of signal handling processes responsible for a particular type of signal. There is this monitoring process which waits for both the signals and then processes accordingly. When I run this program for a while, the monitoring process doesn't seem to pick up the signal as well as the signal handling process. I could see in the log that the signal is only being generated but not handled at all. My code is given below #include <cstdlib> #include <iostream> #include <iomanip> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <unistd.h> #include <fcntl.h> #include <cstdio> #include <stdlib.h> #include <stdio.h> #include <pthread.h> using namespace std; double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } double getinterval() { srand(time(NULL)); int r = rand()%10 + 1; double s = (double)r/100; } int count; int count_1; int count_2; double time_1[10]; double time_2[10]; pid_t senders[1]; pid_t handlers[4]; pid_t reporter; void catcher(int sig) { printf("Signal catcher called for %d",sig); } int main(int argc, char *argv[]) { void signal_catcher_int(int); pid_t pid,w; int status; if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); return 1; } if(signal(SIGUSR2 ,SIG_IGN) == SIG_ERR) { perror("2"); return 2; } if(signal(SIGINT,signal_catcher_int) == SIG_ERR) { perror("3"); return 2; } //Registering the signal handler for(int i=0; i<4; i++) { if((pid = fork()) == 0) { cout << i << endl; //struct sigaction sigact; sigset_t sigset; int sig; int result = 0; sigemptyset(&sigset); if(i%2 == 0) { if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); return 2; } sigaddset(&sigset, SIGUSR1); sigprocmask(SIG_BLOCK, &sigset, NULL); } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("2"); return 2; } sigaddset(&sigset, SIGUSR2); sigprocmask(SIG_BLOCK, &sigset, NULL); } while(true) { int result = sigwait(&sigset, &sig); if(result == 0) { cout << "The caught signal is " << sig << endl; } } exit(0); } else { cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } //Registering the monitoring process if((pid = fork()) == 0) { sigset_t sigset; int sig; int result = 0; sigemptyset(&sigset); sigaddset(&sigset, SIGUSR1); sigaddset(&sigset, SIGUSR2); sigprocmask(SIG_BLOCK, &sigset, NULL); while(true) { int result = sigwait(&sigset, &sig); if(result == 0) { cout << "The monitored signal is " << sig << endl; } else { cout << "error" << endl; } } } else { reporter = pid; } sleep(3); //Registering the signal generator for(int i=0; i<1; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); return 1; } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); return 2; } srand(time(0)); while(true) { volatile int signal_id = rand()%2 + 1; cout << "Generating the signal " << signal_id << endl; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); } else { killpg(getpgid(getpid()), SIGUSR2); } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { cout << "Registered the sender " << pid << endl; senders[i] = pid; } } while(w = wait(&status)) { cout << "Wait on PID " << w << endl; } } void signal_catcher_int(int the_sig) { //cout << "Handling the Ctrl C signal " << endl; for(int i=0; i<1; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<4; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } Any suggestions? Here is a sample of the output as well In the beginning Registerd the handler 9544 Registerd the handler 9545 1 Registerd the handler 9546 Registerd the handler 9547 2 3 0 Registered the sender 9550 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 1 The caught signal is 10 The monitored signal is 10 The caught signal is 10 Generating the signal 2 The caught signal is 12 The caught signal is 12 The monitored signal is 12 Generating the signal 2 Generating the signal 2 The caught signal is 12 The caught signal is 12 Generating the signal 1 The caught signal is 12 The monitored signal is 10 The monitored signal is 12 Generating the signal 1 Generating the signal 2 The caught signal is 12 Generating the signal 1 Generating the signal 2 10 The monitored signal is 10 The caught signal is 12 Generating the signal 1 The caught signal is 12 The monitored signal is GenThe caught signal is TheThe caught signal is 10 Generating the signal 2 Later on The monitored signal is GenThe monitored signal is 10 Generating the signal 1 Generating the signal 2 The caught signal is 10 The caught signal is 10 The caught signal is 10 The caught signal is 12 Generating the signal 1 Generating the signal 2 Generating the signal 1 Generating the signal 1 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 1 The caught signal is 12 The caught signal is 10 The caught signal is 10 Generating the signal 2 Generating the signal 1 Generating the signal 1 Generating the signal 2 Generating the signal 1 Generating the signal 2 Generating the signal 2 Generating the signal 2 Generating the signal 1 Generating the signal 2 Generating the signal 1 Generating the signal 2 Generating the signal 2 The caught signal is 10 Generating the signal 2 Generating the signal 1 Generating the signal 1 As you can see initially, the signal was generated and handled both by my signal handlers and monitoring processes. But later on the signal was generated a lot, but it was not quite processes in the same magnitude as before. Further I could see very less signal processing by the monitoring process Can anyone please provide some insights. What's going on?

    Read the article

  • Test a simple multi-player (upto four players) Android game in single developer machine

    - by Kush
    I'm working on a multi-player Android game (very simple it is that it doesn't have any game-engine used). The game is based on Java Socket. Four devices will connect the game server and a new thread will manage their session. The game server will server many such sessions (having 4 players each). What I'm worried about is the testing of this game. I know it is possible to run multiple android emulators, but my development laptop is very limited in capabilities (3 GB RAM, 2 Ghz Intel Core2Duo and on-board Graphics). And I'm already using Ubuntu to develop the game so that I have more user memory available than I'd have with Windows. Hence, the laptop will burn-to-death on running 4 emulator instances. I don't have access to any android device, neither I have another machine with higher configuration. And I still have to develop and test this game. P.S. : I'm a CS student, and currently don't work anywhere, and this game is college project, so if there are any paid solutions, I cannot afford it. What can I do to test the app seamlessly? ability to test even only 4 clients (i.e. only 1 session) would suffice, its alright if I can't simulate real environment with some 10-20 active game sessions (having 4 players each).

    Read the article

  • Threads are facing deadlock in socket program [migrated]

    - by ankur.trapasiya
    I am developing one program in which a user can download a number of files. Now first I am sending the list of files to the user. So from the list user selects one file at a time and provides path where to store that file. In turn it also gives the server the path of file where does it exist. I am following this approach because I want to give stream like experience without file size limitation. Here is my code.. 1) This is server which gets started each time I start my application public class FileServer extends Thread { private ServerSocket socket = null; public FileServer() { try { socket = new ServerSocket(Utils.tcp_port); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } @Override public void run() { try { System.out.println("request received"); new FileThread(socket.accept()).start(); } catch (IOException ex) { ex.printStackTrace(); } } } 2) This thread runs for each client separately and sends the requested file to the user 8kb data at a time. public class FileThread extends Thread { private Socket socket; private String filePath; public String getFilePath() { return filePath; } public void setFilePath(String filePath) { this.filePath = filePath; } public FileThread(Socket socket) { this.socket = socket; System.out.println("server thread" + this.socket.isConnected()); //this.filePath = filePath; } @Override public void run() { // TODO Auto-generated method stub try { ObjectInputStream ois=new ObjectInputStream(socket.getInputStream()); try { //************NOTE filePath=(String) ois.readObject(); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } File f = new File(this.filePath); byte[] buf = new byte[8192]; InputStream is = new FileInputStream(f); BufferedInputStream bis = new BufferedInputStream(is); ObjectOutputStream oos = new ObjectOutputStream( socket.getOutputStream()); int c = 0; while ((c = bis.read(buf, 0, buf.length)) > 0) { oos.write(buf, 0, c); oos.flush(); // buf=new byte[8192]; } oos.close(); //socket.shutdownOutput(); // client.shutdownOutput(); System.out.println("stop"); // client.shutdownOutput(); ois.close(); // Thread.sleep(500); is.close(); bis.close(); socket.close(); } catch (IOException ex) { ex.printStackTrace(); } } } NOTE: here filePath represents the path of the file where it exists on the server. The client who is connecting to the server provides this path. I am managing this through sockets and I am successfully receiving this path. 3) FileReceiverThread is responsible for receiving the data from the server and constructing file from this buffer data. public class FileReceiveThread extends Thread { private String fileStorePath; private String sourceFile; private Socket socket = null; public FileReceiveThread(String ip, int port, String fileStorePath, String sourceFile) { this.fileStorePath = fileStorePath; this.sourceFile = sourceFile; try { socket = new Socket(ip, port); System.out.println("receive file thread " + socket.isConnected()); } catch (IOException ex) { ex.printStackTrace(); } } @Override public void run() { try { ObjectOutputStream oos = new ObjectOutputStream( socket.getOutputStream()); oos.writeObject(sourceFile); oos.flush(); // oos.close(); File f = new File(fileStorePath); OutputStream os = new FileOutputStream(f); BufferedOutputStream bos = new BufferedOutputStream(os); byte[] buf = new byte[8192]; int c = 0; //************ NOTE ObjectInputStream ois = new ObjectInputStream( socket.getInputStream()); while ((c = ois.read(buf, 0, buf.length)) > 0) { // ois.read(buf); bos.write(buf, 0, c); bos.flush(); // buf = new byte[8192]; } ois.close(); oos.close(); // os.close(); bos.close(); socket.close(); //Thread.sleep(500); } catch (IOException ex) { ex.printStackTrace(); } } } NOTE : Now the problem that I am facing is at the first time when the file is requested the outcome of the program is same as my expectation. I am able to transmit any size of file at first time. Now when the second file is requested (e.g. I have sent file a,b,c,d to the user and user has received file a successfully and now he is requesting file b) the program faces deadlock at this situation. It is waiting for socket's input stream. I put breakpoint and tried to debug it but it is not going in FileThread's run method second time. I could not find out the mistake here. Basically I am making a LAN Messenger which works on LAN. I am using SWT as UI framework.

    Read the article

  • Synchronization between game logic thread and rendering thread

    - by user782220
    How does one separate game logic and rendering? I know there seem to already be questions on here asking exactly that but the answers are not satisfactory to me. From what I understand so far the point of separating them into different threads is so that game logic can start running for the next tick immediately instead of waiting for the next vsync where rendering finally returns from the swapbuffer call its been blocking on. But specifically what data structures are used to prevent race conditions between the game logic thread and the rendering thread. Presumably the rendering thread needs access to various variables to figure out what to draw, but game logic could be updating these same variables. Is there a de facto standard technique for handling this problem. Maybe like copy the data needed by the rendering thread after every execution of the game logic. Whatever the solution is will the overhead of synchronization or whatever be less than just running everything single threaded?

    Read the article

  • Internal Mutation of Persistent Data Structures

    - by Greg Ros
    To clarify, when I mean use the terms persistent and immutable on a data structure, I mean that: The state of the data structure remains unchanged for its lifetime. It always holds the same data, and the same operations always produce the same results. The data structure allows Add, Remove, and similar methods that return new objects of its kind, modified as instructed, that may or may not share some of the data of the original object. However, while a data structure may seem to the user as persistent, it may do other things under the hood. To be sure, all data structures are, internally, at least somewhere, based on mutable storage. If I were to base a persistent vector on an array, and copy it whenever Add is invoked, it would still be persistent, as long as I modify only locally created arrays. However, sometimes, you can greatly increase performance by mutating a data structure under the hood. In more, say, insidious, dangerous, and destructive ways. Ways that might leave the abstraction untouched, not letting the user know anything has changed about the data structure, but being critical in the implementation level. For example, let's say that we have a class called ArrayVector implemented using an array. Whenever you invoke Add, you get a ArrayVector build on top of a newly allocated array that has an additional item. A sequence of such updates will involve n array copies and allocations. Here is an illustration: However, let's say we implement a lazy mechanism that stores all sorts of updates -- such as Add, Set, and others in a queue. In this case, each update requires constant time (adding an item to a queue), and no array allocation is involved. When a user tries to get an item in the array, all the queued modifications are applied under the hood, requiring a single array allocation and copy (since we know exactly what data the final array will hold, and how big it will be). Future get operations will be performed on an empty cache, so they will take a single operation. But in order to implement this, we need to 'switch' or mutate the internal array to the new one, and empty the cache -- a very dangerous action. However, considering that in many circumstances (most updates are going to occur in sequence, after all), this can save a lot of time and memory, it might be worth it -- you will need to ensure exclusive access to the internal state, of course. This isn't a question about the efficacy of such a data structure. It's a more general question. Is it ever acceptable to mutate the internal state of a supposedly persistent or immutable object in destructive and dangerous ways? Does performance justify it? Would you still be able to call it immutable? Oh, and could you implement this sort of laziness without mutating the data structure in the specified fashion?

    Read the article

  • Does concurrency inherently introduce "randomness" into a game?

    - by Jeff
    When a game is implemented with concurrency (as most games are), does this necessarily, by its very nature, introduce an element of randomness into the game that is outside of the players' control? Note that when I use the word "random", I'm not meaning to launch into a philosophical debate about the deterministic nature of the system. I understand that concurrency is deterministic in the sense that the operating system decides which processes to allow time on the CPU and in what order (or the JVM controls which Thread's turn it is to execute, etc). But my understanding of this is that there is no way to control or predict whether one thread's next command will execute before or after another. The reason I'm asking is because this seems like a fundamental difficulty for game development where a game is supposedly designed around a player's skill. Consider a game like League of Legends. Assume that two players are battling it out. It's a very close contest between the two and it's coming down to the wire -- so much so that whoever gets their last attack off will be the one to kill the other and win the game for their team. If the players are implemented using concurrency and the situation really was like this, is it essentially out of the players' hands at this point? Is the outcome of this match all up to whatever system is arbitrarily deciding which player's thread/process will execute next? If not, what am I misunderstanding about concurrency? If so, is there any way around this problem so that a game of skill can always be a game of skill, especially in those most crucial moments?

    Read the article

  • Parallelism implies concurrency but not the other way round right?

    - by Cedric Martin
    I often read that parallelism and concurrency are different things. Very often the answerers/commenters go as far as writing that they're two entirely different things. Yet in my view they're related but I'd like some clarification on that. For example if I'm on a multi-core CPU and manage to divide the computation into x smaller computation (say using fork/join) each running in its own thread, I'll have a program that is both doing parallel computation (because supposedly at any point in time several threads are going to run on several cores) and being concurrent right? While if I'm simply using, say, Java and dealing with UI events and repaints on the Event Dispatch Thread plus running the only thread I created myself, I'll have a program that is concurrent (EDT + GC thread + my main thread etc.) but not parallel. I'd like to know if I'm getting this right and if parallelism (on a "single but multi-cores" system) always implies concurrency or not? Also, are multi-threaded programs running on multi-cores CPU but where the different threads are doing totally different computation considered to be using "parallelism"?

    Read the article

  • Operating systems -- using minimum number of semaphores

    - by stackuser
    The three cooperating processes all read data from the same input device. Each process, when it gets the input device, must read two consecutive data. I want to use mutual exclusion to do this. The declaration and initialization that I think would work here are: semaphore s=1 sa1 = 0, sa2 = 0, sb1 = 0, sb2 = 0, sc1 = 0, sc2 = 0 I'd like to use semaphores to synchronize the following processes: P1: P2: P3: input(a1,a2) input (b1,b2) input(c1,c2) Y=a1+c1 W=b2+c2 Z=a2+b1 Print (X) X=Z-Y+W I'm wondering how to use the minimum number of semaphores to solve this. Diagram of cooperating Processes and one input device: It seems like P1 and P2 would start something like: wait(s) input (a1/b1, a2/b2) signal(s)

    Read the article

  • Sprites as Actors

    - by Scán
    Hello, I'm not experienced in GameDev questions, but as a programmer. In the language Scala, you can have scalable multi-tasking with Actors, very stable, as I hear. You can even habe hundreds of thousands of them running at once without a problem. So I thought, maybe you can use these as a base class for 2D-Sprites, to break out of the game-loop thing that requires to go through all the sprites and move them. They'd basically move themselves, event-driven. Would that make sense for a game? Having it multitasked like that? After all, it will run on the JVM, though that should not be much of a problem nowadays.

    Read the article

  • Android threads trouble wrapping my head around design

    - by semajhan
    I am having trouble wrapping my head around game design. On the android platform, I have an activity and set its content view with a custom surface view. The custom surface view acts as my panel and I create instances of all classes and do all the drawing and calculation in there. Question: Should I instead create the instances of other classes in my activity? Now I create a custom thread class that handles the game loop. Question: How do I use this one class in all my activities? Or do I have to create a separate instance of the extended thread class each time? In my previous game, I had multiple levels that had to create an instance of the thread class and in the thread class I had to set constructor methods for each separate level and in the loop use a switch statement to check which level it needs to render and update. Sorry if that sounds confusing. I just want to know if the method I am using is inefficient (which it probably is) and how to go about designing it the correct way. I have read many tutorials out there and I am still having lots of trouble with this particular topic. Maybe a link to a some tutorials that explain this? Thanks.

    Read the article

  • How should I invoke a physics engine?

    - by ymfoi
    I'm new to writing games. I'm planning to write a 2D battle game which may require an physics engine. Suppose I've written one, but how can I combine it with the main routine of my game? Should I attach it directly to the graphics render routine or put it in an individual thread? I've spent much time looking for some common approach, but found nothing. So can you reveal some basics idea for me, a newbie? Thanks! P.S. There're many other problems I have to deal with if I choose to start a separate thread for the physics engine, for example, the lock problem, while from my intuition, I guess I'd better separate the render and the physics engine.

    Read the article

  • What is Atomicity?

    - by James Jeffery
    I'm really struggling to find a concrete, easy to grasp, explanation of Atomicity. My understanding thus far is that to ensure an operation is atomic you wrap the critical code in a locker. But that's about as much as I actually understand. Definitions such as the one below make no sense to me at all. An operation during which a processor can simultaneously read a location and write it in the same bus operation. This prevents any other processor or I/O device from writing or reading memory until the operation is complete. Atomic implies indivisibility and irreducibility, so an atomic operation must be performed entirely or not performed at all. What does the last sentence mean? Is the term indivisibility relating to mathematics or something else? Sometimes the jargon with these topics confuse more than they teach.

    Read the article

  • Android threads trouble wrapping my head around design

    - by semajhan
    I am having trouble wrapping my head around game design. On the android platform, I have an activity and set its content view with a custom surface view. The custom surface view acts as my panel and I create instances of all classes and do all the drawing and calculation in there. Question: Should I instead create the instances of other classes in my activity? Now I create a custom thread class that handles the game loop. Question: How do I use this one class in all my activities? Or do I have to create a separate thread each time? In my previous game, I had multiple levels that had to create an instance of the thread class and in the thread class I had to set constructor methods for each separate level and in the loop use a switch statement to check which level it needs to render and update. Sorry if that sounds confusing. I just want to know if the method I am using is inefficient (which it probably is) and how to go about designing it the correct way. I have read many tutorials out there and I am still having lots of trouble with this particular topic. Maybe a link to a some tutorials that explain this? Thanks.

    Read the article

  • Are there deprecated practices for multithread and multiprocessor programming that I should no longer use?

    - by DeveloperDon
    In the early days of FORTRAN and BASIC, essentially all programs were written with GOTO statements. The result was spaghetti code and the solution was structured programming. Similarly, pointers can have difficult to control characteristics in our programs. C++ started with plenty of pointers, but use of references are recommended. Libraries like STL can reduce some of our dependency. There are also idioms to create smart pointers that have better characteristics, and some version of C++ permit references and managed code. Programming practices like inheritance and polymorphism use a lot of pointers behind the scenes (just as for, while, do structured programming generates code filled with branch instructions). Languages like Java eliminate pointers and use garbage collection to manage dynamically allocated data instead of depending on programmers to match all their new and delete statements. In my reading, I have seen examples of multi-process and multi-thread programming that don't seem to use semaphores. Do they use the same thing with different names or do they have new ways of structuring protection of resources from concurrent use? For example, a specific example of a system for multithread programming with multicore processors is OpenMP. It represents a critical region as follows, without the use of semaphores, which seem not to be included in the environment. th_id = omp_get_thread_num(); #pragma omp critical { cout << "Hello World from thread " << th_id << '\n'; } This example is an excerpt from: http://en.wikipedia.org/wiki/OpenMP Alternatively, similar protection of threads from each other using semaphores with functions wait() and signal() might look like this: wait(sem); th_id = get_thread_num(); cout << "Hello World from thread " << th_id << '\n'; signal(sem); In this example, things are pretty simple, and just a simple review is enough to show the wait() and signal() calls are matched and even with a lot of concurrency, thread safety is provided. But other algorithms are more complicated and use multiple semaphores (both binary and counting) spread across multiple functions with complex conditions that can be called by many threads. The consequences of creating deadlock or failing to make things thread safe can be hard to manage. Do these systems like OpenMP eliminate the problems with semaphores? Do they move the problem somewhere else? How do I transform my favorite semaphore using algorithm to not use semaphores anymore?

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >