Search Results

Search found 4432 results on 178 pages for 'conspicuous compiler'.

Page 50/178 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • template expressions and visual studio 2005 c++

    - by chris
    I'd like to build the olb3d library with my visual studio 2005 compiler but this failes due to template errors. To be more specific, the following expression seem to be a problem: void function(T u[Lattice::d]) On the website of the project is stated that prpably my compiler is not capable of such complicated template expressions - one should use the gcc 3.4.1. My question is now if there is a way to upgrade my vs c++ compiler so it can handle template expressions on the level as the gcc 3.4.1? Maybe it helps if I get a newer version of visual studio? Cheers C.

    Read the article

  • Eclipse bug? Switching on a null with only default case

    - by polygenelubricants
    I was experimenting with enum, and I found that the following compiles and runs fine on Eclipse (Build id: 20090920-1017, not sure exact compiler version): public class SwitchingOnAnull { enum X { ,; } public static void main(String[] args) { X x = null; switch(x) { default: System.out.println("Hello world!"); } } } When compiled and run with Eclipse, this prints "Hello world!" and exits normally. With the javac compiler, this throws a NullPointerException as expected. So is there a bug in Eclipse Java compiler?

    Read the article

  • How to disambiguate subdirs with the same name in the Projects list?

    - by jlstrecker
    My Qt project has 2 subdirs/subprojects with the same name. Their directories are myproject/node and myproject/compiler/test/node. The problem (or annoyance) is that, in the Projects list in Qt, both subdirs are listed as "node". So you have to open them up to figure out which is which. myproject.pro is like this: TEMPLATE = subdirs QMAKE_CLEAN = Makefile SUBDIRS += \ compiler_test_node \ node \ ... compiler_test_node.subdir = compiler/test/node node.depends = compiler_vuo_compile ... Without renaming the myproject/compiler/test/node directory, is there a way to make it show up with a different name in the Projects list?

    Read the article

  • ANSI C++: Diferences between delete and delete[]

    - by Sunscreen
    I was looking a snipset of code: int* ip; ip = new int[100]; delete ip; The example above states that: "This code will work with many compilers, but it should instead read:" int* ip; ip = new int[100]; delete [] ip; Is this indeed the case? I use the compiler "Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 11.00.7022 for 80x86" and does not complain (first example) while compiling. At runtime the pointer is set to NULL. Other compilers behave diferrently? Can a compiler not compain and issues can appear at runtime? Thanks, Sun

    Read the article

  • Converting a macro to an inline function

    - by Rob
    I am using some Qt code that adds a VERIFY macro that looks something like this: #define VERIFY(cond) \ { \ bool ok = cond; \ Q_ASSERT(ok); \ } The code can then use it whilst being certain the condition is actually evaluated, e.g.: Q_ASSERT(callSomeFunction()); // callSomeFunction not evaluated in release builds! VERIFY(callSomeFunction()); // callSomeFunction is always evaluated Disliking macros, I would instead like to turn this into an inline function: inline VERIFY(bool condition) { Q_ASSERT(condition); } However, in release builds I am worried that the compiler would optimise out all calls to this function (as Q_ASSERT wouldn't actually do anything.) I am I worrying unnecessarily or is this likely depending on the optimisation flags/compiler/etc.? I guess I could change it to: inline VERIFY(bool condition) { condition; Q_ASSERT(condition); } But, again, the compiler may be clever enough to ignore the call. Is this inline alternative safe for both debug and release builds?

    Read the article

  • Annotation retention policy: what real benefit is there in declaring `SOURCE` or `CLASS`?

    - by watery
    I know there are three retention policies for Java annotations: CLASS: Annotations are to be recorded in the class file by the compiler but need not be retained by the VM at run time. RUNTIME: Annotations are to be recorded in the class file by the compiler and retained by the VM at run time, so they may be read reflectively. SOURCE: Annotations are to be discarded by the compiler. And although I understand their usage scenarios, I don't get why it is such an important thing to specify the retention policy that retention policies exist at all. I mean, why aren't all the annotations just kept at runtime? Do they generate so much bytecode / occupy so much memory that stripping those undeclared as RUNTIME does make that much difference?

    Read the article

  • Microsoft Visual Studio Release History/Timelines/Milestones

    1975 – Bill Gates and Paul Allen write a version of Basic for Altair 8080 1982 – IBM releases BASCOM 1.0 (developed by Microsoft) 1983 – Microsoft Basic Compiler System v5.35 for MS-DOS release 1984 - Microsoft Basic Compiler System v5.36 release 1985 – Microsoft QuickBASIC 1.0 1986 – Microsoft QuickBASIC 1.01, 1.02, 2.00 1987 – Microsoft QuickBASIC 2.01, 3.00, 4.00 1987 – Microsoft BASIC 6.0 1988 – Microsoft QuickBASIC 4.00, 4.00b, 4.50 1989 – Microsoft BASIC Professional Development System 7.0 1990 - Microsoft BASIC Professional Development System 7.1 1991 – Microsoft Visual Basic released May 20-Windows World Convention –Atlanta 1992 – Microsoft Visual Basic 2.0 1993 – Microsoft Visual Basic 3.0 in Standard and Professional versions 1995 – Microsoft Visual Basic 4.0 released, supported the new Windows 95 1997 – Microsoft Visual Basic 5.0 – introduction of IntelliSense 1998 – Microsoft Visual Studio 6.0 that included Visual Basic 6.0 released (first VS) 2002 – Microsoft Visual Basic .NET 7.0 2002 – Visual Studio .NET 2003 – Microsoft Visual Basic .NET 7.1 2003 – Microsoft Visual Studio w/Intellisense 2003 – Visual Studio .NET 2004 – Announce Visual Studios 2005 – Code name Whidbey 2005 – Visual Studio 2005 release w/Extensibility 2005 – Visual Studio Express released 2006 - Expression Tool Set released - devs and designers work together 2006 – Visual Studio Team release – November 30th 2007 – Visual Studio 2008 (code name Orcas) ships November = Video Studio Shell 2010 - Visual Studios (code name Rosario) span.fullpost {display:none;}

    Read the article

  • "Launch Failed. Binary Not Found." Snow Leopard and Eclipse C/C++ IDE issue.

    - by Alex
    Not a question, I've just scoured the internet in search of a solution for this problem and thought I'd share it with the good folks of SO. I'll put it in plain terms so that it's accessible to newbs. :) (Apologies if this is the wrong place -- just trying to be helpful.) This issue occurs with almost any user OS X Snow Leopard who tries to use the Eclipse C/C++ IDE, but is particularly annoying for the people (like me) who were using the Eclipse C/C++ IDE in Leopard, and were unable to work with Eclipse anymore when they upgraded. The issue occurs When users go to build/compile/link their software. They get the following error: Launch Failed. Binary Not Found. Further, the "binaries" branch in the project window on the left is simply nonexistent. THE PROBLEM: is that GCC 4.2 (the GNU Compiler Collection) that comes with Snow Leopard compiles binaries in 64-bit by default. Unfortunately, the linker that Eclipse uses does not understand 64-bit binaries; it reads 32-bit binaries. There may be other issues here, but in short, they culminate in no binary being generated, at least not one that Eclipse can read, which translates into Eclipse not finding the binaries. Hence the error. One solution is to add an -arch i686 flag when making the file, but manually making the file every time is annoying. Luckily for us, Snow Leopard also comes with GCC 4.0, which compiles in 32 bits by default. So one solution is merely to link this as the default compiler. This is the way I did it. THE SOLUTION: The GCCs are in /usr/bin, which is normally a hidden folder, so you can't see it in the Finder unless you explicitly tell the system that you want to see hidden folders. Anyway, what you want to do is go to the /usr/bin folder and delete the path that links the GCC command with GCC 4.2 and add a path that links the GCC command with GCC 4.0. In other words, when you or Eclipse try to access GCC, we want the command to go to the compiler that builds in 32 bits by default, so that the linker can read the files; we do not want it to go to the compiler that compiles in 64 bits. The best way to do this is to go to Applications/Utilities, and select the app called Terminal. A text prompt should come up. It should say something like "(Computer Name):~ (Username)$ " (with a space for you user input at the end). The way to accomplish the tasks above is to enter the following commands, entering each one in sequence VERBATIM, and pressing enter after each individual line. cd /usr/bin rm cc gcc c++ g++ ln -s gcc-4.0 cc ln -s gcc-4.0 gcc ln -s c++-4.0 c++ ln -s g++-4.0 g++ Like me, you will probably get an error that tells you you don't have permission to access these files. If so, try the following commands instead: cd /usr/bin sudo rm cc gcc c++ g++ sudo ln -s gcc-4.0 cc sudo ln -s gcc-4.0 gcc sudo ln -s c++-4.0 c++ sudo ln -s g++-4.0 g++ Sudo may prompt you for a password. If you've never used sudo before, try just pressing enter. If that doesn't work, try the password for your main admin account. OTHER POSSIBLE SOLUTIONS You may be able to enter build variables into Eclipse. I tried this, but I don't know enough about it. If you want to feel it out, the flag you will probably need is -arch i686. In earnest, GCC-4.0 worked for me all this time, and I don't see any reason to switch now. There may be a way to alter the default for the compiler itself, but once again, I don't know enough about it. Hope this has been helpful and informative. Good coding!

    Read the article

  • First impressions of Scala

    - by Scott Weinstein
    I have an idea that it may be possible to predict build success/failure based on commit data. Why Scala? It’s a JVM language, has lots of powerful type features, and it has a linear algebra library which I’ll need later. Project definition and build Neither maven or the scala build tool (sbt) are completely satisfactory. This maven **archetype** (what .Net folks would call a VS project template) mvn archetype:generate `-DarchetypeGroupId=org.scala-tools.archetypes `-DarchetypeArtifactId=scala-archetype-simple `-DremoteRepositories=http://scala-tools.org/repo-releases `-DgroupId=org.SW -DartifactId=BuildBreakPredictor gets you started right away with “hello world” code, unit tests demonstrating a number of different testing approaches, and even a ready made `.gitignore` file - nice! But the Scala version is behind at v2.8, and more seriously, compiling and testing was painfully slow. So much that a rapid edit – test – edit cycle was not practical. So Lab49 colleague Steve Levine tells me that I can either adjust my pom to use fsc – the fast scala compiler, or use sbt. Sbt has some nice features It’s fast – it uses fsc by default It has a continuous mode, so  `> ~test` will compile and run your unit test each time you save a file It’s can consume (and produce) Maven 2 dependencies the build definition file can be much shorter than the equivalent pom (about 1/5 the size, as repos and dependencies can be declared on a single line) And some real limitations Limited support for 3rd party integration – for instance out of the box, TeamCity doesn’t speak sbt, nor does IntelliJ IDEA Steeper learning curve for build steps outside the default Side note: If a language has a fast compiler, why keep the slow compiler around? Even worse, why make it the default? I choose sbt, for the faster development speed it offers. Syntax Scala APIs really like to use punctuation – sometimes this works well, as in the following map1 |+| map2 The `|+|` defines a merge operator which does addition on the `values` of the maps. It’s less useful here: http(baseUrl / url >- parseJson[BuildStatus] sure you can probably guess what `>-` does from the context, but how about `>~` or `>+`? Language features I’m still learning, so not much to say just yet. However case classes are quite usefull, implicits scare me, and type constructors have lots of power. Community A number of projects, such as https://github.com/scalala and https://github.com/scalaz/scalaz are split between github and google code – github for the src, and google code for the docs. Not sure I understand the motivation here.

    Read the article

  • gcc segmentation fault on Ubuntu 12.04

    - by Yuval F
    I am trying to compile a C program on Ubuntu precise 12.04. Here's the program: #include <stdio.h> int main(int argc, char** argv) { printf("Hello World!"); return 0; } My gcc version is 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5). Initially it did not find cc1 so I added a soft link. Now I get this message when I try to compile: gcc: internal compiler error: Segmentation fault (program cc1) Compiling the same program with g++ works fine. I tried reinstalling build-essential, but to no avail. What am I missing? EDIT: I tried reinstalling according to @gertyvdijk's suggestion. As it did not help, here is the output of apt-cache policy gcc-4.6: gcc-4.6: Installed: 4.6.3-1ubuntu5 Candidate: 4.6.3-1ubuntu5 Version table: *** 4.6.3-1ubuntu5 0 500 http://il.archive.ubuntu.com/ubuntu/ precise/main amd64 Packages 100 /var/lib/dpkg/status and the output of ls -l /usr/bin/gcc: lrwxrwxrwx 1 root root 7 Mar 13 2012 /usr/bin/gcc -> gcc-4.6 EDIT #2: here's a verbose compiler output: gcc -v aaa.c Using built-in specs. COLLECT_GCC=gcc COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/4.6/lto-wrapper Target: x86_64-linux-gnu Configured with: ../src/configure -v --with-pkgversion='Ubuntu/Linaro 4.6.3-1ubuntu5' --with-bugurl=file:///usr/share/doc/gcc-4.6/README.Bugs --enable-languages=c,c++,fortran,objc,obj-c++ --prefix=/usr --program-suffix=-4.6 --enable-shared --enable-linker-build-id --with-system-zlib --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --with-gxx-include-dir=/usr/include/c++/4.6 --libdir=/usr/lib --enable-nls --with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-gnu-unique-object --enable-plugin --enable-objc-gc --disable-werror --with-arch-32=i686 --with-tune=generic --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu Thread model: posix gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5) COLLECT_GCC_OPTIONS='-v' '-mtune=generic' '-march=x86-64' /usr/lib/gcc/x86_64-linux-gnu/4.6/cc1 -quiet -v -imultilib . -imultiarch x86_64-linux-gnu aaa.c -quiet -dumpbase aaa.c -mtune=generic -march=x86-64 -auxbase aaa -version -fstack-protector -o /tmp/ccHfcXMs.s gcc: internal compiler error: Segmentation fault (program cc1) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-4.6/README.Bugs> for instructions.

    Read the article

  • Error compiling GLib in Ubuntu 14.04 (trying to install GimpShop)

    - by Nicolás Salvarrey
    I'm kinda new in Linux, so please take it easy on the most complicated stuff. I'm trying to install GimpShop. Installation guide asks me to install GLib first, and when I try to compile it using the make command I get errors. When I run the ./configure --prefix=/usr command, I get this: checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking for the BeOS... no checking for Win32... no checking whether to enable garbage collector friendliness... no checking whether to disable memory pools... no checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ANSI C... none needed checking for style of include used by make... GNU checking dependency style of gcc... gcc3 checking for c++... no checking for g++... no checking for gcc... gcc checking whether we are using the GNU C++ compiler... no checking whether gcc accepts -g... no checking dependency style of gcc... gcc3 checking for gcc option to accept ANSI C... none needed checking for a BSD-compatible install... /usr/bin/install -c checking for special C compiler options needed for large files... no checking for _FILE_OFFSET_BITS value needed for large files... no checking for _LARGE_FILES value needed for large files... no checking for pkg-config... /usr/bin/pkg-config checking for gawk... (cached) mawk checking for perl5... no checking for perl... perl checking for indent... no checking for perl... /usr/bin/perl checking for iconv_open... yes checking how to run the C preprocessor... gcc -E checking for egrep... grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking for LC_MESSAGES... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking for ngettext in libc... yes checking for dgettext in libc... yes checking for bind_textdomain_codeset... yes checking for msgfmt... /usr/bin/msgfmt checking for dcgettext... yes checking for gmsgfmt... /usr/bin/msgfmt checking for xgettext... /usr/bin/xgettext checking for catalogs to be installed... am ar az be bg bn bs ca cs cy da de el en_CA en_GB eo es et eu fa fi fr ga gl gu he hi hr id is it ja ko lt lv mk mn ms nb ne nl nn no or pa pl pt pt_BR ro ru sk sl sq sr sr@ije sr@Latn sv ta tl tr uk vi wa xh yi zh_CN zh_TW checking for a sed that does not truncate output... /bin/sed checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for /usr/bin/ld option to reload object files... -r checking for BSD-compatible nm... /usr/bin/nm -B checking whether ln -s works... yes checking how to recognise dependent libraries... pass_all checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for g77... no checking for f77... no checking for xlf... no checking for frt... no checking for pgf77... no checking for fort77... no checking for fl32... no checking for af77... no checking for f90... no checking for xlf90... no checking for pgf90... no checking for epcf90... no checking for f95... no checking for fort... no checking for xlf95... no checking for ifc... no checking for efc... no checking for pgf95... no checking for lf95... no checking for gfortran... no checking whether we are using the GNU Fortran 77 compiler... no checking whether accepts -g... no checking the maximum length of command line arguments... 32768 checking command to parse /usr/bin/nm -B output from gcc object... ok checking for objdir... .libs checking for ar... ar checking for ranlib... ranlib checking for strip... strip checking if gcc static flag works... yes checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC checking if gcc PIC flag -fPIC works... yes checking if gcc supports -c -o file.o... yes checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating libtool appending configuration tag "CXX" to libtool appending configuration tag "F77" to libtool checking for extra flags to get ANSI library prototypes... none needed checking for extra flags for POSIX compliance... none needed checking for ANSI C header files... (cached) yes checking for vprintf... yes checking for _doprnt... no checking for working alloca.h... yes checking for alloca... yes checking for atexit... yes checking for on_exit... yes checking for char... yes checking size of char... 1 checking for short... yes checking size of short... 2 checking for long... yes checking size of long... 8 checking for int... yes checking size of int... 4 checking for void *... yes checking size of void *... 8 checking for long long... yes checking size of long long... 8 checking for __int64... no checking size of __int64... 0 checking for format to printf and scanf a guint64... %llu checking for an ANSI C-conforming const... yes checking if malloc() and friends prototypes are gmem.h compatible... no checking for growing stack pointer... yes checking for __inline... yes checking for __inline__... yes checking for inline... yes checking if inline functions in headers work... yes checking for ISO C99 varargs macros in C... yes checking for ISO C99 varargs macros in C++... no checking for GNUC varargs macros... yes checking for GNUC visibility attribute... yes checking whether byte ordering is bigendian... no checking dirent.h usability... yes checking dirent.h presence... yes checking for dirent.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking for sys/types.h... (cached) yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/times.h usability... yes checking sys/times.h presence... yes checking for sys/times.h... yes checking for unistd.h... (cached) yes checking values.h usability... yes checking values.h presence... yes checking for values.h... yes checking for stdint.h... (cached) yes checking sched.h usability... yes checking sched.h presence... yes checking for sched.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking for nl_langinfo... yes checking for nl_langinfo and CODESET... yes checking whether we are using the GNU C Library 2.1 or newer... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdlib.h... (cached) yes checking for string.h... (cached) yes checking for setlocale... yes checking for size_t... yes checking size of size_t... 8 checking for the appropriate definition for size_t... unsigned long checking for lstat... yes checking for strerror... yes checking for strsignal... yes checking for memmove... yes checking for mkstemp... yes checking for vsnprintf... yes checking for stpcpy... yes checking for strcasecmp... yes checking for strncasecmp... yes checking for poll... yes checking for getcwd... yes checking for nanosleep... yes checking for vasprintf... yes checking for setenv... yes checking for unsetenv... yes checking for getc_unlocked... yes checking for readlink... yes checking for symlink... yes checking for C99 vsnprintf... yes checking whether printf supports positional parameters... yes checking for signed... yes checking for long long... (cached) yes checking for long double... yes checking for wchar_t... yes checking for wint_t... yes checking for size_t... (cached) yes checking for ptrdiff_t... yes checking for inttypes.h... yes checking for stdint.h... yes checking for snprintf... yes checking for C99 snprintf... yes checking for sys_errlist... yes checking for sys_siglist... yes checking for sys_siglist declaration... yes checking for fd_set... yes, found in sys/types.h checking whether realloc (NULL,) will work... yes checking for nl_langinfo (CODESET)... yes checking for OpenBSD strlcpy/strlcat... no checking for an implementation of va_copy()... yes checking for an implementation of __va_copy()... yes checking whether va_lists can be copied by value... no checking for dlopen... no checking for NSLinkModule... no checking for dlopen in -ldl... yes checking for dlsym in -ldl... yes checking for RTLD_GLOBAL brokenness... no checking for preceeding underscore in symbols... no checking for dlerror... yes checking for the suffix of shared libraries... .so checking for gspawn implementation... gspawn.lo checking for GIOChannel implementation... giounix.lo checking for platform-dependent source... checking whether to compile timeloop... yes checking if building for some Win32 platform... no checking for thread implementation... posix checking thread related cflags... -pthread checking for sched_get_priority_min... yes checking thread related libraries... -pthread checking for localtime_r... yes checking for posix getpwuid_r... yes checking size of pthread_t... 8 checking for pthread_attr_setstacksize... yes checking for minimal/maximal thread priority... sched_get_priority_min(SCHED_OTHER)/sched_get_priority_max(SCHED_OTHER) checking for pthread_setschedparam... yes checking for posix yield function... sched_yield checking size of pthread_mutex_t... 40 checking byte contents of PTHREAD_MUTEX_INITIALIZER... 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 checking whether to use assembler code for atomic operations... x86_64 checking value of POLLIN... 1 checking value of POLLOUT... 4 checking value of POLLPRI... 2 checking value of POLLERR... 8 checking value of POLLHUP... 16 checking value of POLLNVAL... 32 checking for EILSEQ... yes configure: creating ./config.status config.status: creating glib-2.0.pc config.status: creating glib-2.0-uninstalled.pc config.status: creating gmodule-2.0.pc config.status: creating gmodule-no-export-2.0.pc config.status: creating gmodule-2.0-uninstalled.pc config.status: creating gthread-2.0.pc config.status: creating gthread-2.0-uninstalled.pc config.status: creating gobject-2.0.pc config.status: creating gobject-2.0-uninstalled.pc config.status: creating glib-zip config.status: creating glib-gettextize config.status: creating Makefile config.status: creating build/Makefile config.status: creating build/win32/Makefile config.status: creating build/win32/dirent/Makefile config.status: creating glib/Makefile config.status: creating glib/libcharset/Makefile config.status: creating glib/gnulib/Makefile config.status: creating gmodule/Makefile config.status: creating gmodule/gmoduleconf.h config.status: creating gobject/Makefile config.status: creating gobject/glib-mkenums config.status: creating gthread/Makefile config.status: creating po/Makefile.in config.status: creating docs/Makefile config.status: creating docs/reference/Makefile config.status: creating docs/reference/glib/Makefile config.status: creating docs/reference/glib/version.xml config.status: creating docs/reference/gobject/Makefile config.status: creating docs/reference/gobject/version.xml config.status: creating tests/Makefile config.status: creating tests/gobject/Makefile config.status: creating m4macros/Makefile config.status: creating config.h config.status: config.h is unchanged config.status: executing depfiles commands config.status: executing default-1 commands config.status: executing glibconfig.h commands config.status: glibconfig.h is unchanged config.status: executing chmod-scripts commands nsalvarrey@Delleuze:~/glib-2.6.3$ ^C nsalvarrey@Delleuze:~/glib-2.6.3$ And then, with the make command, I get this: galias.h:83:39: error: 'g_ascii_digit_value' aliased to undefined symbol 'IA__g_ascii_digit_value' extern __typeof (g_ascii_digit_value) g_ascii_digit_value __attribute((alias("IA__g_ascii_digit_value"), visibility("default"))); ^ In file included from garray.c:35:0: galias.h:31:35: error: 'g_allocator_new' aliased to undefined symbol 'IA__g_allocator_new' extern __typeof (g_allocator_new) g_allocator_new __attribute((alias("IA__g_allocator_new"), visibility("default"))); ^ make[4]: *** [garray.lo] Error 1 make[4]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[3]: *** [all-recursive] Error 1 make[3]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[2]: *** [all] Error 2 make[2]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[1]: *** [all-recursive] Error 1 make[1]: se sale del directorio «/home/nsalvarrey/glib-2.6.3» make: *** [all] Error 2 nsalvarrey@Delleuze:~/glib-2.6.3$ (it's actually a lot longer) Can somebody help me?

    Read the article

  • WIX 3.5 Unexpected Child Element iis:Certificate

    - by Wil Peck
    Came across this today when I switched from WIX 3.0 and VS 2008 to WIX 3.5 and VS 2010.  The solution ended up being pretty simple.  Just need to update the Wix Project Properties to provide an additional parameter to the compiler and linker. These can be found at Wix Installer Project Properties > Tool Settings > Additional Parameters Compiler and Wix Installer Project Properties > Tool Settings > Additional Parameters Linker.  Just make sure to add ‘-ext WixIIsExtension’ in the fields and recompile.   Technorati Tags: WIX,WIX 3.5,Help

    Read the article

  • Scala factory pattern returns unusable abstract type

    - by GGGforce
    Please let me know how to make the following bit of code work as intended. The problem is that the Scala compiler doesn't understand that my factory is returning a concrete class, so my object can't be used later. Can TypeTags or type parameters help? Or do I need to refactor the code some other way? I'm (obviously) new to Scala. trait Animal trait DomesticatedAnimal extends Animal trait Pet extends DomesticatedAnimal {var name: String = _} class Wolf extends Animal class Cow extends DomesticatedAnimal class Dog extends Pet object Animal { def apply(aType: String) = { aType match { case "wolf" => new Wolf case "cow" => new Cow case "dog" => new Dog } } } def name(a: Pet, name: String) { a.name = name println(a +"'s name is: " + a.name) } val d = Animal("dog") name(d, "fred") The last line of code fails because the compiler thinks d is an Animal, not a Dog.

    Read the article

  • Oracle Solaris Studio Express 6/10 and its Customer Feedback Program are now available

    - by pieter.humphrey
    Oracle Solaris Studio Express 6/10 and the Customer Feedback Program for it are now available. Oracle Solaris Studio Express 6/10 is available on Solaris 10 (SPARC, x86), OEL 5 (x86), RHEL 5 (x86), SuSE 11 (x86) today and will be available for OpenSolaris in the near future. New feature highlights since the last release include: C/C++/Fortran compiler optimizations for the latest UltraSPARC and SPARC64-based architectures such as UltraSPARC T2 and SPARC64 VII C/C++/Fortran compiler optimizations for the latest x86 architectures including the Intel Xeon 7500 processor series (Nehalem-EX) and the Intel Xeon 5600 processor series (Westmere-EP) Enhanced debugging and code coverage tooling Improved application profiling with the Performance Analyzer Updated IDE based on NetBeans 6.8 To find more information and download go to http://developers.sun.com/sunstudio/downloads/express/ To participate in the customer feedback program for Oracle Solaris Studio Express 6/10 go to http://developers.sun.com/sunstudio/customerfeedback/index.jsp Please get the word out, try out this new release and send us your feedback! Technorati Tags: developer,development,solaris,sparc,Oracle Solaris Studio,Solaris Studio,Sun Studio,oracle,otn del.icio.us Tags: developer,development,solaris,sparc,Oracle Solaris Studio,Solaris Studio,Sun Studio,oracle,otn

    Read the article

  • How did programmers resolve their problems before the internet?

    - by 9a3eedi
    When programming, anytime I get stuck, perhaps with a compiler error that doesn't make sense, or from a GUI function that didn't do what I expected, I automatically google my problem, find someone else that faced the same thing, and read what's going on and why I'm getting the problem. Before the internet, how did people handle these situations? People used to read books and manuals more, I know. But books don't explain everything, like the odd compiler problem that you get sometimes, or nothing showing up on your screen despite you clearly writing correct OpenGL code. How did people cope when facing challenges? Did they simply "bash their head" on the wall till they figured it out? Is there something people used to do regularly on the side that gave them the ability to get themselves unstuck more easily? Were libraries/compilers much simpler back then? I've been asking this question because I sometimes feel guilty depending on Google so much when I'm pretty sure programmers before my time were more independent when it comes to facing these matters.

    Read the article

  • Developing for 2005 using VS2008!

    - by Vincent Grondin
    I joined a fairly large project recently and it has a particularity… Once finished, everything has to be sent to the client under VS2005 using VB.Net and can target either framework 2.0 or 3.0… A long time ago, the decision to use VS2008 and to target framework 3.0 was taken but people knew they would need to establish a few rules to ensure that each dev would use VS2008 as if it was VS2005… Why is that so? Well simply because the compiler in VS2005 is different from the compiler inside VS2008…  I thought it might be a good idea to note the things that you cannot use in VS2008 if you plan on going back to VS2005. Who knows, this might save someone the headache of going over all their code to fix errors… -        Do not use LinQ keywords (from, in, select, orderby…).   -        Do not use LinQ standard operators under the form of extension methods.   -        Do not use type inference (in VB.Net you can switch it OFF in each project properties). o   This means you cannot use XML Literals.   -        Do not use nullable types under the following declarative form:    Dim myInt as Integer? But using:   Dim myInt as Nullable(Of Integer)     is perfectly fine.   -        Do not test nullable types with     Is Nothing    use    myInt.HasValue     instead.   -        Do not use Lambda expressions (there is no Lambda statements in VB9) so you cannot use the keyword “Function”.   -        Pay attention not to use relaxed delegates because this one is easy to miss in VS2008   -        Do not use Object Initializers   -        Do not use the “ternary If operator” … not the IIf method but this one     If(confition, truepart, falsepart).   As a side note, I talked about not using LinQ keyword nor the extension methods but, this doesn’t mean not to use LinQ in this scenario. LinQ is perfectly accessible from inside VS2005. All you need to do is reference System.Core, use namespace System.Linq and use class “Enumerable” as a helper class… This is one of the many classes containing various methods that VS2008 sees as extensions. The trick is you can use them too! Simply remember that the first parameter of the method is the object you want to query on and then pass in the other parameters needed… That’s pretty much all I see but I could have missed a few… If you know other things that are specific to the VS2008 compiler and which do not work under VS2005, feel free to leave a comment and I’ll modify my list accordingly (and notify our team here…) ! Happy coding all!

    Read the article

  • NEON Intrinsic Support in CE7

    - by Kate Moss' Open Space
    Just a side note for people who may be interested in creating high performance code to take advantage on NEON instruction set but wish to use NEON intrinsic instaed of coding assembly. Compiler won't generate NEON opcode unless application use the NEON intrinsic explicitly. Basically, you need ARMv7 build enviroment, so compiler can emit NEON opcode. Intrinsic prototype can be found in public\COMMON\sdk\inc\arm_neon.h and that is all you got. If you ever find an NEON opcode does not have corresponding intrinsic, you still need to use the old trick - write that part of code in assembly.

    Read the article

  • Why is there a lack of Backports of Optional 10.10 or later Packages in repos?

    - by EvilPhoenix
    This question is about backports again, but is specific to the difference in availability of packages. A specific example of this would be the two gcc packages in 10.10's repos: gcc (which is 4.4), and gcc-4.5 (which is gcc 4.5). While this change is in 10.10's repositories, such optional packages aren't included in the 10.04 LTS repositories, and the option to have a gcc-4.5 compiler in 10.04 might help several people (such as myself, who needs the 4.5 compiler for University, and I can't upgrade to 10.10 because it doesnt operate correctly on my system). Is there a reason a lack of such optional packages is in the 10.04 repositories?

    Read the article

  • How do you handle increasingly long compile times when working with templates?

    - by Ghita
    I use Visual Studio 2012 and he have cases where we added templates parameters to a class "just" in order to introduce a "seam point" so that in unit-test we can replace those parts with mock objects. How do you usually introduce seam points in C++: using interfaces and/or mixing based on some criteria with implicit interfaces by using templates parameters also ? One reason to ask this is also because when compiling sometimes a single C++ file (that includes templates files, that could also include other templates) results in an object file being generated that takes in the order of around 5-10 seconds on a developer machine. VS compiler is also not particularly fast on compiling templates as far as I understand, and because of the templates inclusion model (you practically include the definition of the template in every file that uses it indirectly and possibly re-instantiate that template every time you modify something that has nothing to do with that template) you could have problems with compile times (when doing incremental compiling). What are your ways of handling incremental(and not only) compile time when working with templates (besides a better/faster compiler :-)).

    Read the article

  • How to install SpatiaLite 3 on 12.04

    - by Terra
    1) sudo apt-get install libsqlite3-dev libgeos-dev 2) libspatialite-3.0.0-stable$ ./configure Result: configure: error: cannot find proj_api.h, bailing out checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for a thread-safe mkdir -p... /bin/mkdir -p checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking for style of include used by make... GNU checking for gcc... gcc checking whether the C compiler works... yes checking for C compiler default output file name... a.out checking for suffix of executables... checking whether we are cross compiling... no checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ISO C89... none needed checking dependency style of gcc... gcc3 checking how to run the C preprocessor... gcc -E checking for grep that handles long lines and -e... /bin/grep checking for egrep... /bin/grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking for stdlib.h... (cached) yes checking stdio.h usability... yes checking stdio.h presence... yes checking for stdio.h... yes checking for string.h... (cached) yes checking for memory.h... (cached) yes checking math.h usability... yes checking math.h presence... yes checking for math.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking fcntl.h usability... yes checking fcntl.h presence... yes checking for fcntl.h... yes checking for inttypes.h... (cached) yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdint.h... (cached) yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking for unistd.h... (cached) yes checking sqlite3.h usability... yes checking sqlite3.h presence... yes checking for sqlite3.h... yes checking sqlite3ext.h usability... yes checking sqlite3ext.h presence... yes checking for sqlite3ext.h... yes checking for g++... no checking for c++... no checking for gpp... no checking for aCC... no checking for CC... no checking for cxx... no checking for cc++... no checking for cl.exe... no checking for FCC... no checking for KCC... no checking for RCC... no checking for xlC_r... no checking for xlC... no checking whether we are using the GNU C++ compiler... no checking whether g++ accepts -g... no checking dependency style of g++... none checking for gcc... (cached) gcc checking whether we are using the GNU C compiler... (cached) yes checking whether gcc accepts -g... (cached) yes checking for gcc option to accept ISO C89... (cached) none needed checking dependency style of gcc... (cached) gcc3 checking how to run the C preprocessor... gcc -E checking whether ln -s works... yes checking whether make sets $(MAKE)... (cached) yes checking build system type... i686-pc-linux-gnu checking host system type... i686-pc-linux-gnu checking how to print strings... printf checking for a sed that does not truncate output... /bin/sed checking for fgrep... /bin/grep -F checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for BSD- or MS-compatible name lister (nm)... /usr/bin/nm -B checking the name lister (/usr/bin/nm -B) interface... BSD nm checking the maximum length of command line arguments... 1572864 checking whether the shell understands some XSI constructs... yes checking whether the shell understands "+="... yes checking how to convert i686-pc-linux-gnu file names to i686-pc-linux-gnu format... func_convert_file_noop checking how to convert i686-pc-linux-gnu file names to toolchain format... func_convert_file_noop checking for /usr/bin/ld option to reload object files... -r checking for objdump... objdump checking how to recognize dependent libraries... pass_all checking for dlltool... dlltool checking how to associate runtime and link libraries... printf %s\n checking for ar... ar checking for archiver @FILE support... @ checking for strip... strip checking for ranlib... ranlib checking command to parse /usr/bin/nm -B output from gcc object... ok checking for sysroot... no checking for mt... mt checking if mt is a manifest tool... no checking for dlfcn.h... yes checking for objdir... .libs checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC -DPIC checking if gcc PIC flag -fPIC -DPIC works... yes checking if gcc static flag -static works... yes checking if gcc supports -c -o file.o... yes checking if gcc supports -c -o file.o... (cached) yes checking whether the gcc linker (/usr/bin/ld) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... yes checking for an ANSI C-conforming const... yes checking for off_t... yes checking for size_t... yes checking whether time.h and sys/time.h may both be included... yes checking whether struct tm is in sys/time.h or time.h... time.h checking for working volatile... yes checking whether lstat correctly handles trailing slash... yes checking whether lstat accepts an empty string... no checking whether lstat correctly handles trailing slash... (cached) yes checking for working memcmp... yes checking whether stat accepts an empty string... no checking for strftime... yes checking for memset... yes checking for sqrt... no checking for strcasecmp... yes checking for strerror... yes checking for strncasecmp... yes checking for strstr... yes checking for fdatasync... yes checking for ftruncate... yes checking for getcwd... yes checking for gettimeofday... yes checking for localtime_r... yes checking for memmove... yes checking for strerror... (cached) yes checking for sqlite3_prepare_v2 in -lsqlite3... yes checking for sqlite3_rtree_geometry_callback in -lsqlite3... yes checking proj_api.h usability... no checking proj_api.h presence... no checking for proj_api.h... no configure: error: cannot find proj_api.h, bailing out

    Read the article

  • What's a good starting point to learn about JIT compilers?

    - by davidk01
    I've spent the past few months learning about stack based virtual machines, parsers, compilers, and some elementary things about hardware architecture. I've also written a few parsers and compilers for C like languages to understand the generic parser/compiler pipeline. Now I'd like to take my understanding further by learning about optimizing compilers and JIT compilers but I'm having a hard time finding material at the right level. I don't yet understand enough to dive into a code base like PyPy or LuaJIT but I also know more than what most introductory compiler books have to offer. So what are some good books for an intermediate beginner like to me to look into?

    Read the article

  • A question on nature of generated assembly in C++ and code Algebra

    - by Reetesh Mukul
    I wrote this code: #include <iostream> int main() { int a; std::cin >> a; if(a*a== 3){ std::cout << a; } return 0; } On MSVC I turned ON all optimization flags. I expected that since a*a can never be 3, so compiler should not generate code for the section: if(a*a== 3){ std::cout << a; } However it generated code for the section. I did not check GCC or LLVM/CLang. What are the limits of expectation from a C++ compiler in these scenarios?

    Read the article

  • Package libxul not fount - Kiwix Wikpedia in Ubuntu Precise 12.04

    - by JHOSmAN
    I'm trying to install the service Kiwix but I need a library that is not available for Ubuntu 12.04 LTS Precise leave the log and if someone could tell me how to install Seller would appreciate. kiwix-0.9# ls aclocal.m4 COMPILE config.sub COPYING install-sh ltmain.sh missing static AUTHORS config.guess configure depcomp kiwix Makefile.am README CHANGELOG config.log configure.ac desktop libxul-dev_1.8.1.16+nobinonly-0ubuntu1_all.deb Makefile.in src root@ubuntu-MM061:/home/ubuntu/Escritorio/kiwix-0.9# ./configure checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for a thread-safe mkdir -p... /bin/mkdir -p checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking for gcc... gcc checking whether the C compiler works... yes checking for C compiler default output file name... a.out checking for suffix of executables... checking whether we are cross compiling... no checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ISO C89... none needed checking for style of include used by make... GNU checking dependency style of gcc... gcc3 checking for g++... g++ checking whether we are using the GNU C++ compiler... yes checking whether g++ accepts -g... yes checking dependency style of g++... gcc3 checking for g++... g++ checking for cl... no checking for cl... no checking for Xcode... no checking for jar... jar checking build system type... i686-pc-linux-gnu checking host system type... i686-pc-linux-gnu checking for a sed that does not truncate output... /bin/sed checking for grep that handles long lines and -e... /bin/grep checking for egrep... /bin/grep -E checking for fgrep... /bin/grep -F checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for BSD- or MS-compatible name lister (nm)... /usr/bin/nm -B checking the name lister (/usr/bin/nm -B) interface... BSD nm checking whether ln -s works... yes checking the maximum length of command line arguments... 1572864 checking whether the shell understands some XSI constructs... yes checking whether the shell understands "+="... yes checking for /usr/bin/ld option to reload object files... -r checking for objdump... objdump checking how to recognize dependent libraries... pass_all checking for ar... ar checking for strip... strip checking for ranlib... ranlib checking command to parse /usr/bin/nm -B output from gcc object... ok checking how to run the C preprocessor... gcc -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking for dlfcn.h... yes checking whether we are using the GNU C++ compiler... (cached) yes checking whether g++ accepts -g... (cached) yes checking dependency style of g++... (cached) gcc3 checking how to run the C++ preprocessor... g++ -E checking for objdir... .libs checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC -DPIC checking if gcc PIC flag -fPIC -DPIC works... yes checking if gcc static flag -static works... yes checking if gcc supports -c -o file.o... yes checking if gcc supports -c -o file.o... (cached) yes checking whether the gcc linker (/usr/bin/ld) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... yes checking for ld used by g++... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking whether the g++ linker (/usr/bin/ld) supports shared libraries... yes checking for g++ option to produce PIC... -fPIC -DPIC checking if g++ PIC flag -fPIC -DPIC works... yes checking if g++ static flag -static works... yes checking if g++ supports -c -o file.o... yes checking if g++ supports -c -o file.o... (cached) yes checking whether the g++ linker (/usr/bin/ld) supports shared libraries... yes checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking for ranlib... (cached) ranlib checking whether make sets $(MAKE)... (cached) yes checking for pkg-config... pkg-config checking for perl... perl checking fcntl.h usability... yes checking fcntl.h presence... yes checking for fcntl.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdint.h... (cached) yes checking for stdlib.h... (cached) yes checking for string.h... (cached) yes checking for strings.h... (cached) yes checking sys/socket.h usability... yes checking sys/socket.h presence... yes checking for sys/socket.h... yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking for unistd.h... (cached) yes checking wchar.h usability... yes checking wchar.h presence... yes checking for wchar.h... yes checking for stdbool.h that conforms to C99... yes checking for _Bool... no checking for inline... inline checking for int16_t... yes checking for int32_t... yes checking for int64_t... yes checking for int8_t... yes checking for off_t... yes checking for pid_t... yes checking for size_t... yes checking for uint16_t... yes checking for uint32_t... yes checking for uint64_t... yes checking for uint8_t... yes checking for ptrdiff_t... yes checking vfork.h usability... no checking vfork.h presence... no checking for vfork.h... no checking for fork... yes checking for vfork... yes checking for working fork... yes checking for working vfork... (cached) yes checking for stdlib.h... (cached) yes checking for GNU libc compatible malloc... yes checking for working strtod... yes checking for getcwd... yes checking for gettimeofday... yes checking for memmove... yes checking for memset... yes checking for pow... yes checking for regcomp... yes checking for sqrt... yes checking for strcasecmp... yes checking for strchr... yes checking for strdup... yes checking for strerror... yes checking for strtol... yes Package libxul was not found in the pkg-config search path. Perhaps you should add the directory containing libxul.pc' to the PKG_CONFIG_PATH environment variable No package 'libxul' found Package libxul was not found in the pkg-config search path. Perhaps you should add the directory containinglibxul.pc' to the PKG_CONFIG_PATH environment variable No package 'libxul' found checking for /stable... no checking for "/nsISupports.idl"... no configure: error: unable to find nsISupports.idl apt-get install libxul Leyendo lista de paquetes... Hecho Creando árbol de dependencias Leyendo la información de estado... Hecho E: No se ha podido localizar el paquete libxul

    Read the article

  • JSIL - a Dot Net to JavaScript translator

    - by TATWORTH
    JSI is described at http://jsil.org/ as:"JSIL is a compiler that transforms .NET applications and libraries from their native executable format - CIL bytecode - into standards-compliant, cross-browser JavaScript. You can take this JavaScript and run it in a web browser or any other modern JavaScript runtime. Unlike other cross-compiler tools targeting JavaScript, JSIL produces readable, easy-to-debug JavaScript that resembles the code a developer might write by hand, while still maintaining the behavior and structure of the original .NET code. Because JSIL transforms bytecode, it can support most .NET-based languages - C# to JavaScript and VB.NET to JavaScript work right out of the box."

    Read the article

  • Channel 9 Interview: Array and Collection Initializers in Visual Basic 2010 (Beth Massi, Spotty Bowl

    Ive written about collection initializers on my blog before, but I thought Id catch up with the VB Team to tell me more about how they really work. In this interview Spotty Bowles, a tester on the VB Compiler team, shows us a couple of new language features: Array and Collection Initializers. He gives us insight into how they are implemented in the compiler and best practices on how to use them in our code. Additionally, he discusses how to extend Collection Initializers with your own extension...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >