Search Results

Search found 13723 results on 549 pages for 'constraint programming'.

Page 50/549 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • i need a query to retrieve the following constraint

    - by ANITHA
    I have the following tables and fields: +------------------+ +-------------------+ +---------------+ | Request | | RequestItem | | Item | +------------------+ +-------------------+ +---------------+ | + Requester_Name | | + Request_No | | + Item | +------------------+ +-------------------+ +---------------+ | + Request_No | | + Item | +------------------+ +-------------------+ I would like to filter the items which are selected under a particular request number, along with a specific requester name. How might I go about doing this?

    Read the article

  • Best practices for handling unique constraint violation

    - by umesh awasthi
    Hi All, While working in my application i came across a situation in which there are likely chances to Unque Constraints Violation.I have following options Catch the exception and throw it back to UI At UI check for the exception and show approrpriate Error Message This is something different idea is to Check in advance about the existance of the given Unique value before starting the whole operation. My Question is what might be the best practice to handle such situation.Currently we are using combo of Struts2+Spring 3.x+Hibernate 3.x Thanks in advance

    Read the article

  • Problem in inferring instances that have integer cardinality constraint

    - by Mikae Combarado
    Hello, I have created an RDF/OWL file using Protege 4.1 alpha. I also created a defined class in Protege called CheapPhone. This class has a restriction which is shown below : (hasPrice some integer[< 350]) Whenever, a price of a phone is below 350, it is inferred as CheapPhone. There is no problem for inferring this in Protege 4.1 alpha. However, I cannot infer this using Jena. I also created a defined class called SmartPhone. This class also has a restriction which is shown below : (has3G value true) and (hasInternet value true) Whenever, a phone has 3G and Internet, it is inferred as SmartPhone. In this situation, there is no problem inferring this in both Protege and Jena. I have started to think that there is a problem in default inference engine of Jena. The code that I use in Java is below : Reasoner reasoner = ReasonerRegistry.getOWLReasoner(); reasoner = reasoner.bindSchema(ontModel); OntModelSpec ontModelSpec = OntModelSpec.OWL_MEM_MINI_RULE_INF; ontModelSpec.setReasoner(reasoner); // Create ontology model with reasoner support // ontModel was created and read before, so I don't share the code in order // not to create garbage here OntModel model = ModelFactory.createOntologyModel(ontModelSpec, ontModel); OntClass sPhone = model.getOntClass(ns + "SmartPhone"); ExtendedIterator s = sPhone.listInstances(); while(s.hasNext()) { OntResource mp = (OntResource)s.next(); System.out.println(mp.getURI()); } This code works perfectly and returns me the instances, but when I change the code below and make it appropriate for CheapPhone, it doesn't return anything. OntClass sPhone = model.getOntClass(ns + "CheapPhone"); Am I doing something wrong ?

    Read the article

  • Travelling Salesman Problem Constraint Representation

    - by alex25
    Hey! I read a couple of articles and sample code about how to solve TSP with Genetic Algorithms and Ant Colony Optimization etc. But everything I found didn't include time (window) constraints, eg. "I have to be at customer x before 12am)" and assumed symmetry. Can somebody point me into the direction of some sample code or articles that explain how I can add constraints to TSP and how I can represent those in code. Thanks!

    Read the article

  • How did you get your first programming job?

    - by Gaz
    Hi All, I have some commercial programming experience although it was not my primary role (C# and Java), SCJP 6 cert, some SQL experience and have been doing a lot of Android programming (I have one app with 36,000 downloads). I have a degree in Chemistry and a Diploma in Programming (half a degree made up of 2nd/3rd year uni courses). I'm trying to get my first entry level programmer job but am finding it tough out there.......How did other people get there first jobs in programming?

    Read the article

  • mysql ignores not null constraint?

    - by Marga Keuvelaar
    I have created a table with NOT NULL constraints on some columns in MySQL. Then in PHP I wrote a script to insert data, with an insert query. When I omit one of the NOT NULL columns in this insert statement I would expect an error message from MySQL, and I would expect my script to fail. Instead, MySQL inserts empty strings in the NOT NULL fields. In other omitted fields the data is NULL, which is fine. Could someone tell me what I did wrong here? I'm using this table: CREATE TABLE IF NOT EXISTS tblCustomers ( cust_id int(11) NOT NULL AUTO_INCREMENT, custname varchar(50) NOT NULL, company varchar(50), phone varchar(50), email varchar(50) NOT NULL, country varchar(50) NOT NULL, ... date_added timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP, PRIMARY KEY (cust_id) ) ; And this insert statement: $sql = "INSERT INTO tblCustomers (custname,company) VALUES ('".$customerName."','".$_POST["CustomerCompany"]."')"; $res = mysqli_query($mysqli, $sql);

    Read the article

  • Constraint to array dimension in C language

    - by Summer_More_More_Tea
    int KMP( const char *original, int o_len, const char *substring, int s_len ){ if( o_len < s_len ) return -1; int k = 0; int cur = 1; int fail[ s_len ]; fail[ k ] = -1; while( cur < s_len ){ k = cur - 1; do{ if( substring[ cur ] == substring[ k ] ){ fail[ cur ] = k; break; }else{ k = fail[ k ] + 1; } }while( k ); if( !k && ( substring[ cur ] != substring[ 0 ] ) ){ fail[ cur ] = -1; }else if( !k ){ fail[ cur ] = 0; } cur++; } k = 0; cur = 0; while( ( k < s_len ) && ( cur < o_len ) ){ if( original[ cur ] == substring[ k ] ){ cur++; k++; }else{ if( k == 0 ){ cur++; }else{ k = fail[ k - 1 ] + 1; } } } if( k == s_len ) return cur - k; else return -1; } This is a KMP algorithm I once coded. When I reviewed it this morning, I find it strange that an integer array is defined as int fail[ s_len ]. Does the specification requires dimesion of arrays compile-time constant? How can this code pass the compilation? By the way, my gcc version is 4.4.1. Thanks in advance!

    Read the article

  • Python combinations no repeat by constraint

    - by user2758113
    I have a tuple of tuples (Name, val 1, val 2, Class) tuple = (("Jackson",10,12,"A"), ("Ryan",10,20,"A"), ("Michael",10,12,"B"), ("Andrew",10,20,"B"), ("McKensie",10,12,"C"), ("Alex",10,20,"D")) I need to return all combinations using itertools combinations that do not repeat classes. How can I return combinations that dont repeat classes. For example, the first returned statement would be: tuple0, tuple2, tuple4, tuple5 and so on.

    Read the article

  • Consolidating values in a junction table

    - by senloe
    I have the following schema: Parcels Segments SegmentsParcels ========= ========== ================= ParcelID SegmentID ParcelID ... Name SegmentID ... id A user of the data wants to consolidate Segments.Names and gave me a list of current Segment.Names mapped to new Segment.Names (all of which currently exist). So now I have this list in a temporary table with the currentID and newID to map to. What I want to do is update the SegmentID in SegmentsParcels based on this map. I could use the statement: update SegmentParcels set segmentID = [newID] from newsegments where segmentID = currentid but this will create some duplicates I have a unique constraint on ParcelID and SegmentID in SegmentParcels. What is the best way to go about this? I considered removing the constraint and then dealing with removing the duplicates (which I did at one point and could probably do again) but I was hoping there was a simpler way.

    Read the article

  • Violation of primary key constraint, multiple users

    - by MC.
    Lets say UserA and UserB both have an application open and are working with the same type of data. UserA inserts a record into the table with value 10 (PrimaryKey='A'), UserB does not currently see the value UserA entered and attempts to insert a new value of 20 (PrimaryKey='A'). What I wanted in this situation was a DBConcurrencyException, but instead what I have is a primary key violation. I understand why, but I have no idea how to resolve this. What is a good practice to deal with such a circumstance? I do not want to merge before updating the database because I want an error to inform the user that multiple users updated this data.

    Read the article

  • Oracle - Trigger to check constraint before insert

    - by user1816507
    i would like to create a simple trigger to check a stored variable from a table. if the value of the variable is '1', then approve the insertion else if the value of the variable is '2', then prompt error message. CREATE OR REPLACE TRIGGER approval BEFORE INSERT ON VIP REFERENCING OLD AS MEMBER FOR EACH ROW DECLARE CONDITION_CHECK NUMBER; BEGIN SELECT CONDITION INTO CONDITION_CHECK FROM MEMBER; IF CONDITION_CHECK = '2' THEN RAISE_APPLICATION_ERROR (-20000, ' UPGRADE DENIED!'); END IF; END; But this trigger disable all the entries even when the condition value is '1'.

    Read the article

  • Grails: Duplicates & unique constraint validation

    - by rukoche
    OK here is stripped down version of what I have in my app Artist domain: class Artist { String name Date lastMined def artistService static transients = ['artistService'] static hasMany = [events: Event] static constraints = { name(unique: true) lastMined(nullable: true) } def mine() { artistService.mine(this) } } Event domain: class Event { String name String details String country String town String place String url String date static belongsTo = [Artist] static hasMany = [artists: Artist] static constraints = { name(unique: true) url(unique: true) } } ArtistService: class ArtistService { def results = [ [ name:"name", details:"details", country:"country", town:"town", place:"place", url:"url", date:"date" ] ] def mine(Artist artist) { results << results[0] // now we have a duplicate results.each { def event = new Event(it) if (event.validate()) { if (artist.events.find{ it.name == event.name }) { log.info "grrr! valid duplicate name: ${event.name}" } artist.addToEvents(event) } } artist.lastMined = new Date() if (artist.events) { artist.save(flush: true) } } } In theory event.validate() should return false and event will not be added to artist, but it doesn't.. which results in DB exception on artist.save() Although I noticed that if duplicate event is persisted first everything works as intended. Is it bug or feature? :P

    Read the article

  • Generate all permutations with sort constraint

    - by Moos Hueting
    Hi! I have a list consisting of other lists and some zeroes, for example: x = [[1, 1, 2], [1, 1, 1, 2], [1, 1, 2], 0, 0, 0] I would like to generate all the combinations of this list while keeping the order of the inner lists unchanged, so [[1, 1, 2], 0, 0, [1, 1, 1, 2], [1, 1, 2], 0] is fine, but [[1, 1, 1, 2], [1, 1, 2], 0, 0, [1, 1, 2], 0] isn't. I've got the feeling that this should be fairly easy in Python, but I just don't see it. Could somebody help me out?

    Read the article

  • Shuffling a list with a constraint

    - by 500
    Preparing a new psychophysic experiment, I have 48 original stimuli displayed 4 times (4 conditions). Resulting in 192 trials. Trying to randomize the order of presentation during the experiment, I need to maximize the distance between the 4 display of the same original stimuli. Please Consider : Table[{j, i}, {j, Range[48]}, {i, Range[4]}] Where j is the original stimuli number and i the condition Output Sample : {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, ... {47, 1}, {47, 2}, {47, 3},{47, 4}, {48, 1}, {48, 2}, {48, 3}, {48, 4}} How could I shuffle the order of presentation of those 192 items, maximizing the distance between identical item with regard to j the original stimuli number ?

    Read the article

  • Check constraint on table lookup

    - by bzamfir
    Hi, I have a table, department , with several bit fields to indicate department types One is Warehouse (when true, indicate the department is warehouse) And I have another table, ManagersForWarehouses with following structure: ID autoinc WarehouseID int (foreign key reference DepartmentID from departments) ManagerID int (foreign key reference EmployeeID from employees) StartDate EndDate To set new manager for warehouse, I insert in this table with EndDate null, and I have a trigger that sets EndDate for previous record for that warehouse = StartDate for new manager, so a single manager appears for a warehouse at a certain time. I want to add two check constraints as follows, but not sure how to do this do not allow to insert into ManagersForWarehouses if WarehouseID is not marked as warehouse Do not allow to uncheck Warehouse if there are records in ManagersForWarehouses Thanks

    Read the article

  • Why isn't the new() generic constraint satisfied by a class with optional parameters in the construc

    - by Joshua Flanagan
    The following code fails to compile, producing a "Widget must be a non-abstract type with a public parameterless constructor" error. I would think that the compiler has all of the information it needs. Is this a bug? An oversight? Or is there some scenario where this would not be valid? public class Factory<T> where T : new() { public T Build() { return new T(); } } public class Widget { public Widget(string name = "foo") { Name = name; } public string Name { get; set; } } public class Program { public static void Main() { var widget = new Widget(); // this is valid var factory = new Factory<Widget>(); // compiler error } }

    Read the article

  • An Alphabet of Eponymous Aphorisms, Programming Paradigms, Software Sayings, Annoying Alliteration

    - by Brian Schroer
    Malcolm Anderson blogged about “Einstein’s Razor” yesterday, which reminded me of my favorite software development “law”, the name of which I can never remember. It took much Wikipedia-ing to find it (Hofstadter’s Law – see below), but along the way I compiled the following list: Amara’s Law: We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run. Brook’s Law: Adding manpower to a late software project makes it later. Clarke’s Third Law: Any sufficiently advanced technology is indistinguishable from magic. Law of Demeter: Each unit should only talk to its friends; don't talk to strangers. Einstein’s Razor: “Make things as simple as possible, but not simpler” is the popular paraphrase, but what he actually said was “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience”, an overly complicated quote which is an obvious violation of Einstein’s Razor. (You can tell by looking at a picture of Einstein that the dude was hardly an expert on razors or other grooming apparati.) Finagle's Law of Dynamic Negatives: Anything that can go wrong, will—at the worst possible moment. - O'Toole's Corollary: The perversity of the Universe tends towards a maximum. Greenspun's Tenth Rule: Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp. (Morris’s Corollary: “…including Common Lisp”) Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law. Issawi’s Omelet Analogy: One cannot make an omelet without breaking eggs - but it is amazing how many eggs one can break without making a decent omelet. Jackson’s Rules of Optimization: Rule 1: Don't do it. Rule 2 (for experts only): Don't do it yet. Kaner’s Caveat: A program which perfectly meets a lousy specification is a lousy program. Liskov Substitution Principle (paraphrased): Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it Mason’s Maxim: Since human beings themselves are not fully debugged yet, there will be bugs in your code no matter what you do. Nils-Peter Nelson’s Nil I/O Rule: The fastest I/O is no I/O.    Occam's Razor: The simplest explanation is usually the correct one. Parkinson’s Law: Work expands so as to fill the time available for its completion. Quentin Tarantino’s Pie Principle: “…you want to go home have a drink and go and eat pie and talk about it.” (OK, he was talking about movies, not software, but I couldn’t find a “Q” quote about software. And wouldn’t it be cool to write a program so great that the users want to eat pie and talk about it?) Raymond’s Rule: Computer science education cannot make anybody an expert programmer any more than studying brushes and pigment can make somebody an expert painter.  Sowa's Law of Standards: Whenever a major organization develops a new system as an official standard for X, the primary result is the widespread adoption of some simpler system as a de facto standard for X. Turing’s Tenet: We shall do a much better programming job, provided we approach the task with a full appreciation of its tremendous difficulty, provided that we respect the intrinsic limitations of the human mind and approach the task as very humble programmers.  Udi Dahan’s Race Condition Rule: If you think you have a race condition, you don’t understand the domain well enough. These rules didn’t exist in the age of paper, there is no reason for them to exist in the age of computers. When you have race conditions, go back to the business and find out actual rules. Van Vleck’s Kvetching: We know about as much about software quality problems as they knew about the Black Plague in the 1600s. We've seen the victims' agonies and helped burn the corpses. We don't know what causes it; we don't really know if there is only one disease. We just suffer -- and keep pouring our sewage into our water supply. Wheeler’s Law: All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection. Wheeler also said “Compatibility means deliberately repeating other people's mistakes.”. The Wrong Road Rule of Mr. X (anonymous): No matter how far down the wrong road you've gone, turn back. Yourdon’s Rule of Two Feet: If you think your management doesn't know what it's doing or that your organisation turns out low-quality software crap that embarrasses you, then leave. Zawinski's Law of Software Envelopment: Every program attempts to expand until it can read mail. Zawinski is also responsible for “Some people, when confronted with a problem, think 'I know, I'll use regular expressions.' Now they have two problems.” He once commented about X Windows widget toolkits: “Using these toolkits is like trying to make a bookshelf out of mashed potatoes.”

    Read the article

  • Quadratic Programming with Oracle R Enterprise

    - by Jeff Taylor-Oracle
         I wanted to use quadprog with ORE on a server running Oracle Solaris 11.2 on a Oracle SPARC T-4 server For background, see: Oracle SPARC T4-2 http://docs.oracle.com/cd/E23075_01/ Oracle Solaris 11.2 http://www.oracle.com/technetwork/server-storage/solaris11/overview/index.html quadprog: Functions to solve Quadratic Programming Problems http://cran.r-project.org/web/packages/quadprog/index.html Oracle R Enterprise 1.4 ("ORE") 1.4 http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/ore-downloads-1502823.html Problem: path to Solaris Studio doesn't match my installation: $ ORE CMD INSTALL quadprog_1.5-5.tar.gz * installing to library \u2018/u01/app/oracle/product/12.1.0/dbhome_1/R/library\u2019 * installing *source* package \u2018quadprog\u2019 ... ** package \u2018quadprog\u2019 successfully unpacked and MD5 sums checked ** libs /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64   -PIC  -g  -c aind.f -o aind.o bash: /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95: No such file or directory *** Error code 1 make: Fatal error: Command failed for target `aind.o' ERROR: compilation failed for package \u2018quadprog\u2019 * removing \u2018/u01/app/oracle/product/12.1.0/dbhome_1/R/library/quadprog\u2019 $ ls -l /opt/solarisstudio12.3/bin/f95 lrwxrwxrwx   1 root     root          15 Aug 19 17:36 /opt/solarisstudio12.3/bin/f95 -> ../prod/bin/f90 Solution: a symbolic link: $ sudo mkdir -p /opt/SunProd/studio12u3 $ sudo ln -s /opt/solarisstudio12.3 /opt/SunProd/studio12u3/ Now, it is all good: $ ORE CMD INSTALL quadprog_1.5-5.tar.gz * installing to library \u2018/u01/app/oracle/product/12.1.0/dbhome_1/R/library\u2019 * installing *source* package \u2018quadprog\u2019 ... ** package \u2018quadprog\u2019 successfully unpacked and MD5 sums checked ** libs /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64   -PIC  -g  -c aind.f -o aind.o /opt/SunProd/studio12u3/solarisstudio12.3/bin/ cc -xc99 -m64 -I/usr/lib/64/R/include -DNDEBUG -KPIC  -xlibmieee  -c init.c -o init.o /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64  -PIC -g  -c -o solve.QP.compact.o solve.QP.compact.f /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64  -PIC -g  -c -o solve.QP.o solve.QP.f /opt/SunProd/studio12u3/solarisstudio12.3/bin/f95 -m64   -PIC  -g  -c util.f -o util.o /opt/SunProd/studio12u3/solarisstudio12.3/bin/ cc -xc99 -m64 -G -o quadprog.so aind.o init.o solve.QP.compact.o solve.QP.o util.o -xlic_lib=sunperf -lsunmath -lifai -lsunimath -lfai -lfai2 -lfsumai -lfprodai -lfminlai -lfmaxlai -lfminvai -lfmaxvai -lfui -lfsu -lsunmath -lmtsk -lm -lifai -lsunimath -lfai -lfai2 -lfsumai -lfprodai -lfminlai -lfmaxlai -lfminvai -lfmaxvai -lfui -lfsu -lsunmath -lmtsk -lm -L/usr/lib/64/R/lib -lR installing to /u01/app/oracle/product/12.1.0/dbhome_1/R/library/quadprog/libs ** R ** preparing package for lazy loading ** help *** installing help indices   converting help for package \u2018quadprog\u2019     finding HTML links ... done     solve.QP                                html      solve.QP.compact                        html  ** building package indices ** testing if installed package can be loaded * DONE (quadprog) ====== Here is an example from http://cran.r-project.org/web/packages/quadprog/quadprog.pdf > require(quadprog) > Dmat <- matrix(0,3,3) > diag(Dmat) <- 1 > dvec <- c(0,5,0) > Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3) > bvec <- c(-8,2,0) > solve.QP(Dmat,dvec,Amat,bvec=bvec) $solution [1] 0.4761905 1.0476190 2.0952381 $value [1] -2.380952 $unconstrained.solution [1] 0 5 0 $iterations [1] 3 0 $Lagrangian [1] 0.0000000 0.2380952 2.0952381 $iact [1] 3 2 Here, the standard example is modified to work with Oracle R Enterprise require(ORE) ore.connect("my-name", "my-sid", "my-host", "my-pass", 1521) ore.doEval(   function () {     require(quadprog)   } ) ore.doEval(   function () {     Dmat <- matrix(0,3,3)     diag(Dmat) <- 1     dvec <- c(0,5,0)     Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)     bvec <- c(-8,2,0)    solve.QP(Dmat,dvec,Amat,bvec=bvec)   } ) $solution [1] 0.4761905 1.0476190 2.0952381 $value [1] -2.380952 $unconstrained.solution [1] 0 5 0 $iterations [1] 3 0 $Lagrangian [1] 0.0000000 0.2380952 2.0952381 $iact [1] 3 2 Now I can combine the quadprog compute algorithms with the Oracle R Enterprise Database engine functionality: Scale to large datasets Access to tables, views, and external tables in the database, as well as those accessible through database links Use SQL query parallel execution Use in-database statistical and data mining functionality

    Read the article

  • Scala programming language for beginners, is it a legend?

    - by ali
    Hi every one, I am Ali from Saudi Arabia. undoubtedly, Scala is one of the best programming language for any programmer to learn, but there is "good" problems that is faced especially by beginners, and what seems frustrating that these problems won't solve soon, so as a beginner and on behalf of beginners let me raise these "objective" questions: 1- why scala has no effective and stable development platform, in fact, it suffers many problems with Eclipse, Netbeat, and Intellij. 2- although I have looked for a clear,easy, and understandable explanation of how to get started with Scala, but fortunately, there was no article or guide that deserves to spend the time I have spent to read it. nobody could tell you clear steps that fit you as a beginner who wants to start his"HELLO WORLD" with Scala, while all other languages have its "HELLO WORLD" guides and books. thank you for your time, be sure that you read notes below. 1- I have no experience in programming language before. 2- don't tell me "not to begin with scala", simply, because I will do. 3- OS is windows vista home premium. 4- I hate excuses, such as Scala is new language......etc

    Read the article

  • Programming texts and reference material for my Kindle DX, creating the ultimate reference device?

    - by mwilliams
    (Revisiting this topic with the release of the Kindle DX) Having owned both generation Kindle readers and now getting a Kindle DX; I'm very excited for true PDF handling on an e-ink device! An image of _Why's book on my Kindle (from my iPhone). This gives me a device capable of storing hundreds of thousands of pages that are full text search capable in the form factor of a magazine. What references (preferably PDF to preserve things such as code samples) would you recommend? Ultimately I would like reference material for every modern and applicable programming language (C, C++, Objective-C, Python, Ruby, Java, .NET (C#, Visual Basic, ASP.NET), Erlang, SQL references) as well as general programming texts and frameworks (algorithms, design patterns, theory, Rails, Django, Cocoa, ORMs, etc) and anything else that could be thought of. With so many developers here using such a wide array of languages, as a professional in your particular field, what books or references would you recommend to me for my Kindle? Creative Commons material a plus (translate that to free) as well as the material being in the PDF file format. File size is not an issue. If this turns out to be a success, I will update with a follow-up with a compiled list generated from all of the answers. Thanks for the assistance and contributing! UPDATE I have been using the Kindle DX a lot now for technical books. Check out this blog post I did for high resolution photos of different material: http://www.matthewdavidwilliams.com/2009/06/12/technical-document-pdfs-on-the-kindle-dx/

    Read the article

  • Parallel programming, are we not learning from history again?

    - by mezmo
    I started programming because I was a hardware guy that got bored, I thought the problems being solved in the software side of things were much more interesting than those in hardware. At that time, most of the electrical buses I dealt with were serial, some moving data as fast as 1.5 megabit!! ;) Over the years these evolved into parallel buses in order to speed communication up, after all, transferring 8/16/32/64, whatever bits at a time incredibly speeds up the transfer. Well, our ability to create and detect state changes got faster and faster, to the point where we could push data so fast that interference between parallel traces or cable wires made cleaning the signal too expensive to continue, and we still got reasonable performance from serial interfaces, heck some graphics interfaces are even happening over USB for a while now. I think I'm seeing a like trend in software now, our processors were getting faster and faster, so we got good at building "serial" software. Now we've hit a speed bump in raw processor speed, so we're adding cores, or "traces" to the mix, and spending a lot of time and effort on learning how to properly use those. But I'm also seeing what I feel are advances in things like optical switching and even quantum computing that could take us far more quickly that I was expecting back to the point where "serial programming" again makes the most sense. What are your thoughts?

    Read the article

  • How to learn a new programming language? And how to choose the appropriate language?

    - by Sebi
    Unfortunately my last question was closed, so I reformulated the question: I know this question was here a lot of times and can't be answered at all, but im not looking for a single name, but rather for an advice in my situation. I learned programming with Java and now I'm developing in Java for more or less 5 years (at the university) and I thinks my programming skills their are really ok/average. I have also small experience in C/C++ and C#. Now I have some spare time and I'd like to learn a new language or deepen the knowledge of Java/C/C++. But how to choose the right language to learn? I'd like to learn a language which will be usefull in the future concerning working in a software development business? I know there is no single answer, but I'm sure you could mention some languages that are more usefull than others. And what's the best way to learn such a language efficiently (bearing in mind that one has already learned some other languages)? Just doing tutorials? Or trying to implement a project? Trying to move a Java project to the new language?

    Read the article

  • Solaris X86 64-bit Assembly Programming

    - by danx
    Solaris X86 64-bit Assembly Programming This is a simple example on writing, compiling, and debugging Solaris 64-bit x86 assembly language with a C program. This is also referred to as "AMD64" assembly. The term "AMD64" is used in an inclusive sense to refer to all X86 64-bit processors, whether AMD Opteron family or Intel 64 processor family. Both run Solaris x86. I'm keeping this example simple mainly to illustrate how everything comes together—compiler, assembler, linker, and debugger when using assembly language. The example I'm using here is a C program that calls an assembly language program passing a C string. The assembly language program takes the C string and calls printf() with it to print the string. AMD64 Register Usage But first let's review the use of AMD64 registers. AMD64 has several 64-bit registers, some special purpose (such as the stack pointer) and others general purpose. By convention, Solaris follows the AMD64 ABI in register usage, which is the same used by Linux, but different from Microsoft Windows in usage (such as which registers are used to pass parameters). This blog will only discuss conventions for Linux and Solaris. The following chart shows how AMD64 registers are used. The first six parameters to a function are passed through registers. If there's more than six parameters, parameter 7 and above are pushed on the stack before calling the function. The stack is also used to save temporary "stack" variables for use by a function. 64-bit Register Usage %rip Instruction Pointer points to the current instruction %rsp Stack Pointer %rbp Frame Pointer (saved stack pointer pointing to parameters on stack) %rdi Function Parameter 1 %rsi Function Parameter 2 %rdx Function Parameter 3 %rcx Function Parameter 4 %r8 Function Parameter 5 %r9 Function Parameter 6 %rax Function return value %r10, %r11 Temporary registers (need not be saved before used) %rbx, %r12, %r13, %r14, %r15 Temporary registers, but must be saved before use and restored before returning from the current function (usually with the push and pop instructions). 32-, 16-, and 8-bit registers To access the lower 32-, 16-, or 8-bits of a 64-bit register use the following: 64-bit register Least significant 32-bits Least significant 16-bits Least significant 8-bits %rax%eax%ax%al %rbx%ebx%bx%bl %rcx%ecx%cx%cl %rdx%edx%dx%dl %rsi%esi%si%sil %rdi%edi%di%axl %rbp%ebp%bp%bp %rsp%esp%sp%spl %r9%r9d%r9w%r9b %r10%r10d%r10w%r10b %r11%r11d%r11w%r11b %r12%r12d%r12w%r12b %r13%r13d%r13w%r13b %r14%r14d%r14w%r14b %r15%r15d%r15w%r15b %r16%r16d%r16w%r16b There's other registers present, such as the 64-bit %mm registers, 128-bit %xmm registers, 256-bit %ymm registers, and 512-bit %zmm registers. Except for %mm registers, these registers may not present on older AMD64 processors. Assembly Source The following is the source for a C program, helloas1.c, that calls an assembly function, hello_asm(). $ cat helloas1.c extern void hello_asm(char *s); int main(void) { hello_asm("Hello, World!"); } The assembly function called above, hello_asm(), is defined below. $ cat helloas2.s /* * helloas2.s * To build: * cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s * cc -m64 -c -o helloas2.o helloas2-cpp.s */ #if defined(lint) || defined(__lint) /* ARGSUSED */ void hello_asm(char *s) { } #else /* lint */ #include <sys/asm_linkage.h> .extern printf ENTRY_NP(hello_asm) // Setup printf parameters on stack mov %rdi, %rsi // P2 (%rsi) is string variable lea .printf_string, %rdi // P1 (%rdi) is printf format string call printf ret SET_SIZE(hello_asm) // Read-only data .text .align 16 .type .printf_string, @object .printf_string: .ascii "The string is: %s.\n\0" #endif /* lint || __lint */ In the assembly source above, the C skeleton code under "#if defined(lint)" is optionally used for lint to check the interfaces with your C program--very useful to catch nasty interface bugs. The "asm_linkage.h" file includes some handy macros useful for assembly, such as ENTRY_NP(), used to define a program entry point, and SET_SIZE(), used to set the function size in the symbol table. The function hello_asm calls C function printf() by passing two parameters, Parameter 1 (P1) is a printf format string, and P2 is a string variable. The function begins by moving %rdi, which contains Parameter 1 (P1) passed hello_asm, to printf()'s P2, %rsi. Then it sets printf's P1, the format string, by loading the address the address of the format string in %rdi, P1. Finally it calls printf. After returning from printf, the hello_asm function returns itself. Larger, more complex assembly functions usually do more setup than the example above. If a function is returning a value, it would set %rax to the return value. Also, it's typical for a function to save the %rbp and %rsp registers of the calling function and to restore these registers before returning. %rsp contains the stack pointer and %rbp contains the frame pointer. Here is the typical function setup and return sequence for a function: ENTRY_NP(sample_assembly_function) push %rbp // save frame pointer on stack mov %rsp, %rbp // save stack pointer in frame pointer xor %rax, %r4ax // set function return value to 0. mov %rbp, %rsp // restore stack pointer pop %rbp // restore frame pointer ret // return to calling function SET_SIZE(sample_assembly_function) Compiling and Running Assembly Use the Solaris cc command to compile both C and assembly source, and to pre-process assembly source. You can also use GNU gcc instead of cc to compile, if you prefer. The "-m64" option tells the compiler to compile in 64-bit address mode (instead of 32-bit). $ cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s $ cc -m64 -c -o helloas2.o helloas2-cpp.s $ cc -m64 -c helloas1.c $ cc -m64 -o hello-asm helloas1.o helloas2.o $ file hello-asm helloas1.o helloas2.o hello-asm: ELF 64-bit LSB executable AMD64 Version 1 [SSE FXSR FPU], dynamically linked, not stripped helloas1.o: ELF 64-bit LSB relocatable AMD64 Version 1 helloas2.o: ELF 64-bit LSB relocatable AMD64 Version 1 $ hello-asm The string is: Hello, World!. Debugging Assembly with MDB MDB is the Solaris system debugger. It can also be used to debug user programs, including assembly and C. The following example runs the above program, hello-asm, under control of the debugger. In the example below I load the program, set a breakpoint at the assembly function hello_asm, display the registers and the first parameter, step through the assembly function, and continue execution. $ mdb hello-asm # Start the debugger > hello_asm:b # Set a breakpoint > ::run # Run the program under the debugger mdb: stop at hello_asm mdb: target stopped at: hello_asm: movq %rdi,%rsi > $C # display function stack ffff80ffbffff6e0 hello_asm() ffff80ffbffff6f0 0x400adc() > $r # display registers %rax = 0x0000000000000000 %r8 = 0x0000000000000000 %rbx = 0xffff80ffbf7f8e70 %r9 = 0x0000000000000000 %rcx = 0x0000000000000000 %r10 = 0x0000000000000000 %rdx = 0xffff80ffbffff718 %r11 = 0xffff80ffbf537db8 %rsi = 0xffff80ffbffff708 %r12 = 0x0000000000000000 %rdi = 0x0000000000400cf8 %r13 = 0x0000000000000000 %r14 = 0x0000000000000000 %r15 = 0x0000000000000000 %cs = 0x0053 %fs = 0x0000 %gs = 0x0000 %ds = 0x0000 %es = 0x0000 %ss = 0x004b %rip = 0x0000000000400c70 hello_asm %rbp = 0xffff80ffbffff6e0 %rsp = 0xffff80ffbffff6c8 %rflags = 0x00000282 id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iopl=0x0 status=<of,df,IF,tf,SF,zf,af,pf,cf> %gsbase = 0x0000000000000000 %fsbase = 0xffff80ffbf782a40 %trapno = 0x3 %err = 0x0 > ::dis # disassemble the current instructions hello_asm: movq %rdi,%rsi hello_asm+3: leaq 0x400c90,%rdi hello_asm+0xb: call -0x220 <PLT:printf> hello_asm+0x10: ret 0x400c81: nop 0x400c85: nop 0x400c88: nop 0x400c8c: nop 0x400c90: pushq %rsp 0x400c91: pushq $0x74732065 0x400c96: jb +0x69 <0x400d01> > 0x0000000000400cf8/S # %rdi contains Parameter 1 0x400cf8: Hello, World! > [ # Step and execute 1 instruction mdb: target stopped at: hello_asm+3: leaq 0x400c90,%rdi > [ mdb: target stopped at: hello_asm+0xb: call -0x220 <PLT:printf> > [ The string is: Hello, World!. mdb: target stopped at: hello_asm+0x10: ret > [ mdb: target stopped at: main+0x19: movl $0x0,-0x4(%rbp) > :c # continue program execution mdb: target has terminated > $q # quit the MDB debugger $ In the example above, at the start of function hello_asm(), I display the stack contents with "$C", display the registers contents with "$r", then disassemble the current function with "::dis". The first function parameter, which is a C string, is passed by reference with the string address in %rdi (see the register usage chart above). The address is 0x400cf8, so I print the value of the string with the "/S" MDB command: "0x0000000000400cf8/S". I can also print the contents at an address in several other formats. Here's a few popular formats. For more, see the mdb(1) man page for details. address/S C string address/C ASCII character (1 byte) address/E unsigned decimal (8 bytes) address/U unsigned decimal (4 bytes) address/D signed decimal (4 bytes) address/J hexadecimal (8 bytes) address/X hexadecimal (4 bytes) address/B hexadecimal (1 bytes) address/K pointer in hexadecimal (4 or 8 bytes) address/I disassembled instruction Finally, I step through each machine instruction with the "[" command, which steps over functions. If I wanted to enter a function, I would use the "]" command. Then I continue program execution with ":c", which continues until the program terminates. MDB Basic Cheat Sheet Here's a brief cheat sheet of some of the more common MDB commands useful for assembly debugging. There's an entire set of macros and more powerful commands, especially some for debugging the Solaris kernel, but that's beyond the scope of this example. $C Display function stack with pointers $c Display function stack $e Display external function names $v Display non-zero variables and registers $r Display registers ::fpregs Display floating point (or "media" registers). Includes %st, %xmm, and %ymm registers. ::status Display program status ::run Run the program (followed by optional command line parameters) $q Quit the debugger address:b Set a breakpoint address:d Delete a breakpoint $b Display breakpoints :c Continue program execution after a breakpoint [ Step 1 instruction, but step over function calls ] Step 1 instruction address::dis Disassemble instructions at an address ::events Display events Further Information "Assembly Language Techniques for Oracle Solaris on x86 Platforms" by Paul Lowik (2004). Good tutorial on Solaris x86 optimization with assembly. The Solaris Operating System on x86 Platforms An excellent, detailed tutorial on X86 architecture, with Solaris specifics. By an ex-Sun employee, Frank Hofmann (2005). "AMD64 ABI Features", Solaris 64-bit Developer's Guide contains rules on data types and register usage for Intel 64/AMD64-class processors. (available at docs.oracle.com) Solaris X86 Assembly Language Reference Manual (available at docs.oracle.com) SPARC Assembly Language Reference Manual (available at docs.oracle.com) System V Application Binary Interface (2003) defines the AMD64 ABI for UNIX-class operating systems, including Solaris, Linux, and BSD. Google for it—the original website is gone. cc(1), gcc(1), and mdb(1) man pages.

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >