Search Results

Search found 22463 results on 899 pages for 'sub query'.

Page 5/899 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Error 404 after rewrite query strings with htaccess

    - by Cristian
    I'm trying to redirect the URLs of a client's website like this: www.localsite.com/immobile.php?id_immobile=24 In something like this: www.localsite.com/immobile/24.php I'm using this rule in .htaccess but it returns a 404 error page. RewriteEngine On RewriteCond %{QUERY_STRING} ^id_immobile=([0-9]*)$ RewriteRule ^immobile\.php$ http://localsite.com/immobile/%1.php? [L] I have tried many other rules, but none work. What can I do?

    Read the article

  • Google Analytics Goal Tracking for Sub-Domains?

    - by Hasan Khan
    I am trying to track goals in Google Analytics for a website that has the goal URL on a sub-domain. The main domain for example is: domain.com and the sub-domain is my.domain.com. I have Google Analytics configured to track domains and all sub-domains and I've eve set up an advanced filter so I can see traffic to my sub-domains in Analytics. However, in goal tracking, you're supposed to put in the website URL after the front (so if it were domain.com/conversions/ you'd put in just /conversions/). However, since for me it would be my.domain.com/conversions/, how would I input that URL into Analytics to track? Would Analytics automatically determine the URL to be on the sub-domain? Thanks!

    Read the article

  • General method for making sub arrays around a particular element

    - by JJ
    What is a quick, elegant way of using MatLab to form a subarray around a particular element? Element are selected randomly from the data, so you can't take a subarray in the normal way (it has to be generalized for the elements that are selected). What I mean is, forming an array for example 5x5 or 7x7 or something, where the middle element is the one you want.

    Read the article

  • Does the order of columns in a query matter?

    - by James Simpson
    When selecting columns from a MySQL table, is performance affected by the order that you select the columns as compared to their order in the table (not considering indexes that may cover the columns)? For example, you have a table with rows uid, name, bday, and you have the following query. SELECT uid, name, bday FROM table Does MySQL see the following query any differently and thus cause any sort of performance hit? SELECT uid, bday, name FROM table

    Read the article

  • MySQL Query Select using sub-select takes too long

    - by True Soft
    I noticed something strange while executing a select from 2 tables: SELECT * FROM table_1 WHERE id IN ( SELECT id_element FROM table_2 WHERE column_2=3103); This query took approximatively 242 seconds. But when I executed the subquery SELECT id_element FROM table_2 WHERE column_2=3103 it took less than 0.002s (and resulted 2 rows). Then, when I did SELECT * FROM table_1 WHERE id IN (/* prev.result */) it was the same: 0.002s. I was wondering why MySQL is doing the first query like that, taking much more time than the last 2 queries separately? Is it an optimal solution for selecting something based from the results of a sub-query? Other details: table_1 has approx. 9000 rows, and table_2 has 90000 rows. After I added an index on column_2 from table_2, the first query took 0.15s.

    Read the article

  • Problem with JMX query of Coherence node MBeans visible in JConsole

    - by Quinn Taylor
    I'm using JMX to build a custom tool for monitoring remote Coherence clusters at work. I'm able to connect just fine and query MBeans directly, and I've acquired nearly all the information I need. However, I've run into a snag when trying to query MBeans for specific caches within a cluster, which is where I can find stats about total number of gets/puts, average time for each, etc. The MBeans I'm trying to access programatically are visible when I connect to the remote process using JConsole, and have names like this: Coherence:type=Cache,service=SequenceQueue,name=SEQ%GENERATOR,nodeId=1,tier=back It would make it more flexible if I can dynamically grab all type=Cache MBeans for a particular node ID without specifying all the caches. I'm trying to query them like this: QueryExp specifiedNodeId = Query.eq(Query.attr("nodeId"), Query.value(nodeId)); QueryExp typeIsCache = Query.eq(Query.attr("type"), Query.value("Cache")); QueryExp cacheNodes = Query.and(specifiedNodeId, typeIsCache); ObjectName coherence = new ObjectName("Coherence:*"); Set<ObjectName> cacheMBeans = mBeanServer.queryMBeans(coherence, cacheNodes); However, regardless of whether I use queryMBeans() or queryNames(), the query returns a Set containing... ...0 objects if I pass the arguments shown above ...0 objects if I pass null for the first argument ...all MBeans in the Coherence:* domain (112) if I pass null for the second argument ...every single MBean (128) if I pass null for both arguments The first two results are the unexpected ones, and suggest a problem in the QueryExp I'm passing, but I can't figure out what the problem is. I even tried just passing typeIsCache or specifiedNodeId for the second parameter (with either coherence or null as the first parameter) and I always get 0 results. I'm pretty green with JMX — any insight on what the problem is? (FYI, the monitoring tool will be run on Java 5, so things like JMX 2.0 won't help me at this point.)

    Read the article

  • MySQL select query result set changes based on column order

    - by user197191
    I have a drupal 7 site using the Views module to back-end site content search results. The same query with the same dataset returns different results from MySQL 5.5.28 to MySQL 5.6.14. The results from 5.5.28 are the correct, expected results. The results from 5.6.14 are not. If, however, I simply move a column in the select statement, the query returns the correct results. Here is the code-generated query in question (modified for readability). I apologize for the length; I couldn't find a way to reproduce it without the whole query: SELECT DISTINCT node_node_revision.nid AS node_node_revision_nid, node_revision.title AS node_revision_title, node_field_revision_field_position_institution_ref.nid AS node_field_revision_field_position_institution_ref_nid, node_revision.vid AS vid, node_revision.nid AS node_revision_nid, node_node_revision.title AS node_node_revision_title, SUM(search_index.score * search_total.count) AS score, 'node' AS field_data_field_system_inst_name_node_entity_type, 'node' AS field_revision_field_position_college_division_node_entity_t, 'node' AS field_revision_field_position_department_node_entity_type, 'node' AS field_revision_field_search_lvl_degree_lvls_node_entity_type, 'node' AS field_revision_field_position_app_deadline_node_entity_type, 'node' AS field_revision_field_position_start_date_node_entity_type, 'node' AS field_revision_body_node_entity_type FROM node_revision node_revision LEFT JOIN node node_node_revision ON node_revision.nid = node_node_revision.nid LEFT JOIN field_revision_field_position_institution_ref field_revision_field_position_institution_ref ON node_revision.vid = field_revision_field_position_institution_ref.revision_id AND (field_revision_field_position_institution_ref.entity_type = 'node' AND field_revision_field_position_institution_ref.deleted = '0') LEFT JOIN node node_field_revision_field_position_institution_ref ON field_revision_field_position_institution_ref.field_position_institution_ref_target_id = node_field_revision_field_position_institution_ref.nid LEFT JOIN field_revision_field_position_cip_code field_revision_field_position_cip_code ON node_revision.vid = field_revision_field_position_cip_code.revision_id AND (field_revision_field_position_cip_code.entity_type = 'node' AND field_revision_field_position_cip_code.deleted = '0') LEFT JOIN node node_field_revision_field_position_cip_code ON field_revision_field_position_cip_code.field_position_cip_code_target_id = node_field_revision_field_position_cip_code.nid LEFT JOIN node node_node_revision_1 ON node_revision.nid = node_node_revision_1.nid LEFT JOIN field_revision_field_position_vacancy_status field_revision_field_position_vacancy_status ON node_revision.vid = field_revision_field_position_vacancy_status.revision_id AND (field_revision_field_position_vacancy_status.entity_type = 'node' AND field_revision_field_position_vacancy_status.deleted = '0') LEFT JOIN search_index search_index ON node_revision.nid = search_index.sid LEFT JOIN search_total search_total ON search_index.word = search_total.word WHERE ( ( (node_node_revision.status = '1') AND (node_node_revision.type IN ('position')) AND (field_revision_field_position_vacancy_status.field_position_vacancy_status_target_id IN ('38')) AND( (search_index.type = 'node') AND( (search_index.word = 'accountant') ) ) AND ( (node_revision.vid=node_node_revision.vid AND node_node_revision.status=1) ) ) ) GROUP BY search_index.sid, vid, score, field_data_field_system_inst_name_node_entity_type, field_revision_field_position_college_division_node_entity_t, field_revision_field_position_department_node_entity_type, field_revision_field_search_lvl_degree_lvls_node_entity_type, field_revision_field_position_app_deadline_node_entity_type, field_revision_field_position_start_date_node_entity_type, field_revision_body_node_entity_type HAVING ( ( (COUNT(*) >= '1') ) ) ORDER BY node_node_revision_title ASC LIMIT 20 OFFSET 0; Again, this query returns different sets of results from MySQL 5.5.28 (correct) to 5.6.14 (incorrect). If I move the column named "score" (the SUM() column) to the end of the column list, the query returns the correct set of results in both versions of MySQL. My question is: Is this expected behavior (and why), or is this a bug? I'm on the verge of reverting my entire environment back to 5.5 because of this.

    Read the article

  • In MySQL, what is the most effective query design for joining large tables with many to many relatio

    - by lighthouse65
    In our application, we collect data on automotive engine performance -- basically source data on engine performance based on the engine type, the vehicle running it and the engine design. Currently, the basis for new row inserts is an engine on-off period; we monitor performance variables based on a change in engine state from active to inactive and vice versa. The related engineState table looks like this: +---------+-----------+---------------+---------------------+---------------------+-----------------+ | vehicle | engine | engine_state | state_start_time | state_end_time | engine_variable | +---------+-----------+---------------+---------------------+---------------------+-----------------+ | 080025 | E01 | active | 2008-01-24 16:19:15 | 2008-01-24 16:24:45 | 720 | | 080028 | E02 | inactive | 2008-01-24 16:19:25 | 2008-01-24 16:22:17 | 304 | +---------+-----------+---------------+---------------------+---------------------+-----------------+ For a specific analysis, we would like to analyze table content based on a row granularity of minutes, rather than the current basis of active / inactive engine state. For this, we are thinking of creating a simple productionMinute table with a row for each minute in the period we are analyzing and joining the productionMinute and engineEvent tables on the date-time columns in each table. So if our period of analysis is from 2009-12-01 to 2010-02-28, we would create a new table with 129,600 rows, one for each minute of each day for that three-month period. The first few rows of the productionMinute table: +---------------------+ | production_minute | +---------------------+ | 2009-12-01 00:00 | | 2009-12-01 00:01 | | 2009-12-01 00:02 | | 2009-12-01 00:03 | +---------------------+ The join between the tables would be engineState AS es LEFT JOIN productionMinute AS pm ON es.state_start_time <= pm.production_minute AND pm.production_minute <= es.event_end_time. This join, however, brings up multiple environmental issues: The engineState table has 5 million rows and the productionMinute table has 130,000 rows When an engineState row spans more than one minute (i.e. the difference between es.state_start_time and es.state_end_time is greater than one minute), as is the case in the example above, there are multiple productionMinute table rows that join to a single engineState table row When there is more than one engine in operation during any given minute, also as per the example above, multiple engineState table rows join to a single productionMinute row In testing our logic and using only a small table extract (one day rather than 3 months, for the productionMinute table) the query takes over an hour to generate. In researching this item in order to improve performance so that it would be feasible to query three months of data, our thoughts were to create a temporary table from the engineEvent one, eliminating any table data that is not critical for the analysis, and joining the temporary table to the productionMinute table. We are also planning on experimenting with different joins -- specifically an inner join -- to see if that would improve performance. What is the best query design for joining tables with the many:many relationship between the join predicates as outlined above? What is the best join type (left / right, inner)?

    Read the article

  • SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Signal Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Signal Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Signal Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the Signalwait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the Signal wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the Signal wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Single Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Single Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Single Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Single Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the single wait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the single wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the single wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Query returns too few rows

    - by Tareq
    setup: mysql> create table product_stock( product_id integer, qty integer, branch_id integer); Query OK, 0 rows affected (0.17 sec) mysql> create table product( product_id integer, product_name varchar(255)); Query OK, 0 rows affected (0.11 sec) mysql> insert into product(product_id, product_name) values(1, 'Apsana White DX Pencil'); Query OK, 1 row affected (0.05 sec) mysql> insert into product(product_id, product_name) values(2, 'Diamond Glass Marking Pencil'); Query OK, 1 row affected (0.03 sec) mysql> insert into product(product_id, product_name) values(3, 'Apsana Black Pencil'); Query OK, 1 row affected (0.03 sec) mysql> insert into product_stock(product_id, qty, branch_id) values(1, 100, 1); Query OK, 1 row affected (0.03 sec) mysql> insert into product_stock(product_id, qty, branch_id) values(1, 50, 2); Query OK, 1 row affected (0.03 sec) mysql> insert into product_stock(product_id, qty, branch_id) values(2, 80, 1); Query OK, 1 row affected (0.03 sec) my query: mysql> SELECT IFNULL(SUM(s.qty),0) AS stock, product_name FROM product_stock s RIGHT JOIN product p ON s.product_id=p.product_id WHERE branch_id=1 GROUP BY product_name ORDER BY product_name; returns: +-------+-------------------------------+ | stock | product_name | +-------+-------------------------------+ | 100 | Apsana White DX Pencil | | 80 | Diamond Glass Marking Pencil | +-------+-------------------------------+ 1 row in set (0.00 sec) But I want to have the following result: +-------+------------------------------+ | stock | product_name | +-------+------------------------------+ | 0 | Apsana Black Pencil | | 100 | Apsana White DX Pencil | | 80 | Diamond Glass Marking Pencil | +-------+------------------------------+ To get this result what mysql query should I run?

    Read the article

  • How do I filter one of the columns in a SQL Server SQL Query

    - by Kent S. Clarkson
    I have a table (that relates to a number of other tables) where I would like to filter ONE of the columns (RequesterID) - that column will be a combobox where only people that are not sales people should be selectable. Here is the "unfiltered" query, lets call it QUERY 1: SELECT RequestsID, RequesterID, ProductsID FROM dbo.Requests If using a separate query, lets call it QUERY 2, to filter RequesterID (which is a People related column, connected to People.PeopleID), it would look like this: SELECT People.PeopleID FROM People INNER JOIN Roles ON People.RolesID = Roles.RolesID INNER JOIN Requests ON People.PeopleID = Requests.RequesterID WHERE (Roles.Role <> N'SalesGuy') ORDER BY Requests.RequestsID Now, is there a way of "merging" the QUERY 2 into QUERY 1? (dbo.Requests in QUERY 1 has RequesterID populated as a Foreign Key from dbo.People, so no problem there... The connections are all right, just not know how to write the SQL query!)

    Read the article

  • Configuration Manager sub site codes

    - by NA Slacker
    I have two sub-sites set up in configuration manager. When the SCCM agent installs on the client machines within the boundaries of those sub sites they are assigned the site code of the Primary site, not the sub site code. As a result their management server remains the main server not the sub site server. I am setting up thes sub sites on cross WAN locations to cut down on traffic. What could be preventing the clients from getting associated with the proper sub site code.

    Read the article

  • MySQL slow query log logging all queries

    - by Blanka
    We have a MySQL 5.1.52 Percona Server 11.6 instance that suddenly started logging every single query to the slow query log. The long_query_time configuration is set to 1, yet, suddenly we're seeing every single query (e.g. just saw one that took 0.000563s!). As a result, our log files are growing at an insane pace. We just had to truncate a 180G slow query log file. I tried setting the long_query_time variable to a really large number to see if it stopped altogether (1000000), but same result. show global variables like 'general_log%'; +------------------+--------------------------+ | Variable_name | Value | +------------------+--------------------------+ | general_log | OFF | | general_log_file | /usr2/mysql/data/db4.log | +------------------+--------------------------+ 2 rows in set (0.00 sec) show global variables like 'slow_query_log%'; +---------------------------------------+-------------------------------+ | Variable_name | Value | +---------------------------------------+-------------------------------+ | slow_query_log | ON | | slow_query_log_file | /usr2/mysql/data/db4-slow.log | | slow_query_log_microseconds_timestamp | OFF | +---------------------------------------+-------------------------------+ 3 rows in set (0.00 sec) show global variables like 'long%'; +-----------------+----------+ | Variable_name | Value | +-----------------+----------+ | long_query_time | 1.000000 | +-----------------+----------+ 1 row in set (0.00 sec)

    Read the article

  • Inserting and Deleting Sub Rows in GridView

    - by Vincent Maverick Durano
    A user in the forums (http://forums.asp.net) is asking how to insert  sub rows in GridView and also add delete functionality for the inserted sub rows. In this post I'm going to demonstrate how to this in ASP.NET WebForms.  The basic idea to achieve this is we just need to insert row data in the DataSource that is being used in GridView since the GridView rows will be generated based on the DataSource data. To make it more clear then let's build up a sample application. To start fire up Visual Studio and create a WebSite or Web Application project and then add a new WebForm. In the WebForm ASPX page add this GridView markup below:   1: <asp:gridview ID="GridView1" runat="server" AutoGenerateColumns="false" onrowdatabound="GridView1_RowDataBound"> 2: <Columns> 3: <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> 4: <asp:TemplateField HeaderText="Header 1"> 5: <ItemTemplate> 6: <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox> 7: </ItemTemplate> 8: </asp:TemplateField> 9: <asp:TemplateField HeaderText="Header 2"> 10: <ItemTemplate> 11: <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox> 12: </ItemTemplate> 13: </asp:TemplateField> 14: <asp:TemplateField HeaderText="Header 3"> 15: <ItemTemplate> 16: <asp:TextBox ID="TextBox3" runat="server"></asp:TextBox> 17: </ItemTemplate> 18: </asp:TemplateField> 19: <asp:TemplateField HeaderText="Action"> 20: <ItemTemplate> 21: <asp:LinkButton ID="LinkButton1" runat="server" onclick="LinkButton1_Click" Text="Insert"></asp:LinkButton> 22: </ItemTemplate> 23: </asp:TemplateField> 24: </Columns> 25: </asp:gridview>   Then at the code behind source of ASPX page you can add this codes below:   1: private DataTable FillData() { 2:   3: DataTable dt = new DataTable(); 4: DataRow dr = null; 5:   6: //Create DataTable columns 7: dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); 8:   9: //Create Row for each columns 10: dr = dt.NewRow(); 11: dr["RowNumber"] = 1; 12: dt.Rows.Add(dr); 13:   14: dr = dt.NewRow(); 15: dr["RowNumber"] = 2; 16: dt.Rows.Add(dr); 17:   18: dr = dt.NewRow(); 19: dr["RowNumber"] = 3; 20: dt.Rows.Add(dr); 21:   22: dr = dt.NewRow(); 23: dr["RowNumber"] = 4; 24: dt.Rows.Add(dr); 25:   26: dr = dt.NewRow(); 27: dr["RowNumber"] = 5; 28: dt.Rows.Add(dr); 29:   30: //Store the DataTable in ViewState for future reference 31: ViewState["CurrentTable"] = dt; 32:   33: return dt; 34:   35: } 36:   37: private void BindGridView(DataTable dtSource) { 38: GridView1.DataSource = dtSource; 39: GridView1.DataBind(); 40: } 41:   42: private DataRow InsertRow(DataTable dtSource, string value) { 43: DataRow dr = dtSource.NewRow(); 44: dr["RowNumber"] = value; 45: return dr; 46: } 47: //private DataRow DeleteRow(DataTable dtSource, 48:   49: protected void Page_Load(object sender, EventArgs e) { 50: if (!IsPostBack) { 51: BindGridView(FillData()); 52: } 53: } 54:   55: protected void LinkButton1_Click(object sender, EventArgs e) { 56: LinkButton lb = (LinkButton)sender; 57: GridViewRow row = (GridViewRow)lb.NamingContainer; 58: DataTable dtCurrentData = (DataTable)ViewState["CurrentTable"]; 59: if (lb.Text == "Insert") { 60: //Insert new row below the selected row 61: dtCurrentData.Rows.InsertAt(InsertRow(dtCurrentData, row.Cells[0].Text + "-sub"), row.RowIndex + 1); 62:   63: } 64: else { 65: //Delete selected sub row 66: dtCurrentData.Rows.RemoveAt(row.RowIndex); 67: } 68:   69: BindGridView(dtCurrentData); 70: ViewState["CurrentTable"] = dtCurrentData; 71: } 72:   73: protected void GridView1_RowDataBound(object sender, GridViewRowEventArgs e) { 74: if (e.Row.RowType == DataControlRowType.DataRow) { 75: if (e.Row.Cells[0].Text.Contains("-sub")) { 76: ((LinkButton)e.Row.FindControl("LinkButton1")).Text = "Delete"; 77: } 78: } 79: }   As you can see the code above is pretty straight forward and self explainatory but just to give you a short explaination the code above is composed of three (3) private methods which are the FillData(), BindGridView and InsertRow(). The FillData() method is a method that returns a DataTable and basically creates a dummy data in the DataTable to be used as the GridView DataSource. You can replace the code in that method if you want to use actual data from database but for the purpose of this example I just fill the DataTable with a dummy data on it. The BindGridVew is a method that handles the actual binding of GridVew. The InsertRow() is a method that returns a DataRow. This method handles the insertion of the sub row. Now in the LinkButton OnClick event, we casted the sender to a LinkButton to determine the specific object that fires up the event and get the row values. We then reference the Data from ViewState to get the current data that is being used in the GridView. If the LinkButton text is "Insert" then we will insert new row to the DataSource ( in this case the DataTable) based on the rowIndex if not then Delete the sub row that was added. Here are some screen shots of the output below: On initial load:   After inserting a sub row:   That's it! I hope someone find this post useful!   Technorati Tags: ASP.NET,C#,GridView

    Read the article

  • Where are my sub templates?

    - by Tim Dexter
    This one is for standalone/BIEE uses of Publisher. All the ERP/CRM/HCM folks are already catered for and can tuck into a nut cutlet and arugala salad. Sorry, I have just watched Food Inc and even if only half of it is true; Im still on a crusade in my house against mass produced food. Wake up World! If you have ventured into the world of sub templating, you'll be reaping some development benefit. In terms of shared report components and calculations they are very useful. Just exporting all of your report headers and footers to a single sub template can potentially save you hours and hours of work and make you look like a star. If someone in management gets it into their head that they would like Comic San Serif font rather than Arial in their report headers, its a 10 min job rather than 100 hours! What about the rest of the report content? I hear you cry. Its coming in 11g, full master template support. Your management wants bright blue borders with yellow backgrounds for all the tables in your reports, 5 minute job! Getting back to sub templates and my comment about all the ERP/CRM/HCM folks be catered for. In the standalone release there is no out of the box directory for you to drop your sub templates. Dropping them into the main report directory would make sense but they are not accessible there via a URL. An oversight on our part and something that will be addressed in 11g. Sub templates are now a first class citizen in the world of BIP, you can upload them and BIP will know what to do with them. But what do you do right now? The easiest place to put them where BIP can 'see' them is to create a directory under the xmlpserver install directory in the J2EE container e.g. $J2EE_HOME/xmlpserver/xmlpserver/subtemplates You can call it whatever you want but when the server is started up, that directory is accessible via a URL i.e. http://tdexter:9704/xmlpserver/subtemplates/mysub.rtf. You can therefore put it into the top of your main templates and call the sub template. <?import: http://tdexter:9704/xmlpserver/subtemplates/mysub.rtf?> Of course, you can drop them anywhere you want, they just need to be in a web server mountable directory. Enjoy the arugala!

    Read the article

  • How can I optimize this subqueried and Joined MySQL Query?

    - by kevzettler
    I'm pretty green on mysql and I need some tips on cleaning up a query. It is used in several variations through out a site. Its got some subquerys derived tables and fun going on. Heres the query: # Query_time: 2 Lock_time: 0 Rows_sent: 0 Rows_examined: 0 SELECT * FROM ( SELECT products . *, categories.category_name AS category, ( SELECT COUNT( * ) FROM distros WHERE distros.product_id = products.product_id) AS distro_count, (SELECT COUNT(*) FROM downloads WHERE downloads.product_id = products.product_id AND WEEK(downloads.date) = WEEK(curdate())) AS true_downloads, (SELECT COUNT(*) FROM views WHERE views.product_id = products.product_id AND WEEK(views.date) = WEEK(curdate())) AS true_views FROM products INNER JOIN categories ON products.category_id = categories.category_id ORDER BY created_date DESC, true_views DESC ) AS count_table WHERE count_table.distro_count > 0 AND count_table.status = 'published' AND count_table.active = 1 LIMIT 0, 8 Heres the explain: +----+--------------------+------------+-------+---------------+-------------+---------+------------------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+------------+-------+---------------+-------------+---------+------------------------------------+------+----------------------------------------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 232 | Using where | | 2 | DERIVED | categories | index | PRIMARY | idx_name | 47 | NULL | 13 | Using index; Using temporary; Using filesort | | 2 | DERIVED | products | ref | category_id | category_id | 4 | digizald_db.categories.category_id | 9 | | | 5 | DEPENDENT SUBQUERY | views | ref | product_id | product_id | 4 | digizald_db.products.product_id | 46 | Using where | | 4 | DEPENDENT SUBQUERY | downloads | ref | product_id | product_id | 4 | digizald_db.products.product_id | 14 | Using where | | 3 | DEPENDENT SUBQUERY | distros | ref | product_id | product_id | 4 | digizald_db.products.product_id | 1 | Using index | +----+--------------------+------------+-------+---------------+-------------+---------+------------------------------------+------+----------------------------------------------+ 6 rows in set (0.04 sec) And the Tables: mysql> describe products; +---------------+--------------------------------------------------+------+-----+-------------------+----------------+ | Field | Type | Null | Key | Default | Extra | +---------------+--------------------------------------------------+------+-----+-------------------+----------------+ | product_id | int(10) unsigned | NO | PRI | NULL | auto_increment | | product_key | char(32) | NO | | NULL | | | title | varchar(150) | NO | | NULL | | | company | varchar(150) | NO | | NULL | | | user_id | int(10) unsigned | NO | MUL | NULL | | | description | text | NO | | NULL | | | video_code | text | NO | | NULL | | | category_id | int(10) unsigned | NO | MUL | NULL | | | price | decimal(10,2) | NO | | NULL | | | quantity | int(10) unsigned | NO | | NULL | | | downloads | int(10) unsigned | NO | | NULL | | | views | int(10) unsigned | NO | | NULL | | | status | enum('pending','published','rejected','removed') | NO | | NULL | | | active | tinyint(1) | NO | | NULL | | | deleted | tinyint(1) | NO | | NULL | | | created_date | datetime | NO | | NULL | | | modified_date | timestamp | NO | | CURRENT_TIMESTAMP | | | scrape_source | varchar(215) | YES | | NULL | | +---------------+--------------------------------------------------+------+-----+-------------------+----------------+ 18 rows in set (0.00 sec) mysql> describe categories -> ; +------------------+------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +------------------+------------------+------+-----+---------+----------------+ | category_id | int(10) unsigned | NO | PRI | NULL | auto_increment | | category_name | varchar(45) | NO | MUL | NULL | | | parent_id | int(10) unsigned | YES | MUL | NULL | | | category_type_id | int(10) unsigned | NO | | NULL | | +------------------+------------------+------+-----+---------+----------------+ 4 rows in set (0.00 sec) mysql> describe compatibilities -> ; +------------------+------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +------------------+------------------+------+-----+---------+----------------+ | compatibility_id | int(10) unsigned | NO | PRI | NULL | auto_increment | | name | varchar(45) | NO | | NULL | | | code_name | varchar(45) | NO | | NULL | | | description | varchar(128) | NO | | NULL | | | position | int(10) unsigned | NO | | NULL | | +------------------+------------------+------+-----+---------+----------------+ 5 rows in set (0.01 sec) mysql> describe distros -> ; +------------------+--------------------------------------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +------------------+--------------------------------------------------+------+-----+---------+----------------+ | id | int(10) unsigned | NO | PRI | NULL | auto_increment | | product_id | int(10) unsigned | NO | MUL | NULL | | | compatibility_id | int(10) unsigned | NO | MUL | NULL | | | user_id | int(10) unsigned | NO | | NULL | | | status | enum('pending','published','rejected','removed') | NO | | NULL | | | distro_type | enum('file','url') | NO | | NULL | | | version | varchar(150) | NO | | NULL | | | filename | varchar(50) | YES | | NULL | | | url | varchar(250) | YES | | NULL | | | virus | enum('READY','PASS','FAIL') | YES | | NULL | | | downloads | int(10) unsigned | NO | | 0 | | +------------------+--------------------------------------------------+------+-----+---------+----------------+ 11 rows in set (0.01 sec) mysql> describe downloads; +------------+------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +------------+------------------+------+-----+---------+----------------+ | id | int(10) unsigned | NO | PRI | NULL | auto_increment | | product_id | int(10) unsigned | NO | MUL | NULL | | | distro_id | int(10) unsigned | NO | MUL | NULL | | | user_id | int(10) unsigned | NO | MUL | NULL | | | ip_address | varchar(15) | NO | | NULL | | | date | datetime | NO | | NULL | | +------------+------------------+------+-----+---------+----------------+ 6 rows in set (0.01 sec) mysql> describe views -> ; +------------+------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +------------+------------------+------+-----+---------+----------------+ | id | int(10) unsigned | NO | PRI | NULL | auto_increment | | product_id | int(10) unsigned | NO | MUL | NULL | | | user_id | int(10) unsigned | NO | MUL | NULL | | | ip_address | varchar(15) | NO | | NULL | | | date | datetime | NO | | NULL | | +------------+------------------+------+-----+---------+----------------+ 5 rows in set (0.00 sec)

    Read the article

  • SQL query: Delete a entry which is not present in a join table?

    - by Mestika
    Hi, I’m going to delete all users which has no subscription but I seem to run into problems each time I try to detect the users. My schemas look like this: Users = {userid, name} Subscriptionoffering = {userid, subscriptionname} Now, what I’m going to do is to delete all users in the user table there has a count of zero in the subscriptionoffering table. Or said in other words: All users which userid is not present in the subscriptionoffering table. I’ve tried with different queries but with no result. I’ve tried to say where user.userid <> subscriptionoffering.userid, but that doesn’t seem to work. Do anyone know how to create the correct query? Thanks Mestika

    Read the article

  • Sorting Algorithms

    - by MarkPearl
    General Every time I go back to university I find myself wading through sorting algorithms and their implementation in C++. Up to now I haven’t really appreciated their true value. However as I discovered this last week with Dictionaries in C# – having a knowledge of some basic programming principles can greatly improve the performance of a system and make one think twice about how to tackle a problem. I’m going to cover briefly in this post the following: Selection Sort Insertion Sort Shellsort Quicksort Mergesort Heapsort (not complete) Selection Sort Array based selection sort is a simple approach to sorting an unsorted array. Simply put, it repeats two basic steps to achieve a sorted collection. It starts with a collection of data and repeatedly parses it, each time sorting out one element and reducing the size of the next iteration of parsed data by one. So the first iteration would go something like this… Go through the entire array of data and find the lowest value Place the value at the front of the array The second iteration would go something like this… Go through the array from position two (position one has already been sorted with the smallest value) and find the next lowest value in the array. Place the value at the second position in the array This process would be completed until the entire array had been sorted. A positive about selection sort is that it does not make many item movements. In fact, in a worst case scenario every items is only moved once. Selection sort is however a comparison intensive sort. If you had 10 items in a collection, just to parse the collection you would have 10+9+8+7+6+5+4+3+2=54 comparisons to sort regardless of how sorted the collection was to start with. If you think about it, if you applied selection sort to a collection already sorted, you would still perform relatively the same number of iterations as if it was not sorted at all. Many of the following algorithms try and reduce the number of comparisons if the list is already sorted – leaving one with a best case and worst case scenario for comparisons. Likewise different approaches have different levels of item movement. Depending on what is more expensive, one may give priority to one approach compared to another based on what is more expensive, a comparison or a item move. Insertion Sort Insertion sort tries to reduce the number of key comparisons it performs compared to selection sort by not “doing anything” if things are sorted. Assume you had an collection of numbers in the following order… 10 18 25 30 23 17 45 35 There are 8 elements in the list. If we were to start at the front of the list – 10 18 25 & 30 are already sorted. Element 5 (23) however is smaller than element 4 (30) and so needs to be repositioned. We do this by copying the value at element 5 to a temporary holder, and then begin shifting the elements before it up one. So… Element 5 would be copied to a temporary holder 10 18 25 30 23 17 45 35 – T 23 Element 4 would shift to Element 5 10 18 25 30 30 17 45 35 – T 23 Element 3 would shift to Element 4 10 18 25 25 30 17 45 35 – T 23 Element 2 (18) is smaller than the temporary holder so we put the temporary holder value into Element 3. 10 18 23 25 30 17 45 35 – T 23   We now have a sorted list up to element 6. And so we would repeat the same process by moving element 6 to a temporary value and then shifting everything up by one from element 2 to element 5. As you can see, one major setback for this technique is the shifting values up one – this is because up to now we have been considering the collection to be an array. If however the collection was a linked list, we would not need to shift values up, but merely remove the link from the unsorted value and “reinsert” it in a sorted position. Which would reduce the number of transactions performed on the collection. So.. Insertion sort seems to perform better than selection sort – however an implementation is slightly more complicated. This is typical with most sorting algorithms – generally, greater performance leads to greater complexity. Also, insertion sort performs better if a collection of data is already sorted. If for instance you were handed a sorted collection of size n, then only n number of comparisons would need to be performed to verify that it is sorted. It’s important to note that insertion sort (array based) performs a number item moves – every time an item is “out of place” several items before it get shifted up. Shellsort – Diminishing Increment Sort So up to now we have covered Selection Sort & Insertion Sort. Selection Sort makes many comparisons and insertion sort (with an array) has the potential of making many item movements. Shellsort is an approach that takes the normal insertion sort and tries to reduce the number of item movements. In Shellsort, elements in a collection are viewed as sub-collections of a particular size. Each sub-collection is sorted so that the elements that are far apart move closer to their final position. Suppose we had a collection of 15 elements… 10 20 15 45 36 48 7 60 18 50 2 19 43 30 55 First we may view the collection as 7 sub-collections and sort each sublist, lets say at intervals of 7 10 60 55 – 20 18 – 15 50 – 45 2 – 36 19 – 48 43 – 7 30 10 55 60 – 18 20 – 15 50 – 2 45 – 19 36 – 43 48 – 7 30 (Sorted) We then sort each sublist at a smaller inter – lets say 4 10 55 60 18 – 20 15 50 2 – 45 19 36 43 – 48 7 30 10 18 55 60 – 2 15 20 50 – 19 36 43 45 – 7 30 48 (Sorted) We then sort elements at a distance of 1 (i.e. we apply a normal insertion sort) 10 18 55 60 2 15 20 50 19 36 43 45 7 30 48 2 7 10 15 18 19 20 30 36 43 45 48 50 55 (Sorted) The important thing with shellsort is deciding on the increment sequence of each sub-collection. From what I can tell, there isn’t any definitive method and depending on the order of your elements, different increment sequences may perform better than others. There are however certain increment sequences that you may want to avoid. An even based increment sequence (e.g. 2 4 8 16 32 …) should typically be avoided because it does not allow for even elements to be compared with odd elements until the final sort phase – which in a way would negate many of the benefits of using sub-collections. The performance on the number of comparisons and item movements of Shellsort is hard to determine, however it is considered to be considerably better than the normal insertion sort. Quicksort Quicksort uses a divide and conquer approach to sort a collection of items. The collection is divided into two sub-collections – and the two sub-collections are sorted and combined into one list in such a way that the combined list is sorted. The algorithm is in general pseudo code below… Divide the collection into two sub-collections Quicksort the lower sub-collection Quicksort the upper sub-collection Combine the lower & upper sub-collection together As hinted at above, quicksort uses recursion in its implementation. The real trick with quicksort is to get the lower and upper sub-collections to be of equal size. The size of a sub-collection is determined by what value the pivot is. Once a pivot is determined, one would partition to sub-collections and then repeat the process on each sub collection until you reach the base case. With quicksort, the work is done when dividing the sub-collections into lower & upper collections. The actual combining of the lower & upper sub-collections at the end is relatively simple since every element in the lower sub-collection is smaller than the smallest element in the upper sub-collection. Mergesort With quicksort, the average-case complexity was O(nlog2n) however the worst case complexity was still O(N*N). Mergesort improves on quicksort by always having a complexity of O(nlog2n) regardless of the best or worst case. So how does it do this? Mergesort makes use of the divide and conquer approach to partition a collection into two sub-collections. It then sorts each sub-collection and combines the sorted sub-collections into one sorted collection. The general algorithm for mergesort is as follows… Divide the collection into two sub-collections Mergesort the first sub-collection Mergesort the second sub-collection Merge the first sub-collection and the second sub-collection As you can see.. it still pretty much looks like quicksort – so lets see where it differs… Firstly, mergesort differs from quicksort in how it partitions the sub-collections. Instead of having a pivot – merge sort partitions each sub-collection based on size so that the first and second sub-collection of relatively the same size. This dividing keeps getting repeated until the sub-collections are the size of a single element. If a sub-collection is one element in size – it is now sorted! So the trick is how do we put all these sub-collections together so that they maintain their sorted order. Sorted sub-collections are merged into a sorted collection by comparing the elements of the sub-collection and then adjusting the sorted collection. Lets have a look at a few examples… Assume 2 sub-collections with 1 element each 10 & 20 Compare the first element of the first sub-collection with the first element of the second sub-collection. Take the smallest of the two and place it as the first element in the sorted collection. In this scenario 10 is smaller than 20 so 10 is taken from sub-collection 1 leaving that sub-collection empty, which means by default the next smallest element is in sub-collection 2 (20). So the sorted collection would be 10 20 Lets assume 2 sub-collections with 2 elements each 10 20 & 15 19 So… again we would Compare 10 with 15 – 10 is the winner so we add it to our sorted collection (10) leaving us with 20 & 15 19 Compare 20 with 15 – 15 is the winner so we add it to our sorted collection (10 15) leaving us with 20 & 19 Compare 20 with 19 – 19 is the winner so we add it to our sorted collection (10 15 19) leaving us with 20 & _ 20 is by default the winner so our sorted collection is 10 15 19 20. Make sense? Heapsort (still needs to be completed) So by now I am tired of sorting algorithms and trying to remember why they were so important. I think every year I go through this stuff I wonder to myself why are we made to learn about selection sort and insertion sort if they are so bad – why didn’t we just skip to Mergesort & Quicksort. I guess the only explanation I have for this is that sometimes you learn things so that you can implement them in future – and other times you learn things so that you know it isn’t the best way of implementing things and that you don’t need to implement it in future. Anyhow… luckily this is going to be the last one of my sorts for today. The first step in heapsort is to convert a collection of data into a heap. After the data is converted into a heap, sorting begins… So what is the definition of a heap? If we have to convert a collection of data into a heap, how do we know when it is a heap and when it is not? The definition of a heap is as follows: A heap is a list in which each element contains a key, such that the key in the element at position k in the list is at least as large as the key in the element at position 2k +1 (if it exists) and 2k + 2 (if it exists). Does that make sense? At first glance I’m thinking what the heck??? But then after re-reading my notes I see that we are doing something different – up to now we have really looked at data as an array or sequential collection of data that we need to sort – a heap represents data in a slightly different way – although the data is stored in a sequential collection, for a sequential collection of data to be in a valid heap – it is “semi sorted”. Let me try and explain a bit further with an example… Example 1 of Potential Heap Data Assume we had a collection of numbers as follows 1[1] 2[2] 3[3] 4[4] 5[5] 6[6] For this to be a valid heap element with value of 1 at position [1] needs to be greater or equal to the element at position [3] (2k +1) and position [4] (2k +2). So in the above example, the collection of numbers is not in a valid heap. Example 2 of Potential Heap Data Lets look at another collection of numbers as follows 6[1] 5[2] 4[3] 3[4] 2[5] 1[6] Is this a valid heap? Well… element with the value 6 at position 1 must be greater or equal to the element at position [3] and position [4]. Is 6 > 4 and 6 > 3? Yes it is. Lets look at element 5 as position 2. It must be greater than the values at [4] & [5]. Is 5 > 3 and 5 > 2? Yes it is. If you continued to examine this second collection of data you would find that it is in a valid heap based on the definition of a heap.

    Read the article

  • Slow MySQL Query not using filesort

    - by Canadaka
    I have a query on my homepage that is getting slower and slower as my database table grows larger. tablename = tweets_cache rows = 572,327 this is the query I'm currently using that is slow, over 5 seconds. SELECT * FROM tweets_cache t WHERE t.province='' AND t.mp='0' ORDER BY t.published DESC LIMIT 50; If I take out either the WHERE or the ORDER BY, then the query is super fast 0.016 seconds. I have the following indexes on the tweets_cache table. PRIMARY published mp category province author So i'm not sure why its not using the indexes since mp, provice and published all have indexes? Doing a profile of the query shows that its not using an index to sort the query and is using filesort which is really slow. possible_keys = mp,province Extra = Using where; Using filesort I tried adding a new multie-colum index with "profiles & mp". The explain shows that this new index listed under "possible_keys" and "key", but the query time is unchanged, still over 5 seconds. Here is a screenshot of the profiler info on the query. http://i355.photobucket.com/albums/r469/canadaka_bucket/slow_query_profile.png Something weird, I made a dump of my database to test on my local desktop so i don't screw up the live site. The same query on my local runs super fast, milliseconds. So I copied all the same mysql startup variables from the server to my local to make sure there wasn't some setting that might be causing this. But even after that the local query runs super fast, but the one on the live server is over 5 seconds. My database server is only using around 800MB of the 4GB it has available. here are the related my.ini settings i'm using default-storage-engine = MYISAM max_connections = 800 skip-locking key_buffer = 512M max_allowed_packet = 1M table_cache = 512 sort_buffer_size = 4M read_buffer_size = 4M read_rnd_buffer_size = 16M myisam_sort_buffer_size = 64M thread_cache_size = 8 query_cache_size = 128M # Try number of CPU's*2 for thread_concurrency thread_concurrency = 8 # Disable Federated by default skip-federated key_buffer = 512M sort_buffer_size = 256M read_buffer = 2M write_buffer = 2M key_buffer = 512M sort_buffer_size = 256M read_buffer = 2M write_buffer = 2M

    Read the article

  • Is there anything else I can do to optimize this MySQL query?

    - by Legend
    I have two tables, Table A with 700,000 entries and Table B with 600,000 entries. The structure is as follows: Table A: +-----------+---------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-----------+---------------------+------+-----+---------+----------------+ | id | bigint(20) unsigned | NO | PRI | NULL | auto_increment | | number | bigint(20) unsigned | YES | | NULL | | +-----------+---------------------+------+-----+---------+----------------+ Table B: +-------------+---------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-------------+---------------------+------+-----+---------+----------------+ | id | bigint(20) unsigned | NO | PRI | NULL | auto_increment | | number_s | bigint(20) unsigned | YES | MUL | NULL | | | number_e | bigint(20) unsigned | YES | MUL | NULL | | | source | varchar(50) | YES | | NULL | | +-------------+---------------------+------+-----+---------+----------------+ I am trying to find if any of the values in Table A are present in Table B using the following code: $sql = "SELECT number from TableA"; $result = mysql_query($sql) or die(mysql_error()); while($row = mysql_fetch_assoc($result)) { $number = $row['number']; $sql = "SELECT source, count(source) FROM TableB WHERE number_s < $number AND number_e > $number GROUP BY source"; $re = mysql_query($sql) or die(mysql_error); while($ro = mysql_fetch_array($re)) { echo $number."\t".$ro[0]."\t".$ro[1]."\n"; } } I was hoping that the query would go fast but then for some reason, it isn't terrible fast. My explain on the select (with a particular value of "number") gives me the following: mysql> explain SELECT source, count(source) FROM TableB WHERE number_s < 1812194440 AND number_e > 1812194440 GROUP BY source; +----+-------------+------------+------+-------------------------+------+---------+------+--------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+------+-------------------------+------+---------+------+--------+----------------------------------------------+ | 1 | SIMPLE | TableB | ALL | number_s,number_e | NULL | NULL | NULL | 696325 | Using where; Using temporary; Using filesort | +----+-------------+------------+------+-------------------------+------+---------+------+--------+----------------------------------------------+ 1 row in set (0.00 sec) Is there any optimization that I can squeeze out of this? I tried writing a stored procedure for the same task but it doesn't even seem to work in the first place... It doesn't give any syntax errors... I tried running it for a day and it was still running which felt odd. CREATE PROCEDURE Filter() Begin DECLARE number BIGINT UNSIGNED; DECLARE x INT; DECLARE done INT DEFAULT 0; DECLARE cur1 CURSOR FOR SELECT number FROM TableA; DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1; CREATE TEMPORARY TABLE IF NOT EXISTS Flags(number bigint unsigned, count int(11)); OPEN cur1; hist_loop: LOOP FETCH cur1 INTO number; SELECT count(*) from TableB WHERE number_s < number AND number_e > number INTO x; IF done = 1 THEN LEAVE hist_loop; END IF; IF x IS NOT NULL AND x>0 THEN INSERT INTO Flags(number, count) VALUES(number, x); END IF; END LOOP hist_loop; CLOSE cur1; END

    Read the article

  • Linq-to-sql Compiled Query is returning result from different DataContext

    - by Vladimir Kojic
    Compiled query: public static Func<OperationalDataContext, short, Machine> QueryMachineById = CompiledQuery.Compile((OperationalDataContext db, short machineID) => db.Machines.Where(m => m.MachineID == machineID).SingleOrDefault()); It looks like compiled query is caching Machine object and returning the same object even if query is called from new DataContext (I’m disposing DataContext in the service but I’m getting Machine from previous DataContext). I use POCOs and XML mapping. Revised: It looks like compiled query is returning result from new data context and it is not using the one that I passed in compiled-query. Therefore I can not reuse returned object and link it to another object obtained from datacontext thru non compiled queries. I’m using unit of work pattern : // First Call Using(new DataContext) { Machine from DataContext.Table == machine from cached query } // Do some work // Second Call is failing Using(new DataContext) { Machine from DataContext.Table <> machine from cached query }

    Read the article

  • WordPress: Prevent Showing of Sub Category Posts

    - by Carlos Pattrezzi
    Hi, I'd like to know how to prevent showing of sub-category posts. My home page lists all posts from three "main categories" (parent category), but unfortunately it's also listing some posts from the sub-categories. Here's the code that I'm using to get the posts from specific category: <h2>Category Name</h2> <ul> <?php $category_query = new WP_Query(array('category_name' => 'category1', 'showposts' => 5)); ?> <?php while ($profissionais_query->have_posts()) : $profissionais_query->the_post(); ?> <li> <a class="title" href="<?php the_permalink(); ?>"><?php the_title(); ?></a> <?php the_excerpt(); ?> </li> <?php endwhile; ?> </ul> Does anyone have an idea? Thank you.

    Read the article

  • Light-weight, free, database query tool for Windows?

    - by NoCatharsis
    My question is very similar to the one here except pertaining to a Windows tool. I am also referencing this table and what I found here with a Google search. However, I have no idea which tool would best meet my (very basic) purposes. I am currently using Excel with a basic ODBC connection string to query my database at work. However, Excel is pretty memory-heavy and a basic query tends to throw my computer into a 30 second stall-a-thon. Is there a free tool out there that is light-weight and can serve the same purpose when provided an ODBC connection and a SQL query? Also would prefer that it easily copies over to a spreadsheet as needed.

    Read the article

  • Visual Query Builder

    - by johnnyArt
    If been using "dbForge Query Builder" lately and I'm gotten used to the ease of building and testing a query, specially for those complex ones with inner joins, aliases and multiple conditionals. The expiry date of the trial is about to come, and while wanting to remain on the legal side for this I'd rather not pay the 50USD it costs (although I must say it's pretty cheap for what it does). So my question would be: Are there any free alternatives to replace this visual query builder? I've failed to find any and fear that my only two options are paying for it, or going to the dark side.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >