Search Results

Search found 27440 results on 1098 pages for 'table lock'.

Page 5/1098 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • MySQL table does not exist

    - by Phanindra
    I am getting following error in err file. 110803 6:51:26 InnoDB: Error: table `ims`.`temp_discoveryjobdetails` already exists in InnoDB internal InnoDB: data dictionary. Have you deleted the .frm file InnoDB: and not used DROP TABLE? Have you used DROP DATABASE InnoDB: for InnoDB tables in MySQL version <= 3.23.43? InnoDB: See the Restrictions section of the InnoDB manual. InnoDB: You can drop the orphaned table inside InnoDB by InnoDB: creating an InnoDB table with the same name in another InnoDB: database and copying the .frm file to the current database. InnoDB: Then MySQL thinks the table exists, and DROP TABLE will InnoDB: succeed. InnoDB: You can look for further help from InnoDB: http://dev.mysql.com/doc/refman/5.1/en/innodb-troubleshooting.html And when I do the same, like copying the frm file from other database to here and drop the table, i am getting following error, InnoDB: Error: trying to load index PRIMARY for table ims/temp_discoveryjobdetails InnoDB: but the index tree has been freed! 110803 6:50:26 InnoDB: Error: table `ims`.`temp_discoveryjobdetails` does not exist in the InnoDB internal InnoDB: data dictionary though MySQL is trying to drop it. InnoDB: Have you copied the .frm file of the table to the InnoDB: MySQL database directory from another database? InnoDB: You can look for further help from InnoDB: http://dev.mysql.com/doc/refman/5.1/en/innodb-troubleshooting.html Please any one help me out of this. Also can any one tell me why this error is coming. EDIT: The issue is occurring only when disk size is full and when we use Truncate table. Also this is occurring only in 5.1 version but not in 5.0 version.

    Read the article

  • Remove the Lock Icon from a Folder in Windows 7

    - by Trevor Bekolay
    If you’ve been playing around with folder sharing or security options, then you might have ended up with an unsightly lock icon on a folder. We’ll show you how to get rid of that icon without over-sharing it. The lock icon in Windows 7 indicates that the file or folder can only be accessed by you, and not any other user on your computer. If this is desired, then the lock icon is a good way to ensure that those settings are in place. If this isn’t your intention, then it’s an eyesore. To remove the lock icon, we have to change the security settings on the folder to allow the Users group to, at the very least, read from the folder. Right-click on the folder with the lock icon and select Properties. Switch to the Security tab, and then press the Edit… button. A list of groups and users that have access to the folder appears. Missing from the list will be the “Users” group. Click the Add… button. The next window is a bit confusing, but all you need to do is enter “Users” into the text field near the bottom of the window. Click the Check Names button. “Users” will change to the location of the Users group on your particular computer. In our case, this is PHOENIX\Users (PHOENIX is the name of our test machine). Click OK. The Users group should now appear in the list of Groups and Users with access to the folder. You can modify the specific permissions that the Users group has if you’d like – at the minimum, it must have Read access. Click OK. Keep clicking OK until you’re back at the Explorer window. You should now see that the lock icon is gone from your folder! It may be a small aesthetic nuance, but having that one folder stick out in a group of other folders is needlessly distracting. Fortunately, the fix is quick and easy, and does not compromise the security of the folder! Similar Articles Productive Geek Tips What is this "My Sharing Folders" Icon in My Computer and How Do I Remove It?Lock The Screen While in Full-Screen Mode in Windows Media PlayerHave Windows Notify You When You Accidentally Hit the Caps Lock KeyWhy Did Windows Vista’s Music Folder Icon Turn Yellow?Create Shutdown / Restart / Lock Icons in Windows 7 or Vista TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Check these Awesome Chrome Add-ons iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7 Create Nice Charts With These Web Based Tools Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor

    Read the article

  • Trackpad Drag lock pissing me off with Windows 7

    - by rockinthesixstring
    This is driving me insane and I've scowered the web for two days trying to fix this. I just picked up an Apple Magic Trackpad to be used exclusively on a Windows 7 PC (not apple with bootcamp). I found a nice driver that got it working right away, but when I'm moving the cursor around the screen, often it will begin "highlighting" text, or picking up and dragging things I don't want it to. I looked in the "regedit" where people are saying there is binary that can be changed, however the driver I installed doesn't use the binary being suggested. Can anyone suggest a better driver for my situation or a way to disable the drag lock that is driving me so nuts? I don't mind not being able to lift my finger when dragging, it's a far better compromise than having the insane feature.

    Read the article

  • Drag lock crisis with Windows 7 and Apple Magic Trackpad

    - by rockinthesixstring
    This is driving me insane and I've scowered the web for two days trying to fix this. I just picked up an Apple Magic Trackpad to be used exclusively on a Windows 7 PC (not apple with bootcamp). I found a nice driver that got it working right away, but when I'm moving the cursor around the screen, often it will begin "highlighting" text, or picking up and dragging things I don't want it to. I looked in the "regedit" where people are saying there is binary that can be changed, however the driver I installed doesn't use the binary being suggested. Can anyone suggest a better driver for my situation or a way to disable the drag lock that is driving me so nuts? I don't mind not being able to lift my finger when dragging, it's a far better compromise than having the insane feature.

    Read the article

  • Convert table to table with autofilter/order by function [on hold]

    - by evachristine
    How can I make any normal HTML table: <table border=1 style='border:2px solid black;border-collapse:collapse;'><tr><td>foo1</td><td>foo2</td><td>foo3</td><td>foo3</td><td>foo4</td><td>foo5</td><td>foo6</td></tr> <tr><td><a href="https://foo.com/adsf">adsf</a></td><td>ksjdajsfljdsaljfxycaqrf</td><td><a href="mailto:[email protected]?Subject=adsf - ksjdajsfljdsaljfxycaqrf">[email protected]</a></td><td>nmasdfdsadfafd</td><td>INPROG</td><td>3</td><td>2014-03-04 10:37</td> <tr><td><a href="https://foo.com/adsflkjsadlf">adsflkjsadlf</a></td><td>alksjdlsadjfyxcvyx</td><td><a href="mailto:[email protected]?Subject=adsflkjsadlf - alksjdlsadjfyxcvyx">[email protected]</a></td><td>nmasdfdsadfafd</td><td>INPROG</td><td>3</td><td>2014-04-24 00:00</td> <tr><td><a href="https://foo.com/asdfasdfsadf">asdfasdfsadf</a></td><td>jdsalajslkfjyxcgrearafs</td><td><a href="mailto:[email protected]?Subject=asdfasdfsadf - jdsalajslkfjyxcgrearafs">[email protected]</a></td><td>nmasdfdsadfafd</td><td>INPROG</td><td>3</td><td>2014-04-24 00:00</td> </table> to a table what's first row (ex.: foo1; foo2; foo3, etc..) is clickable in a way that it will make the columns in order, ex.: order by foo2, etc. Just like an order by in an XLS. (extra: how in the hell can I put autofilter too?:D )

    Read the article

  • MySQL Procedure causing Dead Lock

    - by Phanindra
    I am using MySQL server 5.1.45. And I am having a procedure with huge business logic. With less number of invocation of this procedure, my application is working fine, but when the number of invocations are getting increased this procedure is throwing Lock wait timeout exception. My Question is will Procedure creates temporary tables dynamically..? As in my procedure I am using Truncate statement which may cause to release all transactions. I am not DBA, please help me out of this.

    Read the article

  • Multi-statement Table Valued Function vs Inline Table Valued Function

    - by AndyC
    ie: CREATE FUNCTION MyNS.GetUnshippedOrders() RETURNS TABLE AS RETURN SELECT a.SaleId, a.CustomerID, b.Qty FROM Sales.Sales a INNER JOIN Sales.SaleDetail b ON a.SaleId = b.SaleId INNER JOIN Production.Product c ON b.ProductID = c.ProductID WHERE a.ShipDate IS NULL GO versus: CREATE FUNCTION MyNS.GetLastShipped(@CustomerID INT) RETURNS @CustomerOrder TABLE (SaleOrderID INT NOT NULL, CustomerID INT NOT NULL, OrderDate DATETIME NOT NULL, OrderQty INT NOT NULL) AS BEGIN DECLARE @MaxDate DATETIME SELECT @MaxDate = MAX(OrderDate) FROM Sales.SalesOrderHeader WHERE CustomerID = @CustomerID INSERT @CustomerOrder SELECT a.SalesOrderID, a.CustomerID, a.OrderDate, b.OrderQty FROM Sales.SalesOrderHeader a INNER JOIN Sales.SalesOrderHeader b ON a.SalesOrderID = b.SalesOrderID INNER JOIN Production.Product c ON b.ProductID = c.ProductID WHERE a.OrderDate = @MaxDate AND a.CustomerID = @CustomerID RETURN END GO Is there an advantage to using one over the other? Is there certain scenarios when one is better than the other or are the differences purely syntactical? I realise the 2 example queries are doing different things but is there a reason I would write them in that way? Reading about them and the advantages/differences haven't really been explained. Thanks

    Read the article

  • Multiple foreign keys in one table to 1 other table in mysql

    - by djerry
    Hey guys, I got 2 tables in my database: user and call. User exists of 3 fields: id, name, number and call : id, 'source', 'destination', 'referred', date. I need to monitor calls in my app. The 3 ' ' fields above are actually userid numbers. now i'm wondering, can i make those 3 field foreign key elements of the id-field in table user? Thanks in advance...

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • A deadlock was detected while trying to lock variables in SSIS

    Error: 0xC001405C at SQL Log Status: A deadlock was detected while trying to lock variables "User::RowCount" for read/write access. A lock cannot be acquired after 16 attempts. The locks timed out. Have you ever considered variable locking when building your SSIS packages? I expect many people haven’t just because most of the time you never see an error like the one above. I’ll try and explain a few key concepts about variable locking and hopefully you never will see that error. First of all, what is all this variable locking all about? Put simply SSIS variables have to be locked before they can be accessed, and then of course unlocked once you have finished with them. This is baked into SSIS, presumably to reduce the risk of race conditions, but with that comes some additional overhead in that you need to be careful to avoid lock conflicts in some scenarios. The most obvious place you will come across any hint of locking (no pun intended) is the Script Task or Script Component with their ReadOnlyVariables and ReadWriteVariables properties. These two properties allow you to enter lists of variables to be used within the task, or to put it another way, these lists of variables to be locked, so that they are available within the task. During the task pre-execute phase the variables and locked, you then use them during the execute phase when you code is run, and then unlocked for you during the post-execute phase. So by entering the variable names in one of the two list, the locking is taken care of for you, and you just read and write to the Dts.Variables collection that is exposed in the task for the purpose. As you can see in the image above, the variable PackageInt is specified, which means when I write the code inside that task I don’t have to worry about locking at all, as shown below. public void Main() { // Set the variable value to something new Dts.Variables["PackageInt"].Value = 199; // Raise an event so we can play in the event handler bool fireAgain = true; Dts.Events.FireInformation(0, "Script Task Code", "This is the script task raising an event.", null, 0, ref fireAgain); Dts.TaskResult = (int)ScriptResults.Success; } As you can see as well as accessing the variable, hassle free, I also raise an event. Now consider a scenario where I have an event hander as well as shown below. Now what if my event handler uses tries to use the same variable as well? Well obviously for the point of this post, it fails with the error quoted previously. The reason why is clearly illustrated if you consider the following sequence of events. Package execution starts Script Task in Control Flow starts Script Task in Control Flow locks the PackageInt variable as specified in the ReadWriteVariables property Script Task in Control Flow executes script, and the On Information event is raised The On Information event handler starts Script Task in On Information event handler starts Script Task in On Information event handler attempts to lock the PackageInt variable (for either read or write it doesn’t matter), but will fail because the variable is already locked. The problem is caused by the event handler task trying to use a variable that is already locked by the task in Control Flow. Events are always raised synchronously, therefore the task in Control Flow that is raising the event will not regain control until the event handler has completed, so we really do have un-resolvable locking conflict, better known as a deadlock. In this scenario we can easily resolve the problem by managing the variable locking explicitly in code, so no need to specify anything for the ReadOnlyVariables and ReadWriteVariables properties. public void Main() { // Set the variable value to something new, with explicit lock control Variables lockedVariables = null; Dts.VariableDispenser.LockOneForWrite("PackageInt", ref lockedVariables); lockedVariables["PackageInt"].Value = 199; lockedVariables.Unlock(); // Raise an event so we can play in the event handler bool fireAgain = true; Dts.Events.FireInformation(0, "Script Task Code", "This is the script task raising an event.", null, 0, ref fireAgain); Dts.TaskResult = (int)ScriptResults.Success; } Now the package will execute successfully because the variable lock has already been released by the time the event is raised, so no conflict occurs. For those of you with a SQL Engine background this should all sound strangely familiar, and boils down to getting in and out as fast as you can to reduce the risk of lock contention, be that SQL pages or SSIS variables. Unfortunately we cannot always manage the locking ourselves. The Execute SQL Task is very often used in conjunction with variables, either to pass in parameter values or get results out. Either way the task will manage the locking for you, and will fail when it cannot lock the variables it requires. The scenario outlined above is clear cut deadlock scenario, both parties are waiting on each other, so it is un-resolvable. The mechanism used within SSIS isn’t actually that clever, and whilst the message says it is a deadlock, it really just means it tried a few times, and then gave up. The last part of the error message is actually the most accurate in terms of the failure, A lock cannot be acquired after 16 attempts. The locks timed out.  Now this may come across as a recommendation to always manage locking manually in the Script Task or Script Component yourself, but I think that would be an overreaction. It is more of a reminder to be aware that in high concurrency scenarios, especially when sharing variables across multiple objects, locking is important design consideration. Update – Make sure you don’t try and use explicit locking as well as leaving the variable names in the ReadOnlyVariables and ReadWriteVariables lock lists otherwise you’ll get the deadlock error, you cannot lock a variable twice!

    Read the article

  • multiple pivot table consolidation to another pivot table

    - by phill
    I have to SQL Server views being drawn to 2 seperate worksheets as pivot tables in an excel 2007 file. the results on worksheet1 include example data: - company_name, tickets, month, year company1, 3, 1,2009 company2, 4, 1,2009 company3, 5, 1,2009 company3, 2, 2,2009 results from worksheet2 include example data: company_name, month, year , fee company1, 1 , 2009 , 2.00 company2, 1 , 2009 , 3.00 company3, 1 , 2009 , 4.00 company3, 2 , 2009 , 2.00 I would like the results of one worksheet to be reflected onto the pivot table of another with their corresponding companies. for example in this case: - company_name, tickets, month, year, fee company1, 3, 1,2009 , 2 company2, 4, 1,2009 , 3 company3, 5, 1,2009 , 4 company3, 2, 2,2009 , 2 Is there a way to do this without vba? thanks in advance

    Read the article

  • Persistent SQL Table lock from C#

    - by Chris
    I'm trying to create a persistent SQL (SQL Server 2005) lock on a table level. I'm not updating/querying the specified table, but I need to prevent a third party application from updating the locked table as a means to prevent transactions from being posted (the table I wish to lock is the key on their transaction that interferes with my processing). From my experience the table is only locked for the time a specific transaction is taking place. Any ideas? The 3rd party developer has logged this feature as an enhancement, but since they are in the middle of rolling out a major release I can expect to wait at least 6 months for this. I know that this isn't a great solution, since their software will fall over but it is of a critical enough nature that we're willing to live with the consequences.

    Read the article

  • SQL Server &ndash; Undelete a Table and Restore a Single Table from Backup

    - by Mladen Prajdic
    This post is part of the monthly community event called T-SQL Tuesday started by Adam Machanic (blog|twitter) and hosted by someone else each month. This month the host is Sankar Reddy (blog|twitter) and the topic is Misconceptions in SQL Server. You can follow posts for this theme on Twitter by looking at #TSQL2sDay hashtag. Let me start by saying: This code is a crazy hack that is to never be used unless you really, really have to. Really! And I don’t think there’s a time when you would really have to use it for real. Because it’s a hack there are number of things that can go wrong so play with it knowing that. I’ve managed to totally corrupt one database. :) Oh… and for those saying: yeah yeah.. you have a single table in a file group and you’re restoring that, I say “nay nay” to you. As we all know SQL Server can’t do single table restores from backup. This is kind of a obvious thing due to different relational integrity (RI) concerns. Since we have to maintain that we have to restore all tables represented in a RI graph. For this exercise i say BAH! to those concerns. Note that this method “works” only for simple tables that don’t have LOB and off rows data. The code can be expanded to include those but I’ve tried to leave things “simple”. Note that for this to work our table needs to be relatively static data-wise. This doesn’t work for OLTP table. Products are a perfect example of static data. They don’t change much between backups, pretty much everything depends on them and their table is one of those tables that are relatively easy to accidentally delete everything from. This only works if the database is in Full or Bulk-Logged recovery mode for tables where the contents have been deleted or truncated but NOT when a table was dropped. Everything we’ll talk about has to be done before the data pages are reused for other purposes. After deletion or truncation the pages are marked as reusable so you have to act fast. The best thing probably is to put the database into single user mode ASAP while you’re performing this procedure and return it to multi user after you’re done. How do we do it? We will be using an undocumented but known DBCC commands: DBCC PAGE, an undocumented function sys.fn_dblog and a little known DATABASE RESTORE PAGE option. All tests will be on a copy of Production.Product table in AdventureWorks database called Production.Product1 because the original table has FK constraints that prevent us from truncating it for testing. -- create a duplicate table. This doesn't preserve indexes!SELECT *INTO AdventureWorks.Production.Product1FROM AdventureWorks.Production.Product   After we run this code take a full back to perform further testing.   First let’s see what the difference between DELETE and TRUNCATE is when it comes to logging. With DELETE every row deletion is logged in the transaction log. With TRUNCATE only whole data page deallocations are logged in the transaction log. Getting deleted data pages is simple. All we have to look for is row delete entry in the sys.fn_dblog output. But getting data pages that were truncated from the transaction log presents a bit of an interesting problem. I will not go into depths of IAM(Index Allocation Map) and PFS (Page Free Space) pages but suffice to say that every IAM page has intervals that tell us which data pages are allocated for a table and which aren’t. If we deep dive into the sys.fn_dblog output we can see that once you truncate a table all the pages in all the intervals are deallocated and this is shown in the PFS page transaction log entry as deallocation of pages. For every 8 pages in the same extent there is one PFS page row in the transaction log. This row holds information about all 8 pages in CSV format which means we can get to this data with some parsing. A great help for parsing this stuff is Peter Debetta’s handy function dbo.HexStrToVarBin that converts hexadecimal string into a varbinary value that can be easily converted to integer tus giving us a readable page number. The shortened (columns removed) sys.fn_dblog output for a PFS page with CSV data for 1 extent (8 data pages) looks like this: -- [Page ID] is displayed in hex format. -- To convert it to readable int we'll use dbo.HexStrToVarBin function found at -- http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx -- This function must be installed in the master databaseSELECT Context, AllocUnitName, [Page ID], DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE [Current LSN] = '00000031:00000a46:007d' The pages at the end marked with 0x00—> are pages that are allocated in the extent but are not part of a table. We can inspect the raw content of each data page with a DBCC PAGE command: -- we need this trace flag to redirect output to the query window.DBCC TRACEON (3604); -- WITH TABLERESULTS gives us data in table format instead of message format-- we use format option 3 because it's the easiest to read and manipulate further onDBCC PAGE (AdventureWorks, 1, 613, 3) WITH TABLERESULTS   Since the DBACC PAGE output can be quite extensive I won’t put it here. You can see an example of it in the link at the beginning of this section. Getting deleted data back When we run a delete statement every row to be deleted is marked as a ghost record. A background process periodically cleans up those rows. A huge misconception is that the data is actually removed. It’s not. Only the pointers to the rows are removed while the data itself is still on the data page. We just can’t access it with normal means. To get those pointers back we need to restore every deleted page using the RESTORE PAGE option mentioned above. This restore must be done from a full backup, followed by any differential and log backups that you may have. This is necessary to bring the pages up to the same point in time as the rest of the data.  However the restore doesn’t magically connect the restored page back to the original table. It simply replaces the current page with the one from the backup. After the restore we use the DBCC PAGE to read data directly from all data pages and insert that data into a temporary table. To finish the RESTORE PAGE  procedure we finally have to take a tail log backup (simple backup of the transaction log) and restore it back. We can now insert data from the temporary table to our original table by hand. Getting truncated data back When we run a truncate the truncated data pages aren’t touched at all. Even the pointers to rows stay unchanged. Because of this getting data back from truncated table is simple. we just have to find out which pages belonged to our table and use DBCC PAGE to read data off of them. No restore is necessary. Turns out that the problems we had with finding the data pages is alleviated by not having to do a RESTORE PAGE procedure. Stop stalling… show me The Code! This is the code for getting back deleted and truncated data back. It’s commented in all the right places so don’t be afraid to take a closer look. Make sure you have a full backup before trying this out. Also I suggest that the last step of backing and restoring the tail log is performed by hand. USE masterGOIF OBJECT_ID('dbo.HexStrToVarBin') IS NULL RAISERROR ('No dbo.HexStrToVarBin installed. Go to http://sqlblog.com/blogs/peter_debetta/archive/2007/03/09/t-sql-convert-hex-string-to-varbinary.aspx and install it in master database' , 18, 1) SET NOCOUNT ONBEGIN TRY DECLARE @dbName VARCHAR(1000), @schemaName VARCHAR(1000), @tableName VARCHAR(1000), @fullBackupName VARCHAR(1000), @undeletedTableName VARCHAR(1000), @sql VARCHAR(MAX), @tableWasTruncated bit; /* THE FIRST LINE ARE OUR INPUT PARAMETERS In this case we're trying to recover Production.Product1 table in AdventureWorks database. My full backup of AdventureWorks database is at e:\AW.bak */ SELECT @dbName = 'AdventureWorks', @schemaName = 'Production', @tableName = 'Product1', @fullBackupName = 'e:\AW.bak', @undeletedTableName = '##' + @tableName + '_Undeleted', @tableWasTruncated = 0, -- copy the structure from original table to a temp table that we'll fill with restored data @sql = 'IF OBJECT_ID(''tempdb..' + @undeletedTableName + ''') IS NOT NULL DROP TABLE ' + @undeletedTableName + ' SELECT *' + ' INTO ' + @undeletedTableName + ' FROM [' + @dbName + '].[' + @schemaName + '].[' + @tableName + ']' + ' WHERE 1 = 0' EXEC (@sql) IF OBJECT_ID('tempdb..#PagesToRestore') IS NOT NULL DROP TABLE #PagesToRestore /* FIND DATA PAGES WE NEED TO RESTORE*/ CREATE TABLE #PagesToRestore ([ID] INT IDENTITY(1,1), [FileID] INT, [PageID] INT, [SQLtoExec] VARCHAR(1000)) -- DBCC PACE statement to run later RAISERROR ('Looking for deleted pages...', 10, 1) -- use T-LOG direct read to get deleted data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) EXEC('USE [' + @dbName + '];SELECT FileID, PageID, ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), ' + 'CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageIDFROM sys.fn_dblog(NULL, NULL)WHERE AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'' ' + 'AND Context IN (''LCX_MARK_AS_GHOST'', ''LCX_HEAP'') AND Operation in (''LOP_DELETE_ROWS''))t');SELECT *FROM #PagesToRestore -- if upper EXEC returns 0 rows it means the table was truncated so find truncated pages IF (SELECT COUNT(*) FROM #PagesToRestore) = 0 BEGIN RAISERROR ('No deleted pages found. Looking for truncated pages...', 10, 1) -- use T-LOG read to get truncated data pages INSERT INTO #PagesToRestore([FileID], [PageID], [SQLtoExec]) -- dark magic happens here -- because truncation simply deallocates pages we have to find out which pages were deallocated. -- we can find this out by looking at the PFS page row's Description column. -- for every deallocated extent the Description has a CSV of 8 pages in that extent. -- then it's just a matter of parsing it. -- we also remove the pages in the extent that weren't allocated to the table itself -- marked with '0x00-->00' EXEC ('USE [' + @dbName + '];DECLARE @truncatedPages TABLE(DeallocatedPages VARCHAR(8000), IsMultipleDeallocs BIT);INSERT INTO @truncatedPagesSELECT REPLACE(REPLACE(Description, ''Deallocated '', ''Y''), ''0x00-->00 '', ''N'') + '';'' AS DeallocatedPages, CHARINDEX('';'', Description) AS IsMultipleDeallocsFROM (SELECT DISTINCT LEFT([Page ID], 4) AS FileID, CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING([Page ID], 6, 20)))) AS PageID, DescriptionFROM sys.fn_dblog(NULL, NULL)WHERE Context IN (''LCX_PFS'') AND Description LIKE ''Deallocated%'' AND AllocUnitName LIKE ''%' + @schemaName + '.' + @tableName + '%'') t;SELECT FileID, PageID , ''DBCC TRACEON (3604); DBCC PAGE ([' + @dbName + '], '' + FileID + '', '' + PageID + '', 3) WITH TABLERESULTS'' as SQLToExecFROM (SELECT LEFT(PageAndFile, 1) as WasPageAllocatedToTable , SUBSTRING(PageAndFile, 2, CHARINDEX('':'', PageAndFile) - 2 ) as FileID , CONVERT(VARCHAR(100), CONVERT(INT, master.dbo.HexStrToVarBin(SUBSTRING(PageAndFile, CHARINDEX('':'', PageAndFile) + 1, LEN(PageAndFile))))) as PageIDFROM ( SELECT SUBSTRING(DeallocatedPages, delimPosStart, delimPosEnd - delimPosStart) as PageAndFile, IsMultipleDeallocs FROM ( SELECT *, CHARINDEX('';'', DeallocatedPages)*(N-1) + 1 AS delimPosStart, CHARINDEX('';'', DeallocatedPages)*N AS delimPosEnd FROM @truncatedPages t1 CROSS APPLY (SELECT TOP (case when t1.IsMultipleDeallocs = 1 then 8 else 1 end) ROW_NUMBER() OVER(ORDER BY number) as N FROM master..spt_values) t2 )t)t)tWHERE WasPageAllocatedToTable = ''Y''') SELECT @tableWasTruncated = 1 END DECLARE @lastID INT, @pagesCount INT SELECT @lastID = 1, @pagesCount = COUNT(*) FROM #PagesToRestore SELECT @sql = 'Number of pages to restore: ' + CONVERT(VARCHAR(10), @pagesCount) IF @pagesCount = 0 RAISERROR ('No data pages to restore.', 18, 1) ELSE RAISERROR (@sql, 10, 1) -- If the table was truncated we'll read the data directly from data pages without restoring from backup IF @tableWasTruncated = 0 BEGIN -- RESTORE DATA PAGES FROM FULL BACKUP IN BATCHES OF 200 WHILE @lastID <= @pagesCount BEGIN -- create CSV string of pages to restore SELECT @sql = STUFF((SELECT ',' + CONVERT(VARCHAR(100), FileID) + ':' + CONVERT(VARCHAR(100), PageID) FROM #PagesToRestore WHERE ID BETWEEN @lastID AND @lastID + 200 ORDER BY ID FOR XML PATH('')), 1, 1, '') SELECT @sql = 'RESTORE DATABASE [' + @dbName + '] PAGE = ''' + @sql + ''' FROM DISK = ''' + @fullBackupName + '''' RAISERROR ('Starting RESTORE command:' , 10, 1) WITH NOWAIT; RAISERROR (@sql , 10, 1) WITH NOWAIT; EXEC(@sql); RAISERROR ('Restore DONE' , 10, 1) WITH NOWAIT; SELECT @lastID = @lastID + 200 END /* If you have any differential or transaction log backups you should restore them here to bring the previously restored data pages up to date */ END DECLARE @dbccSinglePage TABLE ( [ParentObject] NVARCHAR(500), [Object] NVARCHAR(500), [Field] NVARCHAR(500), [VALUE] NVARCHAR(MAX) ) DECLARE @cols NVARCHAR(MAX), @paramDefinition NVARCHAR(500), @SQLtoExec VARCHAR(1000), @FileID VARCHAR(100), @PageID VARCHAR(100), @i INT = 1 -- Get deleted table columns from information_schema view -- Need sp_executeSQL because database name can't be passed in as variable SELECT @cols = 'select @cols = STUFF((SELECT '', ['' + COLUMN_NAME + '']''FROM ' + @dbName + '.INFORMATION_SCHEMA.COLUMNSWHERE TABLE_NAME = ''' + @tableName + ''' AND TABLE_SCHEMA = ''' + @schemaName + '''ORDER BY ORDINAL_POSITIONFOR XML PATH('''')), 1, 2, '''')', @paramDefinition = N'@cols nvarchar(max) OUTPUT' EXECUTE sp_executesql @cols, @paramDefinition, @cols = @cols OUTPUT -- Loop through all the restored data pages, -- read data from them and insert them into temp table -- which you can then insert into the orignial deleted table DECLARE dbccPageCursor CURSOR GLOBAL FORWARD_ONLY FOR SELECT [FileID], [PageID], [SQLtoExec] FROM #PagesToRestore ORDER BY [FileID], [PageID] OPEN dbccPageCursor; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; WHILE @@FETCH_STATUS = 0 BEGIN RAISERROR ('---------------------------------------------', 10, 1) WITH NOWAIT; SELECT @sql = 'Loop iteration: ' + CONVERT(VARCHAR(10), @i); RAISERROR (@sql, 10, 1) WITH NOWAIT; SELECT @sql = 'Running: ' + @SQLtoExec RAISERROR (@sql, 10, 1) WITH NOWAIT; -- if something goes wrong with DBCC execution or data gathering, skip it but print error BEGIN TRY INSERT INTO @dbccSinglePage EXEC (@SQLtoExec) -- make the data insert magic happen here IF (SELECT CONVERT(BIGINT, [VALUE]) FROM @dbccSinglePage WHERE [Field] LIKE '%Metadata: ObjectId%') = OBJECT_ID('['+@dbName+'].['+@schemaName +'].['+@tableName+']') BEGIN DELETE @dbccSinglePage WHERE NOT ([ParentObject] LIKE 'Slot % Offset %' AND [Object] LIKE 'Slot % Column %') SELECT @sql = 'USE tempdb; ' + 'IF (OBJECTPROPERTY(object_id(''' + @undeletedTableName + '''), ''TableHasIdentity'') = 1) ' + 'SET IDENTITY_INSERT ' + @undeletedTableName + ' ON; ' + 'INSERT INTO ' + @undeletedTableName + '(' + @cols + ') ' + STUFF((SELECT ' UNION ALL SELECT ' + STUFF((SELECT ', ' + CASE WHEN VALUE = '[NULL]' THEN 'NULL' ELSE '''' + [VALUE] + '''' END FROM ( -- the unicorn help here to correctly set ordinal numbers of columns in a data page -- it's turning STRING order into INT order (1,10,11,2,21 into 1,2,..10,11...21) SELECT [ParentObject], [Object], Field, VALUE, RIGHT('00000' + O1, 6) AS ParentObjectOrder, RIGHT('00000' + REVERSE(LEFT(O2, CHARINDEX(' ', O2)-1)), 6) AS ObjectOrder FROM ( SELECT [ParentObject], [Object], Field, VALUE, REPLACE(LEFT([ParentObject], CHARINDEX('Offset', [ParentObject])-1), 'Slot ', '') AS O1, REVERSE(LEFT([Object], CHARINDEX('Offset ', [Object])-2)) AS O2 FROM @dbccSinglePage WHERE t.ParentObject = ParentObject )t)t ORDER BY ParentObjectOrder, ObjectOrder FOR XML PATH('')), 1, 2, '') FROM @dbccSinglePage t GROUP BY ParentObject FOR XML PATH('') ), 1, 11, '') + ';' RAISERROR (@sql, 10, 1) WITH NOWAIT; EXEC (@sql) END END TRY BEGIN CATCH SELECT @sql = 'ERROR!!!' + CHAR(10) + CHAR(13) + 'ErrorNumber: ' + ERROR_NUMBER() + '; ErrorMessage' + ERROR_MESSAGE() + CHAR(10) + CHAR(13) + 'FileID: ' + @FileID + '; PageID: ' + @PageID RAISERROR (@sql, 10, 1) WITH NOWAIT; END CATCH DELETE @dbccSinglePage SELECT @sql = 'Pages left to process: ' + CONVERT(VARCHAR(10), @pagesCount - @i) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13) + CHAR(10) + CHAR(13), @i = @i+1 RAISERROR (@sql, 10, 1) WITH NOWAIT; FETCH NEXT FROM dbccPageCursor INTO @FileID, @PageID, @SQLtoExec; END CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; EXEC ('SELECT ''' + @undeletedTableName + ''' as TableName; SELECT * FROM ' + @undeletedTableName)END TRYBEGIN CATCH SELECT ERROR_NUMBER() AS ErrorNumber, ERROR_MESSAGE() AS ErrorMessage IF CURSOR_STATUS ('global', 'dbccPageCursor') >= 0 BEGIN CLOSE dbccPageCursor; DEALLOCATE dbccPageCursor; ENDEND CATCH-- if the table was deleted we need to finish the restore page sequenceIF @tableWasTruncated = 0BEGIN -- take a log tail backup and then restore it to complete page restore process DECLARE @currentDate VARCHAR(30) SELECT @currentDate = CONVERT(VARCHAR(30), GETDATE(), 112) RAISERROR ('Starting Log Tail backup to c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('BACKUP LOG [' + @dbName + '] TO DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail backup done.', 10, 1) WITH NOWAIT; RAISERROR ('Starting Log Tail restore from c:\Temp ...', 10, 1) WITH NOWAIT; PRINT ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') EXEC ('RESTORE LOG [' + @dbName + '] FROM DISK = ''c:\Temp\' + @dbName + '_TailLogBackup_' + @currentDate + '.trn''') RAISERROR ('Log Tail restore done.', 10, 1) WITH NOWAIT;END-- The last step is manual. Insert data from our temporary table to the original deleted table The misconception here is that you can do a single table restore properly in SQL Server. You can't. But with little experimentation you can get pretty close to it. One way to possible remove a dependency on a backup to retrieve deleted pages is to quickly run a similar script to the upper one that gets data directly from data pages while the rows are still marked as ghost records. It could be done if we could beat the ghost record cleanup task.

    Read the article

  • iPad Orientation Lock Notification?

    - by vakio
    Is there a way to receive a notification when the iPad gets locked? When the lock is set on or off, it does send a receivedRotate: notification, but I need a way to be able to distinguish normal rotations from lock "rotations". The problem is I am rotating things in my view when the rotation changes. When the lock is activated, the iPad sends a receivedRotate: with UIInterfaceOrientationPortrait. I've looked in UIDevice for something like isOrientationLocked, but with no success. Thanks for any clues on this.

    Read the article

  • Using lock(obj) inside a recursive call

    - by Amby
    As per my understanding a lock is not released until the runtime completes the code block of the lock(obj) ( because when the block completes it calls Monitor.Exit(obj). With this understanding i am not able to understand the reason behind the behaviour of the following code. private static string obj = ""; private static void RecurseSome(int number) { Console.WriteLine(number); lock (obj) { RecurseSome(++number); } } //Call: RecurseSome(0) //Output: 0 1 2 3...... stack overflow exception There must be some concept that i am missing. Please help.

    Read the article

  • lock statement not working when there is a loop inside it?

    - by Ngu Soon Hui
    See this code: public class multiply { public Thread myThread; public int Counter { get; private set; } public string name { get; private set; } public void RunConsolePrint() { lock(this) { RunLockCode("lock"); } } private void RunLockCode(string lockCode) { Console.WriteLine("Now thread "+lockCode+" " + name + " has started"); for (int i = 1; i <= Counter; i++) { Console.WriteLine(lockCode+" "+name + ": count has reached " + i + ": total count is " + Counter); } Console.WriteLine("Thread " + lockCode + " " + name + " has finished"); } public multiply(string pname, int pCounter) { name = pname; Counter = pCounter; myThread = new Thread(new ThreadStart(RunConsolePrint)); } } And this is the test run code: static void Main(string[] args) { int counter = 50; multiply m2 = new multiply("Second", counter); multiply m1 = new multiply("First", counter); m1.myThread.Start(); m2.myThread.Start(); Console.ReadLine(); } I would expect that m2 must execute from start to finish before m1 starts executing, or vice versa, because of the lock statement. But the result I found was the call to lock first and lock second was intermingled together, i.e., something like this Now thread lock First has started Now thread lock Second has started lock First: Count has reached 1: total count is 50 lock First: Count has reached 2: total count is 50 lock Second: Count has reached 1: total count is 50 What did I do wrong?

    Read the article

  • Map caps-lock key to middle mouse click

    - by Stefano Palazzo
    Since I rarely use caps-lock, I'd like to map the key to a middle mouse click instead. I would also like to map Alt+Caps Lock to the original function of the caps lock key, should I ever need it. I can map any keyboard shortcut to xdotool click 2, but the Gnome Keyboard Shortcuts dialog won't let me assign a command to the caps-lock key, even with modifiers. I know this is a bit of a strange undertaking; How would I go about doing it?

    Read the article

  • How do I turn off the onscreen keyboard on the lock screen?

    - by Patrick Marchwiak
    The lock screen has an on screen keyboard that I am unable to disable. I don't remember exactly but I believe I turned it on using the "Screen Keyboard" setting in the Universal Access settings. I've tried a number of things all with no effect: Toggling "Screen Keyboard" in Universal Access Toggling "Onscreen keyboard" in the login screen (LightDM) Clicking on the "x" in the upper right corner of the keyboard

    Read the article

  • Map caps-lock key to middle mouse click

    - by Stefano Palazzo
    Since I rarely use caps-lock, I'd like to map the key to a middle mouse click instead. I would also like to map Alt+Caps Lock to the original function of the caps lock key, should I ever need it. I can map any keyboard shortcut to xdotool click 2, but the Gnome Keyboard Shortcuts dialog won't let me assign a command to the caps-lock key, even with modifiers. I know this is a bit of a strange undertaking; How would I go about doing it?

    Read the article

  • Subsonic: Select on a View, locks the table update?

    - by Jay
    Hi, I have a Web site live and running now. I am using the Subsonic to handle the database connections etc. I am getting time out expired error while updating a table (say Employee). When I check sp_who2, I see the suspended connection for the PID which is updating with a block by anothor pid, so I run the profiler and found out when ever this suspended connection occur, the blocked pid is a select statement on the view (say ActiveEmployees, which is the same as the table but with some where conditions). Anyone know why a Select statement on the view could cause failure in update. If it is other (like select fails due to update) may be reasonable. Is there any way for me to make select on a view without locking the table? PS: I am using the Sql server 2005 and subsonic 2.2. Thanks

    Read the article

  • How to add a footer to a table in Microsoft Word?

    - by dewalla
    I have a table that is longer than one page. I have found the option to make the header of the table to be added to the second portion of the table after the page break. Is there a way to do the same thing but with a footer on the table? I want to add a footer so that if my table was 1000 entries long (12 pages), that the first and last row of each page would be consistant; a header and footer for the table. If I edit the rest of the document (above the table) the table will shift up/down and I want to header and footer of the table to remain at the pagge breaks. Any Ideas? PAGE BREAK HEADER OF TABLE TBL TBL TBL TBL TBL TBL TBL TBL TBL TBL TBL TBL FOOTER OF TABLE PAGE BREAK HEADER OF TABLE TBL TBL TBL TBL TBL TBL FOOTER OF TABLE TEXTTEXTETEXT PAGE BREAK

    Read the article

  • Ubuntu, trouble getting back from lock screen

    - by Navid
    My problem is that after being idle for a while, the screen is locked and after this happened I get a black screen from which I can't get rid of. I mean after black screen comes, typing and moving mouse does not bring any new screen, and even alt+ctrl+F1 to F7 changes nothing. All I can do is to restart the system. Can anybody help me with this?

    Read the article

  • How to disable Windows 8 lock screen?

    - by Filip
    So I took a plunge and installed Windows 8 Consumer Preview on my main home PC. So far so good, but there is one annoyance - the system "locks" the computer after a period of inactivity causing me to re-enter my password. I really would like to avoid this, but have no idea how. I already tried the power settings (no pass on wake up) and the screen saver settings with no luck. Is this some sort of bug, or am I missing something? P.S. In this case I favor convenience over security.

    Read the article

  • Lock Windows keyboard and mouse but still display screen normally

    - by Stephen Lacy
    I'm using windows 7, I have a dual monitor display. It displays important information related to the business, I'd rather that random users that walk in can't just walk over to it and start using the computer with the same access rights as the user the monitoring software is running as. What I would like is if any time someone presses a button on the keyboard including alt-ctrl-delete all that would appear is a dialog asking for a password. Then I can click cancel and it will return to showing the data I want displayed. ClearLock doesn't work I tried it btw

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >