Search Results

Search found 27440 results on 1098 pages for 'table lock'.

Page 7/1098 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • MySQL foreign key creation with alter table command

    - by user313338
    I created some tables using MySQL Workbench, and then did forward ‘forward engineer’ to create scripts to create these tables. BUT, the scripts lead me to a number of problems. One of which involves the foreign keys. So I tried creating separate foreign key additions using alter table and I am still getting problems. The code is below (the set statements, drop/create statements I left in … though I don’t think they should matter for this): SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0; SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0; SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL'; DROP SCHEMA IF EXISTS `mydb` ; CREATE SCHEMA IF NOT EXISTS `mydb` DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci ; -- ----------------------------------------------------- -- Table `mydb`.`User` -- ----------------------------------------------------- DROP TABLE IF EXISTS `mydb`.`User` ; CREATE TABLE IF NOT EXISTS `mydb`.`User` ( `UserName` VARCHAR(35) NOT NULL , `Num_Accts` INT NOT NULL , `Password` VARCHAR(45) NULL , `Email` VARCHAR(45) NULL , `User_ID` INT NOT NULL AUTO_INCREMENT , PRIMARY KEY (`User_ID`) ) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`User_Space` -- ----------------------------------------------------- DROP TABLE IF EXISTS `mydb`.`User_Space` ; CREATE TABLE IF NOT EXISTS `mydb`.`User_Space` ( `User_UserName` VARCHAR(35) NOT NULL , `User_Space_ID` INT NOT NULL AUTO_INCREMENT , PRIMARY KEY (`User_Space_ID`), FOREIGN KEY (`User_UserName`) REFERENCES `mydb`.`User` (`UserName`) ON UPDATE CASCADE ON DELETE CASCADE) ENGINE = InnoDB; SET SQL_MODE=@OLD_SQL_MODE; SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS; SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS; The error this produces is: Error Code: 1005 Can't create table 'mydb.user_space' (errno: 150) Anybody know what the heck I’m doing wrong?? And anybody else have problems with the script generation done by mysql workbench? It’s a nice tool, but annoying that it pumps out scripts that don’t work for me. [As an fyi here’s the script it auto-generates: SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0; SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0; SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL'; DROP SCHEMA IF EXISTS `mydb` ; CREATE SCHEMA IF NOT EXISTS `mydb` DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci ; -- ----------------------------------------------------- -- Table `mydb`.`User` -- ----------------------------------------------------- DROP TABLE IF EXISTS `mydb`.`User` ; CREATE TABLE IF NOT EXISTS `mydb`.`User` ( `UserName` VARCHAR(35) NOT NULL , `Num_Accts` INT NOT NULL , `Password` VARCHAR(45) NULL , `Email` VARCHAR(45) NULL , `User_ID` INT NOT NULL AUTO_INCREMENT , PRIMARY KEY (`User_ID`) ) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`User_Space` -- ----------------------------------------------------- DROP TABLE IF EXISTS `mydb`.`User_Space` ; CREATE TABLE IF NOT EXISTS `mydb`.`User_Space` ( `User_Space_ID` INT NOT NULL AUTO_INCREMENT , PRIMARY KEY (`User_Space_ID`) , INDEX `User_ID` () , CONSTRAINT `User_ID` FOREIGN KEY () REFERENCES `mydb`.`User` () ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; SET SQL_MODE=@OLD_SQL_MODE; SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS; SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS; ** Thanks!]

    Read the article

  • Well tested C/C++ lock free queue?

    - by uj
    I am looking for a well-tested, publicly available C/C++ implementation of a lock free queue. I need at least multiple-producers/single-consumer functionality. Multiple-consumers is even better, if exists. I'm targetting VC's _Interlocked... intrinsics, though anything which is straight forward to port would be fine. Could anyone give any pointers?

    Read the article

  • "select * into table" Will it work for inserting data into existing table

    - by Shantanu Gupta
    I am trying to insert data from one of my existing table into another existing table. Is it possible to insert data into any existing table using select * into query. I think it can be done using union but in that case i need to record all data of my existing table into temporary table, then drop that table and finally than apply union to insert all records into same table eg. select * into #tblExisting from tblExisting drop table tblExisting select * into tblExisting from #tblExisting union tblActualData Here tblExisting is the table where I actually want to store all data tblActualData is the table from where data is to be appended to tblExisting. Is it right method. Do we have some other alternative ?

    Read the article

  • Lock free multiple readers single writer

    - by dummzeuch
    I have got an in memory data structure that is read by multiple threads and written by only one thread. Currently I am using a critical section to make this access threadsafe. Unfortunately this has the effect of blocking readers even though only another reader is accessing it. There are two options to remedy this: use TMultiReadExclusiveWriteSynchronizer do away with any blocking by using a lock free approach For 2. I have got the following so far (any code that doesn't matter has been left out): type TDataManager = class private FAccessCount: integer; FData: TDataClass; public procedure Read(out _Some: integer; out _Data: double); procedure Write(_Some: integer; _Data: double); end; procedure TDataManager.Read(out _Some: integer; out _Data: double); var Data: TDAtaClass; begin InterlockedIncrement(FAccessCount); try // make sure we get both values from the same TDataClass instance Data := FData; // read the actual data _Some := Data.Some; _Data := Data.Data; finally InterlockedDecrement(FAccessCount); end; end; procedure TDataManager.Write(_Some: integer; _Data: double); var NewData: TDataClass; OldData: TDataClass; ReaderCount: integer; begin NewData := TDataClass.Create(_Some, _Data); InterlockedIncrement(FAccessCount); OldData := TDataClass(InterlockedExchange(integer(FData), integer(NewData)); // now FData points to the new instance but there might still be // readers that got the old one before we exchanged it. ReaderCount := InterlockedDecrement(FAccessCount); if ReaderCount = 0 then // no active readers, so we can safely free the old instance FreeAndNil(OldData) else begin /// here is the problem end; end; Unfortunately there is the small problem of getting rid of the OldData instance after it has been replaced. If no other thread is currently within the Read method (ReaderCount=0), it can safely be disposed and that's it. But what can I do if that's not the case? I could just store it until the next call and dispose it there, but Windows scheduling could in theory let a reader thread sleep while it is within the Read method and still has got a reference to OldData. If you see any other problem with the above code, please tell me about it. This is to be run on computers with multiple cores and the above methods are to be called very frequently. In case this matters: I am using Delphi 2007 with the builtin memory manager. I am aware that the memory manager probably enforces some lock anyway when creating a new class but I want to ignore that for the moment. Edit: It may not have been clear from the above: For the full lifetime of the TDataManager object there is only one thread that writes to the data, not several that might compete for write access. So this is a special case of MREW.

    Read the article

  • MySQL ALTER TABLE on very large table - is it safe to run it?

    - by Timothy Mifsud
    I have a MySQL database with one particular MyISAM table of above 4 million rows. I update this table about once a week with about 2000 new rows. After updating, I then perform the following statement: ALTER TABLE x ORDER BY PK DESC i.e. I order the table in question by the primary key field in descending order. This has not given me any problems on my development machine (Windows with 3GB memory), but, even though 3 times I have tried it successfully on the production Linux server (with 512MB RAM - and achieving the resulted sorted table in about 6 minutes each time), the last time I tried it I had to stop the query after about 30 minutes and rebuild the database from a backup. I have started to wonder whether a 512MB server can cope with that statement (on such a large table) as I have read that a temporary table is created to perform the ALTER TABLE command?! And, if it can be safely run, what should be the expected time for the alteration of the table? Thanks in advance, Tim

    Read the article

  • How to obtain a random sub-datatable from another data table

    - by developerit
    Introduction In this article, I’ll show how to get a random subset of data from a DataTable. This is useful when you already have queries that are filtered correctly but returns all the rows. Analysis I came across this situation when I wanted to display a random tag cloud. I already had the query to get the keywords ordered by number of clicks and I wanted to created a tag cloud. Tags that are the most popular should have more chance to get picked and should be displayed larger than less popular ones. Implementation In this code snippet, there is everything you need. ' Min size, in pixel for the tag Private Const MIN_FONT_SIZE As Integer = 9 ' Max size, in pixel for the tag Private Const MAX_FONT_SIZE As Integer = 14 ' Basic function that retreives Tags from a DataBase Public Shared Function GetTags() As MediasTagsDataTable ' Simple call to the TableAdapter, to get the Tags ordered by number of clicks Dim dt As MediasTagsDataTable = taMediasTags.GetDataValide ' If the query returned no result, return an empty DataTable If dt Is Nothing OrElse dt.Rows.Count < 1 Then Return New MediasTagsDataTable End If ' Set the font-size of the group of data ' We are dividing our results into sub set, according to their number of clicks ' Example: 10 results -> [0,2] will get font size 9, [3,5] will get font size 10, [6,8] wil get 11, ... ' This is the number of elements in one group Dim groupLenth As Integer = CType(Math.Floor(dt.Rows.Count / (MAX_FONT_SIZE - MIN_FONT_SIZE)), Integer) ' Counter of elements in the same group Dim counter As Integer = 0 ' Counter of groups Dim groupCounter As Integer = 0 ' Loop througt the list For Each row As MediasTagsRow In dt ' Set the font-size in a custom column row.c_FontSize = MIN_FONT_SIZE + groupCounter ' Increment the counter counter += 1 ' If the group counter is less than the counter If groupLenth <= counter Then ' Start a new group counter = 0 groupCounter += 1 End If Next ' Return the new DataTable with font-size Return dt End Function ' Function that generate the random sub set Public Shared Function GetRandomSampleTags(ByVal KeyCount As Integer) As MediasTagsDataTable ' Get the data Dim dt As MediasTagsDataTable = GetTags() ' Create a new DataTable that will contains the random set Dim rep As MediasTagsDataTable = New MediasTagsDataTable ' Count the number of row in the new DataTable Dim count As Integer = 0 ' Random number generator Dim rand As New Random() While count < KeyCount Randomize() ' Pick a random row Dim r As Integer = rand.Next(0, dt.Rows.Count - 1) Dim tmpRow As MediasTagsRow = dt(r) ' Import it into the new DataTable rep.ImportRow(tmpRow) ' Remove it from the old one, to be sure not to pick it again dt.Rows.RemoveAt(r) ' Increment the counter count += 1 End While ' Return the new sub set Return rep End Function Pro’s This method is good because it doesn’t require much work to get it work fast. It is a good concept when you are working with small tables, let says less than 100 records. Con’s If you have more than 100 records, out of memory exception may occur since we are coping and duplicating rows. I would consider using a stored procedure instead.

    Read the article

  • Pass table as parameter to SQLCLR TV-UDF

    - by Skeolan
    We have a third-party DLL that can operate on a DataTable of source information and generate some useful values, and we're trying to hook it up through SQLCLR to be callable as a table-valued UDF in SQL Server 2008. Taking the concept here one step further, I would like to program a CLR Table-Valued Function that operates on a table of source data from the DB. I'm pretty sure I understand what needs to happen on the T-SQL side of things; but, what should the method signature look like in the .NET (C#) code? What would be the parameter datatype for "table data from SQL Server?" e.g. /* Setup */ CREATE TYPE InTableType AS TABLE (LocationName VARCHAR(50), Lat FLOAT, Lon FLOAT) GO CREATE TYPE OutTableType AS TABLE (LocationName VARCHAR(50), NeighborName VARCHAR(50), Distance FLOAT) GO CREATE ASSEMBLY myCLRAssembly FROM 'D:\assemblies\myCLR_UDFs.dll' WITH PERMISSION_SET = EXTERNAL_ACCESS GO CREATE FUNCTION GetDistances(@locations InTableType) RETURNS OutTableType AS EXTERNAL NAME myCLRAssembly.GeoDistance.SQLCLRInitMethod GO /* Execution */ DECLARE @myTable InTableType INSERT INTO @myTable(LocationName, Lat, Lon) VALUES('aaa', -50.0, -20.0) INSERT INTO @myTable(LocationName, Lat, Lon) VALUES('bbb', -20.0, -50.0) SELECT * FROM @myTable DECLARE @myResult OutTableType INSERT INTO @myResult MyCLRTVFunction @myTable --returns a table result calculated using the input The lat/lon - distance thing is a silly example that should of course be better handled entirely in SQL; but I hope it illustrates the general intent of table-in - table-out through a table-valued UDF tied to a SQLCLR assembly. I am not certain this is possible; what would the SQLCLRInitMethod method signature look like in the C#? public class GeoDistance { [SqlFunction(FillRowMethodName = "FillRow")] public static IEnumerable SQLCLRInitMethod(<appropriateType> myInputData) { //... } public static void FillRow(...) { //... } } If it's not possible, I know I can use a "context connection=true" SQL connection within the C# code to have the CLR component query for the necessary data given the relevant keys; but that's sensitive to changes in the DB schema. So I hope to just have SQL bundle up all the source data and pass it to the function. Bonus question - assuming this works at all, would it also work with more than one input table?

    Read the article

  • How to fill DataGridView from nested table oracle

    - by arkadiusz85
    I want to create my type: CREATE TYPE t_read AS OBJECT ( id_worker NUMBER(20), how_much NUMBER(5,2), adddate_r DATE, date_from DATE, date_to DATE ); I create a table of my type: CREATE TYPE t_tab_read AS TABLE OF t_read; Next step is create a table with my type: enter code hereCREATE TABLE Reading ( id_watermeter NUMBER(20) constraint Watermeter_fk1 references Watermeters(id_watermeter), read t_tab_read ) NESTED TABLE read STORE AS store_read ; Microsoft Visual Studio can not display this type in DataGridView. I use Oracle.Command: C# using Oracle.DataAccess; using Oracle.DataAccess.Client; private void button1_Click(object sender, EventArgs e) { try { //my working class to connect to database ConnectionClass.BeginConnection(); OracleDataAdapter tmp = new OracleDataAdapter(); tmp = ConnectionClass.ReadCommand(ReadClass.test()); DataSet dataset4 = new DataSet(); tmp.Fill(dataset4, "Read1"); dataGridView4.DataSource = dataset4.Tables["Read1"]; } catch (Exception o) { MessageBox.Show(o.Message); } public class ReadClass { public static OracleCommand test() { string sql = "select c.id_watermeter, a. from reading c , table (c.read) a where id_watermeter=1"; ConnectionClass.Command1= new OracleCommand(sql, ConnectionClass.Connection); ConnectionClass.Command1.CommandType = CommandType.Text; return ConnectionClass.Command1; } } I tray: string sql = "select r.id_watermeter, o.id_worker, o.how_much, o.adddate_r, o.date_from, o.date_to from reading r, table (r.read) o where r.id_watermeter=1" string sql = "select a.from reading c , Table (c.read) a where id_watermeter=1" string sql = "select a.id_worker, a.how_much, a.adddate_r, a.date_from, a.date_to from reading c , table (c.read) a where id_watermeter=1" string sql = "select c.id_watermeter, a. from reading c , table (c.read) a where id_watermeter=1" Error : Unsuported Oracle data type USERDEFINED encountered Sombady can help me how to fill DataGridView using data from nested table. I am using Oracle 10g XE

    Read the article

  • Why lock statements don't scale

    - by Alex.Davies
    We are going to have to stop using lock statements one day. Just like we had to stop using goto statements. The problem is similar, they're pretty easy to follow in small programs, but code with locks isn't composable. That means that small pieces of program that work in isolation can't necessarily be put together and work together. Of course actors scale fine :) Why lock statements don't scale as software gets bigger Deadlocks. You have a program with lots of threads picking up lots of locks. You already know that if two of your threads both try to pick up a lock that the other already has, they will deadlock. Your program will come to a grinding halt, and there will be fire and brimstone. "Easy!" you say, "Just make sure all the threads pick up the locks in the same order." Yes, that works. But you've broken composability. Now, to add a new lock to your code, you have to consider all the other locks already in your code and check that they are taken in the right order. Algorithm buffs will have noticed this approach means it takes quadratic time to write a program. That's bad. Why lock statements don't scale as hardware gets bigger Memory bus contention There's another headache, one that most programmers don't usually need to think about, but is going to bite us in a big way in a few years. Locking needs exclusive use of the entire system's memory bus while taking out the lock. That's not too bad for a single or dual-core system, but already for quad-core systems it's a pretty large overhead. Have a look at this blog about the .NET 4 ThreadPool for some numbers and a weird analogy (see the author's comment). Not too bad yet, but I'm scared my 1000 core machine of the future is going to go slower than my machine today! I don't know the answer to this problem yet. Maybe some kind of per-core work queue system with hierarchical work stealing. Definitely hardware support. But what I do know is that using locks specifically prevents any solution to this. We should be abstracting our code away from the details of locks as soon as possible, so we can swap in whatever solution arrives when it does. NAct uses locks at the moment. But my advice is that you code using actors (which do scale well as software gets bigger). And when there's a better way of implementing actors that'll scale well as hardware gets bigger, only NAct needs to work out how to use it, and your program will go fast on it's own.

    Read the article

  • (Google AppEngine) Memcache Lock Entry

    - by Friedrich
    Hi, i need a locking in memcache. Since all operations are atomic that should be an easy task. My idea is to use a basic spin-lock mechanism. So every object that needs locking in memcache gets a lock object, which will be polled for access. // pseudo code // try to get a lock int lock; do { lock = Memcache.increment("lock", 1); } while(lock != 1) // ok we got the lock // do something here // and finally unlock Memcache.put("lock", 0); How does such a solution perform? Do you have a better idea how to lock a memcache object? Best regards, Friedrich Schick

    Read the article

  • Python Locking Implementation (with threading module)

    - by Matty
    This is probably a rudimentary question, but I'm new to threaded programming in Python and am not entirely sure what the correct practice is. Should I be creating a single lock object (either globally or being passed around) and using that everywhere that I need to do locking? Or, should I be creating multiple lock instances in each of the classes where I will be employing them. Take these 2 rudimentary code samples, which direction is best to go? The main difference being that a single lock instance is used in both class A and B in the second, while multiple instances are used in the first. Sample 1 class A(): def __init__(self, theList): self.theList = theList self.lock = threading.Lock() def poll(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.append(something) finally: self.lock.release() class B(threading.Thread): def __init__(self,theList): self.theList = theList self.lock = threading.Lock() self.start() def run(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.remove(something) finally: self.lock.release() if __name__ == "__main__": aList = [] for x in range(10): B(aList) A(aList).poll() Sample 2 class A(): def __init__(self, theList,lock): self.theList = theList self.lock = lock def poll(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.append(something) finally: self.lock.release() class B(threading.Thread): def __init__(self,theList,lock): self.theList = theList self.lock = lock self.start() def run(self): while True: # do some stuff that eventually needs to work with theList self.lock.acquire() try: self.theList.remove(something) finally: self.lock.release() if __name__ == "__main__": lock = threading.Lock() aList = [] for x in range(10): B(aList,lock) A(aList,lock).poll()

    Read the article

  • problem in table:

    - by Ayyappan.Anbalagan
    i had table inside the another table, my inner table display the image, if i enter the text after the inner table,The text should display right side of the table and the bottom of the inner table.how do i do this??? "the below code display the outer table text always displayed bellow the inner table" Heading ## <tr style=" width:500px; float:left;"> <td style="border: thin ridge #008000; text-align:left;" align="left"; > <table class="" style=" border: 1px solid #800000; width:200px; float:left; height: 200px;"> <tr> <td>&nbsp;stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow&nbsp; </td> </tr> </table> stackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow statackoverflow sta</td> </tr> </table>

    Read the article

  • Java synchronized method lock on object, or method?

    - by wuntee
    If I have 2 synchronized methods in the same class, but each accessing different variables, can 2 threads access those 2 methods at the same time? Does the lock occur on the object, or does it get as specific as the variables inside the synchronized method? Example: class x{ private int a; private int b; public synchronized void addA(){ a++; } public synchronized void addB(){ b++; } } Can 2 threads access the same instance of class x performing x.addA() and x.addB() at the same time?

    Read the article

  • How can I lock screen on lxde

    - by maniat1k
    Like gnome Control + alt + L In Lxde how can i do that? What I have to intall to do this? thanks --searching for a solution on my own but... ok if I do alt+f2 and type xscreensaver-command -lock that's a small solution. tryed to do an small script but it's not working.. this is what I do vi lock.sh #!/bin/bash xscreensaver-command -lock exit 0 chmod +x lock.sh but this doesnt work.. ideas?

    Read the article

  • problem in html, table class text stretching out.

    - by Andy
    Hey people, I've got a slight problem after weeks of html programming. I've got a large table which I use to construct tabs with, details don't really matter. On every tab there is a tab title (which is defined as one single cell in a table with a class from a .css) and under it there are other rows and columns for the table. sample code for the single table with the single cell in it: <table class='tabcontainer_title'><tr><td class='tabcontainer_title'>TEXT</td></tr></table> This table is again positioned in one cell of the table outside it, which has a different class 'tabcontainer_content' This is in the CSS: .tabcontainer_title{ background-color : #58af34; background-image : url(); text-align : right; vertical-align : top; margin-top : 0px; margin-right : 0px; margin-bottom : 0px; margin-left : 0px; padding-top : 5px; padding-right : 10px; padding-bottom : 5px; padding-left : 0px; font-size : 14px; font-style : normal; color : #000000; } .tabcontainer_content{ width : 100%; font-weight : bolder; background-color : #58af34; color : #000000; padding : 0px; border-collapse : collapse; } The problem I'm experiencing right now is that if there are like 3 rows in the table, which means there's a lot of emtpy space instead of those rows, the text in the tab title has a large margin from the top: but I haven't configured any margin to be present. When the table is full of rows though, hence the table is full, then the tab title holds no unnecessary empty space above the text. What am I missing here?

    Read the article

  • /var/lib/dpkg/lock.....help!

    - by Pycnopodia
    I had to reinstall the entire OS a little while ago and I have been trying to reinstall all of the programs I had before but I got a bit a of a problem now. I was trying to download dropbox from synaptic but it cannot finish the process and as a result I cannot update anything anymore. The line that comes out is: E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporarily unavailable) E: Unable to lock the administration directory (/var/lib/dpkg/), is another process using it? I have tried: sudo apt-get install -f sudo apt-get -f install sudo rm /var/lib/dpkg/lock sudo apt-get -f update sudo dpkg --clear-selections sudo dpkg --configure -a But nothing seems to work. So is there a way to solve this?? Thanks

    Read the article

  • Figuring out the resource a lock in SQL Server 2000 affects

    - by Michael Lang
    I am adding a simple web-interface to show data from a commercial off the shelf (COTS) application. This COTS issues locks on any record the user is actively looking at (whether they intend to edit and update it or not). I have found sp_lock and the Microsoft sp_lock2 scripts and can see the locks, so that's all well and good. However, I cannot figure out how I can tell if a specific record I am about to update has been affected by one of these locks. If I submit the update request and there is in fact a lock, the web-interface will wait indefinitely until the user closes the window in the COTS. How can I either: a) determine before issuing an update that the record has been locked OR b) issue an update that will immediately return with a LOCKED status rather than indefinitely waiting on the COTS user to close their window on that record?

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • How to delete child table records during the update of parent table using Hibernate

    - by Harsha
    I have a Parent Table A and child tables B,C with many to one relations. Lets say I have data like, for primary key 1 in parent table A I have 3 rows in child table B and 4 rows in child table C. Now if I want to delete the rows of the child table during an update of the parent table(that means Now, I want to update the table only with one row in each child tables and delete the other rows in them) then how to handle this scenario in hibernate?

    Read the article

  • Lock innoDB table temporarily

    - by Industrial
    Hi everyone, I make bigger inserts consisting of a couple of thousand rows in my current web app and I would like to make sure that no one can do anything but read the table, until the inserts have been done. What is the best way to do this while keeping the read availability open for normal, non-admin users? Thanks!

    Read the article

  • Lock-Free Data Structures in C++ Compare and Swap Routine

    - by slf
    In this paper: Lock-Free Data Structures (pdf) the following "Compare and Swap" fundamental is shown: template <class T> bool CAS(T* addr, T exp, T val) { if (*addr == exp) { *addr = val; return true; } return false; } And then says The entire procedure is atomic But how is that so? Is it not possible that some other actor could change the value of addr between the if and the assignment? In which case, assuming all code is using this CAS fundamental, it would be found the next time something "expected" it to be a certain way, and it wasn't. However, that doesn't change the fact that it could happen, in which case, is it still atomic? What about the other actor returning true, even when it's changes were overwritten by this actor? If that can't possibly happen, then why? I want to believe the author, so what am I missing here? I am thinking it must be obvious. My apologies in advance if this seems trivial.

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >