Search Results

Search found 10536 results on 422 pages for 'cpu usage'.

Page 50/422 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • Measuring device drivers CPU/IO utilization caused by my program

    - by Lior Kogan
    Sometimes code can utilize device drivers up to the point where the system is unresponsive. Lately I've optimized a WIN32/VC++ code which made the system almost unresponsive. The CPU usage, however, was very low. The reason was 1000's of creations and destruction of GDI objects (pens, brushes, etc.). Once I refactored the code to create all objects only once - the system became responsive again. This leads me to the question: Is there a way to measure CPU/IO usage of device drivers (GPU/disk/etc) for a given program / function / line of code?

    Read the article

  • SQL Server Multiple Joins Are Taxing The CPU

    - by durilai
    I have a stored procedure on SQL Server 2005. It is pulling from a Table function, and has two joins. When the query is run using a load test it kills the CPU 100% across all 16 cores! I have determined that removing one of the joins makes the query run fine, but both taxes the CPU. Select SKey From dbo.tfnGetLatest(@ID) a left join [STAGING].dbo.RefSrvc b on a.LID = b.ESIID left join [STAGING].dbo.RefSrvc c on a.EID = c.ESIID Any help is appreciated, note the join is happening on the same table in a different database on the same server.

    Read the article

  • Should I get integrated graphics if I already have a dedicated GPU?

    - by Ivo Flipse
    I want to upgrade my computer to the new Sandy Bridge CPU's, which features integrated graphics. However, you have to choose between two types of chipsets: H67 or P67. Now since I already own a GTX 460, so is there any added value to using the integrated graphics? Would there be a way of 'disabling' my GPU when I don't need it's additional power or would the integrated graphics simply allow me to add another screen?

    Read the article

  • While Loop Taking Alot of CPU Usage

    - by CuriousUser
    I am creating a keystroke logger for my personal interest, as well wanting to know how to capture and use them as functions (like key shortcuts). I got the code to learn how keylogger and GetAsyncKeyState() work: http://www.rohitab.com/discuss/index.php?showtopic=9931 I got it to run under Code::Blocks, but the weirdest things is that when I check my task manager, my CPU Usage rises to 100%. When I close the program, it goes back down, and goes back up to 100 when I turn it back on. I presume it's because of the infinite while loop, constantly checking for inputs, but I wanna know if there's anyway to decrease the CPU usage, without losing function. P.S How would I make a key shortcut? Like press (Ctrl + E) to make the program exit?

    Read the article

  • C/C++ usage of special CPU features

    - by b-gen-jack-o-neill
    Hi, I am curious, do new compilers use some extra features built into new CPUs such as MMX SSE,3DNow! and so? I mean, in original 8086 there was even no FPU, so compiler that old cannot even use it, but new compilers can, since FPU is part of every new CPU. So, does new compilers use new features of CPU? Or, it should be more right to ask, does new C/C++ standart library functions use new features? Thanks for answer.

    Read the article

  • [PHP] - Lowering script memory usage in a "big" file creation

    - by Riccardo
    Hi there people, it looks like I'm facing a typical memory outage problem when using a PHP script. The script, originally developed by another person, serves as an XML sitemap creator, and on large websites uses quite a lot of memory. I thought that the problem was related due to an algorithm holding data in memory until the job was done, but digging into the code I have discovered that the script works in this way: open file in output (will contain XML sitemap entries) in the loop: ---- for each entry to be added in sitemap, do fwrite close file end Although there are no huge arrays or variables being kept in memory, this technique uses a lot of memory. I thought that maybe PHP was buffering under the hood the fwrites and "flushing" data at the end of the script, so I have modified the code to close and open the file every Nth record, but the memory usage is still the same.... I'm debugging the script on my computer and watching memory usage: while script execution runs, memory allocation grows. Is there a particular technique to instruct PHP to free unsed memory, to force flushing buffers if any? Thanks

    Read the article

  • Why does C++ linking use virtually no CPU?

    - by John
    On a native C++ project, linking right now can take a minute or two, yet during this time CPU drops from 100% during compilation to virtually zero. Does this mean linking is primarily a disk activity? If so, is this the main area an SSD would make big changes? But, why aren't all my OBJ files (or as many as possible) kept in RAM after compilation to avoid this? With 4Gb of RAM I should be able to save a lot of disk access and make it CPU-bound again, no?

    Read the article

  • C/C++ usage of special CPU fetures

    - by b-gen-jack-o-neill
    Hi, I am curious, do new compilers use some extra features built into new CPUs such as MMX SSE,3DNow! and so? I mean, in original 8086 there was even no FPU, so compiler that old cannot even use it, but new compilers can, since FPU is part of every new CPU. So, does new compilers use new features of CPU? Or, it should be more right to ask, does new C/C++ standart library functions use new features? Thanks for answer.

    Read the article

  • Current trends in Random Access Memory speed [closed]

    - by Vetal
    As I know for now because of laws of Physics there will be not any tangible improvements in CPU cycles per second for the nearest future. However because of Von Neumann bottleneck it seems to not be an issue for non-server applications. So what about RAM, is there any upcoming technologies that promise to improve memory speed or we are stack with the current situation till quantum computers will come out from labs?

    Read the article

  • Data Usage Checker Tools

    - by Lucifer
    Hey All, I am about to begin a project for a new client, and am worried about a few things concerning data usage on their internet plan. We're in an area where most of the major networks don't cover the area, and the ones that do, have very expensive plans, with very low data allowance per month. I need to develop an app, but part of the problem lies with checking database values every 30 seconds. It's pretty important that this check is happening every 30 seconds, as the database is actually updated all day everyday, approx. every 5seconds (apparently). Each row in the database consists of about a page full of text if you were to paste it into MS Word. So, are there any logical ways of minimizing data usage in my case, and also how am I able to see exactly how much data is used just to establish a connection to the database? Are there any tools for this kind of info? Thanks :)

    Read the article

  • How can I find out how much memory an object (rather the instance of an object) of a C++ class consu

    - by Shadow
    Hi, I am developing a Graph-class, based on boost-graph-library. A Graph-object contains a boost-graph, so to say an adjacency_list, and a map. When monitoring the total memory usage of my program, it consumes quite a lot (checked with pmap). Now, I would like to know, how much of the memory is exactly consumed by a filled object of this Graph-class? With filled I mean when the adjacency_list is full of vertices and edges. I found out, that using sizeof() doesn't bring me far. Using valgrind is also not an alternative as there is quite some memory allocation done previously and this makes the usage of valgrind impractical for this purpose. I'm also not interested in what other parts of the program cost in memory, I want to focus on one single object. Thank you.

    Read the article

  • Silverlight Memory Usage

    - by peter
    Hi All, Is there a way to measure the current memory usage of the silverlight plug-in from within the client side C# code? I am isolating a memory leak and it would be good to know the current memory usage of the plug-in. For instance it could be logged to a file before I clicked a button that it was using '60 mb' and after I clicked the button it was using '70 mb' etc. I could then gradually add in controls and use this technique to quantify the leak. Thanks.

    Read the article

  • How can I find out how much memory an object of a C++ class consumes?

    - by Shadow
    Hi, I am developing a Graph-class, based on boost-graph-library. A Graph-object contains a boost-graph, so to say an adjacency_list, and a map. When monitoring the total memory usage of my program, it consumes quite a lot (checked with pmap). Now, I would like to know, how much of the memory is exactly consumed by a filled object of this Graph-class? With filled I mean when the adjacency_list is full of vertices and edges. I found out, that using sizeof() doesn't bring me far. Using valgrind is also not an alternative as there is quite some memory allocation done previously and this makes the usage of valgrind impractical for this purpose. I'm also not interested in what other parts of the program cost in memory, I want to focus on one single object. Thank you.

    Read the article

  • How can I find out how much memory an instance of a C++ class consumes?

    - by Shadow
    Hi, I am developing a Graph-class, based on boost-graph-library. A Graph-object contains a boost-graph, so to say an adjacency_list, and a map. When monitoring the total memory usage of my program, it consumes quite a lot (checked with pmap). Now, I would like to know, how much of the memory is exactly consumed by a filled object of this Graph-class? With filled I mean when the adjacency_list is full of vertices and edges. I found out, that using sizeof() doesn't bring me far. Using valgrind is also not an alternative as there is quite some memory allocation done previously and this makes the usage of valgrind impractical for this purpose. I'm also not interested in what other parts of the program cost in memory, I want to focus on one single object. Thank you.

    Read the article

  • VB.Net 2008 IDE hanging - MSVB7.dll eating 100% CPU when editing code

    - by Andrew Backer
    I am having a problem with msvb7.dll eating 50%+ cpu on my dual core system. This usually lasts 10-30 seconds or so, during which time the IDE is non-responsive. This occurs when I do pretty much anything in the text editor, and can be replicated by simply adding blank lines to a function, and then deleting them. Or pasting some code. Or... lotsa stuff. SP1 installed I had DevExpress' refactor/coderush, components, and codeit.right installed, but have removed all 3 of them. (I had installed the latest version of Refactor Pro! (9.3.4), perhaps the day before) I have tried a VS.NET Repair. There is a kb that referenced some cpu destroying with vb, but it was included in SP1 Also: The solution consists of ~30 VB projects and 2 C# projects 8 other developers aren't having any issues with this (or at least not the SAME issues, we all have em) Clean get from TFS was done Project builds properly, can can even debug. This doesn't seem to happen on really small solutions, but perhaps it does and it just goes away super quick. Any clues at all as to what might be causing this, or how to fix it? I REALLY don't want to lose another day uninstalling and reinstalling and patching and so on =) If that even fixes it. Here is the stack trace (process explorer) that I get from the threads window when the msvb7.dll is churning. --- title in process explorer [threads] tab for process -------- cpu:49.28% cswitch delta: 300 to 3500 startaddress: [msvb7.dll+0x4218c] msvb7.dll version: 9.0.30729.1 --- actual stack trace ------- ntkrnlpa.exe!KiUnexpectedInterrupt+0x121 ntkrnlpa.exe!ZwYieldExecution+0x1c56 ntkrnlpa.exe!KiDispatchInterrupt+0x72e NDIS.sys!NdisFreeToBlockPool+0x15e1 // shortened stack trace. all of these are from msvb7, msvb7.dll+0x46ce7 <- 0x2676a <- 0x2698e <- 0x38031 <- 0x2659f <- 0x26644 msvb7.dll+0x25f29 <- 0x2ac7a <- 0x27522 <- 0x274a0 <- 0x2b5ce <- 0x2b6e4 msvb7.dll+0x67d0a <- 0x68551 <- 0x6817b <- 0x681f0 <- 0x67c38 <- 0x65fa8 msvb7.dll+0x666c6 <- 0x6672c <- 0x6673d <- 0x6677c <- 0x667b4 <- 0x63c77 msvb7.dll+0x63e97 <- 0x42c3a <- 0x42bc1 <- 0x41bd7 kernel32.dll!GetModuleFileNameA+0x1b4 This is the list of stuff from "copy info" in help-about, shortened to a resonable length. Microsoft Visual Studio 2008 | Version 9.0.30729.1 SP Microsoft Visual Studio 2008 Professional Edition - ENU Service Pack 1 (KB945140) KB945140 Microsoft .NET Framework | Version 3.5 SP1 Microsoft Visual Basic 2008 Microsoft Visual C# 2008 Microsoft Visual F# for Visual Studio 2008 Microsoft Visual Studio 2008 Team Explorer | Version 9.0.30729.1 Microsoft Visual Studio 2008 Tools for Office Microsoft Visual Web Developer 2008 Hotfix for Microsoft Visual Studio 2008 Professional Edition - ENU KB944899, KB945282, KB946040, KB946308, KB946344, KB946581, KB947171 KB947173, KB947180, KB947540, KB947789, KB948127, KB946260, KB946458, KB948816 Microsoft Recipe Framework Package 8.0 Process Editor WIT Designer 1.4.0.0 Process Editor for Microsoft Visual Studio Team Foundation Server, Version 1.4.0.0 tangible T4 Editor 9.0 tangible T4 Text Template Editor - T4 Editor tangibleprojectsystem 1.0 Team Foundation Server Power Tools October 2008 SQL Prompt 4.0 (disabled)

    Read the article

  • Can this loop take out 100% CPU?

    - by Nitesh Panchal
    Hello, I created a chat application and seems to work just fine except that it takes up 100% cpu. Can this loop take out 100% Cpu? If yes, then what do i do to overcome it? @Override public void run(){ try { _objServerSocket = new ServerSocket(17001, 500); while (true) { try { initializeConnection(); addNewChatClient(); Thread.sleep(1000); } catch (Exception ex) { } } } catch (IOException ex) { System.out.println(ex.getCause() + "\n"+ ex.getMessage() + "\n" + ex.getStackTrace()); } } Thanks in advance :)

    Read the article

  • Too many apache processes, killing the CPU

    - by RULE101
    I am noticed that too many apache processes killing the CPU in my dedicated server. 14193 (Trace) (Kill) nobody 0 66.1 0.0 /usr/local/apache/bin/httpd -k start -DSSL 14128 (Trace) (Kill) nobody 0 65.9 0.0 /usr/local/apache/bin/httpd -k start -DSSL 14136 (Trace) (Kill) nobody 0 65.9 0.0 /usr/local/apache/bin/httpd -k start -DSSL 14129 (Trace) (Kill) nobody 0 65.8 0.0 /usr/local/apache/bin/httpd -k start -DSSL 13419 (Trace) (Kill) nobody 0 65.7 0.0 /usr/local/apache/bin/httpd -k start -DSSL 13421 (Trace) (Kill) nobody 0 65.7 0.0 /usr/local/apache/bin/httpd -k start -DSSL 13426 (Trace) (Kill) nobody 0 65.7 0.0 /usr/local/apache/bin/httpd -k start -DSSL 13428 (Trace) (Kill) nobody 0 65.7 0.0 /usr/local/apache/bin/httpd -k start -DSSL 13429 (Trace) (Kill) nobody 0 65.7 0.0 /usr/local/apache/bin/httpd -k start -DSSL 12173 (Trace) (Kill) nobody 0 65.5 0.0 /usr/local/apache/bin/httpd -k start -DSSL 14073 (Trace) (Kill) nobody 0 65.5 0.0 /usr/local/apache/bin/httpd -k start -DSSL I am getting high load email notification from cpanel during the day. FROM httpd.conf Include "/usr/local/apache/conf/includes/pre_main_global.conf" Include "/usr/local/apache/conf/includes/pre_main_2.conf" LoadModule bwlimited_module modules/mod_bwlimited.so LoadModule h264_streaming_module /usr/local/apache/modules/mod_h264_streaming.so AddHandler h264-streaming.extensions .mp4 Include "/usr/local/apache/conf/php.conf" Include "/usr/local/apache/conf/includes/errordocument.conf" ErrorLog "logs/error_log" ScriptAliasMatch ^/?controlpanel/?$ /usr/local/cpanel/cgi-sys/redirect.cgi ScriptAliasMatch ^/?cpanel/?$ /usr/local/cpanel/cgi-sys/redirect.cgi ScriptAliasMatch ^/?kpanel/?$ /usr/local/cpanel/cgi-sys/redirect.cgi ScriptAliasMatch ^/?securecontrolpanel/?$ /usr/local/cpanel/cgi-sys/sredirect.cgi ScriptAliasMatch ^/?securecpanel/?$ /usr/local/cpanel/cgi-sys/sredirect.cgi ScriptAliasMatch ^/?securewhm/?$ /usr/local/cpanel/cgi-sys/swhmredirect.cgi ScriptAliasMatch ^/?webmail/?$ /usr/local/cpanel/cgi-sys/wredirect.cgi ScriptAliasMatch ^/?whm/?$ /usr/local/cpanel/cgi-sys/whmredirect.cgi RewriteEngine on AddType text/html .shtml Alias /akopia /usr/local/cpanel/3rdparty/interchange/share/akopia/ Alias /bandwidth /usr/local/bandmin/htdocs/ Alias /img-sys /usr/local/cpanel/img-sys/ Alias /interchange /usr/local/cpanel/3rdparty/interchange/share/interchange/ Alias /interchange-5 /usr/local/cpanel/3rdparty/interchange/share/interchange-5/ Alias /java-sys /usr/local/cpanel/java-sys/ Alias /mailman/archives /usr/local/cpanel/3rdparty/mailman/archives/public/ Alias /pipermail /usr/local/cpanel/3rdparty/mailman/archives/public/ Alias /sys_cpanel /usr/local/cpanel/sys_cpanel/ ScriptAlias /cgi-sys /usr/local/cpanel/cgi-sys/ ScriptAlias /mailman /usr/local/cpanel/3rdparty/mailman/cgi-bin/ <Directory "/"> AllowOverride All Options All </Directory> <Directory "/usr/local/apache/htdocs"> Options All AllowOverride None Require all granted </Directory> <Files ~ "^error_log$"> Order allow,deny Deny from all Satisfy All </Files> <Files ".ht*"> Require all denied </Files> <IfModule log_config_module> LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %b" common CustomLog "logs/access_log" common <IfModule logio_module> LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %I %O" combinedio </IfModule> </IfModule> <IfModule alias_module> ScriptAlias /cgi-bin/ "/usr/local/apache/cgi-bin/" </IfModule> <Directory "/usr/local/apache/cgi-bin"> AllowOverride None Options All Require all granted </Directory> <IfModule mime_module> TypesConfig conf/mime.types AddType application/x-compress .Z AddType application/x-gzip .gz .tgz </IfModule> <IfModule prefork.c> Mutex default mpm-accept </IfModule> <IfModule mod_log_config.c> LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %b" common LogFormat "%{Referer}i -> %U" referer LogFormat "%{User-agent}i" agent CustomLog logs/access_log common </IfModule> <IfModule worker.c> Mutex default mpm-accept </IfModule> # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Direct modifications to the Apache configuration file may be lost upon subsequent regeneration of the # # configuration file. To have modifications retained, all modifications must be checked into the # # configuration system by running: # # /usr/local/cpanel/bin/apache_conf_distiller --update # # To see if your changes will be conserved, regenerate the Apache configuration file by running: # # /usr/local/cpanel/bin/build_apache_conf # # and check the configuration file for your alterations. If your changes have been ignored, then they will # # need to be added directly to their respective template files. # # # # It is also possible to add custom directives to the various "Include" files loaded by this httpd.conf # # For detailed instructions on using Include files and the apache_conf_distiller with the new configuration # # system refer to the documentation at: http://www.cpanel.net/support/docs/ea/ea3/customdirectives.html # # # # This configuration file was built from the following templates: # # /var/cpanel/templates/apache2/main.default # # /var/cpanel/templates/apache2/main.local # # /var/cpanel/templates/apache2/vhost.default # # /var/cpanel/templates/apache2/vhost.local # # /var/cpanel/templates/apache2/ssl_vhost.default # # /var/cpanel/templates/apache2/ssl_vhost.local # # # # Templates with the '.local' extension will be preferred over templates with the '.default' extension. # # The only template updated by the apache_conf_distiller is main.default. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # PidFile logs/httpd.pid # Defined in /var/cpanel/cpanel.config: apache_port Listen 0.0.0.0:80 User nobody Group nobody ExtendedStatus On ServerAdmin [email protected] ServerName server.powerlabel.net LogLevel warn # These can be set in WHM under 'Apache Global Configuration' Timeout 300 ServerSignature On <IfModule prefork.c> </IfModule> RewriteEngine on RewriteMap LeechProtect prg:/usr/local/cpanel/bin/leechprotect Mutex file:/usr/local/apache/logs rewrite-map <IfModule !mod_ruid2.c> UserDir public_html </IfModule> <IfModule mod_ruid2.c> UserDir disabled </IfModule> # DirectoryIndex is set via the WHM -> Service Configuration -> Apache Setup -> DirectoryIndex Priority DirectoryIndex index.html.var index.htm index.html index.shtml index.xhtml index.wml index.perl index.pl index.plx index.ppl index.cgi index.jsp index.js index.jp index.php4 index.php3 index.php index.phtml default.htm default.html home.htm index.php5 Default.html Default.htm home.html # SSLCipherSuite can be set in WHM under 'Apache Global Configuration' SSLPassPhraseDialog builtin SSLUseStapling on SSLStaplingCache shmcb:/usr/local/apache/logs/stapling_cache_shmcb(256000) SSLSessionCache shmcb:/usr/local/apache/logs/ssl_gcache_data_shmcb(1024000) SSLSessionCacheTimeout 300 Mutex file:/usr/local/apache/logs ssl-cache SSLRandomSeed startup builtin SSLRandomSeed connect builtin # Defined in /var/cpanel/cpanel.config: apache_ssl_port Listen 0.0.0.0:443 AddType application/x-x509-ca-cert .crt AddType application/x-pkcs7-crl .crl AddHandler cgi-script .cgi .pl .plx .ppl .perl AddHandler server-parsed .shtml AddType text/html .shtml AddType application/x-tar .tgz AddType text/vnd.wap.wml .wml AddType image/vnd.wap.wbmp .wbmp AddType text/vnd.wap.wmlscript .wmls AddType application/vnd.wap.wmlc .wmlc AddType application/vnd.wap.wmlscriptc .wmlsc <Location /whm-server-status> SetHandler server-status Order deny,allow Deny from all Allow from 127.0.0.1 </Location> # SUEXEC is supported Include "/usr/local/apache/conf/includes/pre_virtualhost_global.conf" Include "/usr/local/apache/conf/includes/pre_virtualhost_2.conf" What can cause this and how can i fix it ?

    Read the article

  • Best Practices - Core allocation

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (also called Logical Domains) Introduction SPARC T-series servers currently have up to 4 CPU sockets, each of which has up to 8 or (on SPARC T3) 16 CPU cores, while each CPU core has 8 threads, for a maximum of 512 dispatchable CPUs. The defining feature of Oracle VM Server for SPARC is that each domain is assigned CPU threads or cores for its exclusive use. This avoids the overhead of software-based time-slicing and emulation (or binary rewriting) of system state-changing privileged instructions used in traditional hypervisors. To create a domain, administrators specify either the number of CPU threads or cores that the domain will own, as well as its memory and I/O resources. When CPU resources are assigned at the individual thread level, the logical domains constraint manager attempts to assign threads from the same cores to a domain, and avoid "split core" situations where the same CPU core is used by multiple domains. Sometimes this is unavoidable, especially when domains are allocated and deallocated CPUs in small increments. Why split cores can matter Split core allocations can silenty reduce performance because multiple domains with different address spaces and memory contents are sharing the core's Level 1 cache (L1$). This is called false cache sharing since even identical memory addresses from different domains must point to different locations in RAM. The effect of this is increased contention for the cache, and higher memory latency for each domain using that core. The degree of performance impact can be widely variable. For applications with very small memory working sets, and with I/O bound or low-CPU utilization workloads, it may not matter at all: all machines wait for work at the same speed. If the domains have substantial workloads, or are critical to performance then this can have an important impact: This blog entry was inspired by a customer issue in which one CPU core was split among 3 domains, one of which was the control and service domain. The reported problem was increased I/O latency in guest domains, but the root cause might be higher latency servicing the I/O requests due to the control domain being slowed down. What to do about it Split core situations are easily avoided. In most cases the logical domain constraint manager will avoid it without any administrative action, but it can be entirely prevented by doing one of the several actions: Assign virtual CPUs in multiples of 8 - the number of threads per core. For example: ldm set-vcpu 8 mydomain or ldm add-vcpu 24 mydomain. Each domain will then be allocated on a core boundary. Use the whole core constraint when assigning CPU resources. This allocates CPUs in increments of entire cores instead of virtual CPU threads. The equivalent of the above commands would be ldm set-core 1 mydomain or ldm add-core 3 mydomain. Older syntax does the same thing by adding the -c flag to the add-vcpu, rm-vcpu and set-vcpu commands, but the new syntax is recommended. When whole core allocation is used an attempt to add cores to a domain fails if there aren't enough completely empty cores to satisfy the request. See https://blogs.oracle.com/sharakan/entry/oracle_vm_server_for_sparc4 for an excellent article on this topic by Eric Sharakan. Don't obsess: - if the workloads have minimal CPU requirements and don't need anywhere near a full CPU core, then don't worry about it. If you have low utilization workloads being consolidated from older machines onto a current T-series, then there's no need to worry about this or to assign an entire core to domains that will never use that much capacity. In any case, make sure the most important domains have their own CPU cores, in particular the control domain and any I/O or service domain, and of course any important guests. Summary Split core CPU allocation to domains can potentially have an impact on performance, but the logical domains manager tends to prevent this situation, and it can be completely and simply avoided by allocating virtual CPUs on core boundaries.

    Read the article

  • How to reduce RAM consumption when my server is idle

    - by Julien Genestoux
    We use Slicehost, with 512MB instances. We run Ubuntu 9.10 on them. I installed a few packages, and I'm now trying to optimize RAM consumption before running anything on there. A simple ps gives me the list of running processes : # ps faux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 2 0.0 0.0 0 0 ? S< Jan04 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S< Jan04 0:15 \_ [migration/0] root 4 0.0 0.0 0 0 ? S< Jan04 0:01 \_ [ksoftirqd/0] root 5 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/0] root 6 0.0 0.0 0 0 ? S< Jan04 0:04 \_ [events/0] root 7 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [cpuset] root 8 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [khelper] root 9 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [async/mgr] root 10 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xenwatch] root 11 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xenbus] root 13 0.0 0.0 0 0 ? S< Jan04 0:02 \_ [migration/1] root 14 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/1] root 15 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/1] root 16 0.0 0.0 0 0 ? S< Jan04 0:07 \_ [events/1] root 17 0.0 0.0 0 0 ? S< Jan04 0:02 \_ [migration/2] root 18 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/2] root 19 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/2] root 20 0.0 0.0 0 0 ? R< Jan04 0:07 \_ [events/2] root 21 0.0 0.0 0 0 ? S< Jan04 0:04 \_ [migration/3] root 22 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/3] root 23 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/3] root 24 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [events/3] root 25 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/0] root 26 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/1] root 27 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/2] root 28 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/3] root 29 0.0 0.0 0 0 ? S< Jan04 0:01 \_ [kblockd/0] root 30 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/1] root 31 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/2] root 32 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/3] root 33 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kseriod] root 34 0.0 0.0 0 0 ? S Jan04 0:00 \_ [khungtaskd] root 35 0.0 0.0 0 0 ? S Jan04 0:05 \_ [pdflush] root 36 0.0 0.0 0 0 ? S Jan04 0:06 \_ [pdflush] root 37 0.0 0.0 0 0 ? S< Jan04 1:02 \_ [kswapd0] root 38 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/0] root 39 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/1] root 40 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/2] root 41 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/3] root 42 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsIO] root 43 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 44 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 45 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 46 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 47 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsSync] root 48 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfs_mru_cache] root 49 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/0] root 50 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/1] root 51 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/2] root 52 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/3] root 53 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/0] root 54 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/1] root 55 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/2] root 56 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/3] root 57 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/0] root 58 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/1] root 59 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/2] root 60 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/3] root 61 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 62 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 63 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 64 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 65 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 66 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 67 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 68 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 69 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kslowd] root 70 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kslowd] root 71 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/0] root 72 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/1] root 73 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/2] root 74 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/3] root 77 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/0] root 78 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/1] root 79 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/2] root 80 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/3] root 81 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/0] root 82 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/1] root 83 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/2] root 84 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/3] root 310 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kstriped] root 315 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksnapd] root 1452 0.0 0.0 0 0 ? S< Jan04 4:31 \_ [kjournald] root 1 0.0 0.1 19292 948 ? Ss Jan04 0:15 /sbin/init root 1545 0.0 0.1 13164 1064 ? S Jan04 0:00 upstart-udev-bridge --daemon root 1547 0.0 0.1 17196 996 ? S<s Jan04 0:00 udevd --daemon root 1728 0.0 0.2 20284 1468 ? S< Jan04 0:00 \_ udevd --daemon root 1729 0.0 0.1 17192 792 ? S< Jan04 0:00 \_ udevd --daemon root 1881 0.0 0.0 8192 152 ? Ss Jan04 0:00 dd bs=1 if=/proc/kmsg of=/var/run/rsyslog/kmsg syslog 1884 0.0 0.2 185252 1200 ? Sl Jan04 1:00 rsyslogd -c4 103 1894 0.0 0.1 23328 700 ? Ss Jan04 1:08 dbus-daemon --system --fork root 2046 0.0 0.0 136 32 ? Ss Jan04 4:05 runsvdir -P /etc/service log: gems/custom_require.rb:31:in `require'??from /mnt/app/superfeedr-firehoser/current/script/component:52?/opt/ruby-enterprise/lib/ruby/si root 2055 0.0 0.0 112 32 ? Ss Jan04 0:00 \_ runsv chef-client root 2060 0.0 0.0 132 40 ? S Jan04 0:02 | \_ svlogd -tt ./main root 2056 0.0 0.0 112 28 ? Ss Jan04 0:20 \_ runsv superfeedr-firehoser_2 root 2059 0.0 0.0 132 40 ? S Jan04 0:29 | \_ svlogd /var/log/superfeedr-firehoser_2 root 2057 0.0 0.0 112 28 ? Ss Jan04 0:20 \_ runsv superfeedr-firehoser_1 root 2062 0.0 0.0 132 44 ? S Jan04 0:26 \_ svlogd /var/log/superfeedr-firehoser_1 root 2058 0.0 0.0 18708 316 ? Ss Jan04 0:01 cron root 2095 0.0 0.1 49072 764 ? Ss Jan04 0:06 /usr/sbin/sshd root 9832 0.0 0.5 78916 3500 ? Ss 00:37 0:00 \_ sshd: root@pts/0 root 9846 0.0 0.3 17900 2036 pts/0 Ss 00:37 0:00 \_ -bash root 10132 0.0 0.1 15020 1064 pts/0 R+ 09:51 0:00 \_ ps faux root 2180 0.0 0.0 5988 140 tty1 Ss+ Jan04 0:00 /sbin/getty -8 38400 tty1 root 27610 0.0 1.4 47060 8436 ? S Apr04 2:21 python /usr/sbin/denyhosts --daemon --purge --config=/etc/denyhosts.conf --config=/etc/denyhosts.conf root 22640 0.0 0.7 119244 4164 ? Ssl Apr05 0:05 /usr/sbin/console-kit-daemon root 10113 0.0 0.0 3904 316 ? Ss 09:46 0:00 /usr/sbin/collectdmon -P /var/run/collectdmon.pid -- -C /etc/collectd/collectd.conf root 10114 0.0 0.2 201084 1464 ? Sl 09:46 0:00 \_ collectd -C /etc/collectd/collectd.conf -f As you can see there is nothing serious here. If I sum up the RSS line on all this, I get the following : # ps -aeo rss | awk '{sum+=$1} END {print sum}' 30096 Which makes sense. However, I have a pretty big surprise when I do a free: # free total used free shared buffers cached Mem: 591180 343684 247496 0 25432 161256 -/+ buffers/cache: 156996 434184 Swap: 1048568 0 1048568 As you can see 60% of the available memory is already consumed... which leaves me with only 40% to run my own applications if I want to avoid swapping. Quite disapointing! 2 questions arise : Where is all this memory? How to take some of it back for my own apps?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Where is all the memory being consumed?

    - by Mark L
    Hello, I have a Dell R300 Ubuntu 9.10 box with 4GB of memory. All I'm running on there is haproxy, nagios and postfix yet there is ~2.7GB of memory being consumed. I've run ps and I can't get the sums to add up. Could anyone shed any light on where all the memory is being used? Cheers, Mark $ sudo free -m total used free shared buffers cached Mem: 3957 2746 1211 0 169 2320 -/+ buffers/cache: 256 3701 Swap: 6212 0 6212 Sorry for pasting all of ps' output but I'm keen to get to the bottom of this. $ sudo ps aux [sudo] password for mark: USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.0 0.0 19320 1656 ? Ss May20 0:05 /sbin/init root 2 0.0 0.0 0 0 ? S< May20 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S< May20 0:00 [migration/0] root 4 0.0 0.0 0 0 ? S< May20 0:16 [ksoftirqd/0] root 5 0.0 0.0 0 0 ? S< May20 0:00 [watchdog/0] root 6 0.0 0.0 0 0 ? S< May20 0:03 [migration/1] root 7 0.0 0.0 0 0 ? S< May20 3:10 [ksoftirqd/1] root 8 0.0 0.0 0 0 ? S< May20 0:00 [watchdog/1] root 9 0.0 0.0 0 0 ? S< May20 0:00 [migration/2] root 10 0.0 0.0 0 0 ? S< May20 0:19 [ksoftirqd/2] root 11 0.0 0.0 0 0 ? S< May20 0:00 [watchdog/2] root 12 0.0 0.0 0 0 ? S< May20 0:01 [migration/3] root 13 0.0 0.0 0 0 ? S< May20 0:41 [ksoftirqd/3] root 14 0.0 0.0 0 0 ? S< May20 0:00 [watchdog/3] root 15 0.0 0.0 0 0 ? S< May20 0:03 [events/0] root 16 0.0 0.0 0 0 ? S< May20 0:10 [events/1] root 17 0.0 0.0 0 0 ? S< May20 0:08 [events/2] root 18 0.0 0.0 0 0 ? S< May20 0:08 [events/3] root 19 0.0 0.0 0 0 ? S< May20 0:00 [cpuset] root 20 0.0 0.0 0 0 ? S< May20 0:00 [khelper] root 21 0.0 0.0 0 0 ? S< May20 0:00 [netns] root 22 0.0 0.0 0 0 ? S< May20 0:00 [async/mgr] root 23 0.0 0.0 0 0 ? S< May20 0:00 [kintegrityd/0] root 24 0.0 0.0 0 0 ? S< May20 0:00 [kintegrityd/1] root 25 0.0 0.0 0 0 ? S< May20 0:00 [kintegrityd/2] root 26 0.0 0.0 0 0 ? S< May20 0:00 [kintegrityd/3] root 27 0.0 0.0 0 0 ? S< May20 0:00 [kblockd/0] root 28 0.0 0.0 0 0 ? S< May20 0:01 [kblockd/1] root 29 0.0 0.0 0 0 ? S< May20 0:04 [kblockd/2] root 30 0.0 0.0 0 0 ? S< May20 0:02 [kblockd/3] root 31 0.0 0.0 0 0 ? S< May20 0:00 [kacpid] root 32 0.0 0.0 0 0 ? S< May20 0:00 [kacpi_notify] root 33 0.0 0.0 0 0 ? S< May20 0:00 [kacpi_hotplug] root 34 0.0 0.0 0 0 ? S< May20 0:00 [ata/0] root 35 0.0 0.0 0 0 ? S< May20 0:00 [ata/1] root 36 0.0 0.0 0 0 ? S< May20 0:00 [ata/2] root 37 0.0 0.0 0 0 ? S< May20 0:00 [ata/3] root 38 0.0 0.0 0 0 ? S< May20 0:00 [ata_aux] root 39 0.0 0.0 0 0 ? S< May20 0:00 [ksuspend_usbd] root 40 0.0 0.0 0 0 ? S< May20 0:00 [khubd] root 41 0.0 0.0 0 0 ? S< May20 0:00 [kseriod] root 42 0.0 0.0 0 0 ? S< May20 0:00 [kmmcd] root 43 0.0 0.0 0 0 ? S< May20 0:00 [bluetooth] root 44 0.0 0.0 0 0 ? S May20 0:00 [khungtaskd] root 45 0.0 0.0 0 0 ? S May20 0:00 [pdflush] root 46 0.0 0.0 0 0 ? S May20 0:09 [pdflush] root 47 0.0 0.0 0 0 ? S< May20 0:00 [kswapd0] root 48 0.0 0.0 0 0 ? S< May20 0:00 [aio/0] root 49 0.0 0.0 0 0 ? S< May20 0:00 [aio/1] root 50 0.0 0.0 0 0 ? S< May20 0:00 [aio/2] root 51 0.0 0.0 0 0 ? S< May20 0:00 [aio/3] root 52 0.0 0.0 0 0 ? S< May20 0:00 [ecryptfs-kthrea] root 53 0.0 0.0 0 0 ? S< May20 0:00 [crypto/0] root 54 0.0 0.0 0 0 ? S< May20 0:00 [crypto/1] root 55 0.0 0.0 0 0 ? S< May20 0:00 [crypto/2] root 56 0.0 0.0 0 0 ? S< May20 0:00 [crypto/3] root 70 0.0 0.0 0 0 ? S< May20 0:00 [scsi_eh_0] root 71 0.0 0.0 0 0 ? S< May20 0:00 [scsi_eh_1] root 74 0.0 0.0 0 0 ? S< May20 0:00 [scsi_eh_2] root 75 0.0 0.0 0 0 ? S< May20 0:00 [scsi_eh_3] root 82 0.0 0.0 0 0 ? S< May20 0:00 [kstriped] root 83 0.0 0.0 0 0 ? S< May20 0:00 [kmpathd/0] root 84 0.0 0.0 0 0 ? S< May20 0:00 [kmpathd/1] root 85 0.0 0.0 0 0 ? S< May20 0:00 [kmpathd/2] root 86 0.0 0.0 0 0 ? S< May20 0:00 [kmpathd/3] root 87 0.0 0.0 0 0 ? S< May20 0:00 [kmpath_handlerd] root 88 0.0 0.0 0 0 ? S< May20 0:00 [ksnapd] root 89 0.0 0.0 0 0 ? S< May20 0:00 [kondemand/0] root 90 0.0 0.0 0 0 ? S< May20 0:00 [kondemand/1] root 91 0.0 0.0 0 0 ? S< May20 0:00 [kondemand/2] root 92 0.0 0.0 0 0 ? S< May20 0:00 [kondemand/3] root 93 0.0 0.0 0 0 ? S< May20 0:00 [kconservative/0] root 94 0.0 0.0 0 0 ? S< May20 0:00 [kconservative/1] root 95 0.0 0.0 0 0 ? S< May20 0:00 [kconservative/2] root 96 0.0 0.0 0 0 ? S< May20 0:00 [kconservative/3] root 97 0.0 0.0 0 0 ? S< May20 0:00 [krfcommd] root 315 0.0 0.0 0 0 ? S< May20 0:09 [mpt_poll_0] root 317 0.0 0.0 0 0 ? S< May20 0:00 [mpt/0] root 547 0.0 0.0 0 0 ? S< May20 0:00 [scsi_eh_4] root 587 0.0 0.0 0 0 ? S< May20 0:11 [kjournald2] root 636 0.0 0.0 12748 860 ? S May20 0:00 upstart-udev-bridge --daemon root 657 0.0 0.0 17064 924 ? S<s May20 0:00 udevd --daemon root 666 0.0 0.0 8192 612 ? Ss May20 0:00 dd bs=1 if=/proc/kmsg of=/var/run/rsyslog/kmsg root 774 0.0 0.0 17060 888 ? S< May20 0:00 udevd --daemon root 775 0.0 0.0 17060 888 ? S< May20 0:00 udevd --daemon syslog 825 0.0 0.0 191696 1988 ? Sl May20 0:31 rsyslogd -c4 root 839 0.0 0.0 0 0 ? S< May20 0:00 [edac-poller] root 870 0.0 0.0 0 0 ? S< May20 0:00 [kpsmoused] root 1006 0.0 0.0 5988 604 tty4 Ss+ May20 0:00 /sbin/getty -8 38400 tty4 root 1008 0.0 0.0 5988 604 tty5 Ss+ May20 0:00 /sbin/getty -8 38400 tty5 root 1015 0.0 0.0 5988 604 tty2 Ss+ May20 0:00 /sbin/getty -8 38400 tty2 root 1016 0.0 0.0 5988 608 tty3 Ss+ May20 0:00 /sbin/getty -8 38400 tty3 root 1018 0.0 0.0 5988 604 tty6 Ss+ May20 0:00 /sbin/getty -8 38400 tty6 daemon 1025 0.0 0.0 16512 472 ? Ss May20 0:00 atd root 1026 0.0 0.0 18708 1000 ? Ss May20 0:03 cron root 1052 0.0 0.0 49072 1252 ? Ss May20 0:25 /usr/sbin/sshd root 1084 0.0 0.0 5988 604 tty1 Ss+ May20 0:00 /sbin/getty -8 38400 tty1 root 6320 0.0 0.0 19440 956 ? Ss May21 0:00 /usr/sbin/xinetd -pidfile /var/run/xinetd.pid -stayalive -inetd_compat -inetd_ipv6 nagios 8197 0.0 0.0 27452 1696 ? SNs May21 2:57 /usr/sbin/nagios3 -d /etc/nagios3/nagios.cfg root 10882 0.1 0.0 70280 3104 ? Ss 10:30 0:00 sshd: mark [priv] mark 10934 0.0 0.0 70432 1776 ? S 10:30 0:00 sshd: mark@pts/0 mark 10935 1.4 0.1 21572 4336 pts/0 Ss 10:30 0:00 -bash root 10953 1.0 0.0 15164 1136 pts/0 R+ 10:30 0:00 ps aux haproxy 12738 0.0 0.0 17208 992 ? Ss Jun08 0:49 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg root 23953 0.0 0.0 37012 2192 ? Ss Jun04 0:03 /usr/lib/postfix/master postfix 23955 0.0 0.0 39232 2356 ? S Jun04 0:00 qmgr -l -t fifo -u postfix 32603 0.0 0.0 39072 2132 ? S 09:05 0:00 pickup -l -t fifo -u -c Here's meminfo: $ cat /proc/meminfo MemTotal: 4052852 kB MemFree: 1240488 kB Buffers: 173172 kB Cached: 2376420 kB SwapCached: 0 kB Active: 1479288 kB Inactive: 1081876 kB Active(anon): 11792 kB Inactive(anon): 0 kB Active(file): 1467496 kB Inactive(file): 1081876 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 6361700 kB SwapFree: 6361700 kB Dirty: 44 kB Writeback: 0 kB AnonPages: 11568 kB Mapped: 5844 kB Slab: 155032 kB SReclaimable: 145804 kB SUnreclaim: 9228 kB PageTables: 1592 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 8388124 kB Committed_AS: 51732 kB VmallocTotal: 34359738367 kB VmallocUsed: 282604 kB VmallocChunk: 34359453499 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 6784 kB DirectMap2M: 4182016 kB Here's slabinfo: $ cat /proc/slabinfo slabinfo - version: 2.1 # name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail> ip6_dst_cache 50 50 320 25 2 : tunables 0 0 0 : slabdata 2 2 0 UDPLITEv6 0 0 960 17 4 : tunables 0 0 0 : slabdata 0 0 0 UDPv6 68 68 960 17 4 : tunables 0 0 0 : slabdata 4 4 0 tw_sock_TCPv6 0 0 320 25 2 : tunables 0 0 0 : slabdata 0 0 0 TCPv6 72 72 1792 18 8 : tunables 0 0 0 : slabdata 4 4 0 dm_raid1_read_record 0 0 1064 30 8 : tunables 0 0 0 : slabdata 0 0 0 kcopyd_job 0 0 368 22 2 : tunables 0 0 0 : slabdata 0 0 0 dm_uevent 0 0 2608 12 8 : tunables 0 0 0 : slabdata 0 0 0 dm_rq_target_io 0 0 376 21 2 : tunables 0 0 0 : slabdata 0 0 0 uhci_urb_priv 0 0 56 73 1 : tunables 0 0 0 : slabdata 0 0 0 cfq_queue 0 0 168 24 1 : tunables 0 0 0 : slabdata 0 0 0 mqueue_inode_cache 18 18 896 18 4 : tunables 0 0 0 : slabdata 1 1 0 fuse_request 0 0 632 25 4 : tunables 0 0 0 : slabdata 0 0 0 fuse_inode 0 0 768 21 4 : tunables 0 0 0 : slabdata 0 0 0 ecryptfs_inode_cache 0 0 1024 16 4 : tunables 0 0 0 : slabdata 0 0 0 hugetlbfs_inode_cache 26 26 608 26 4 : tunables 0 0 0 : slabdata 1 1 0 journal_handle 680 680 24 170 1 : tunables 0 0 0 : slabdata 4 4 0 journal_head 144 144 112 36 1 : tunables 0 0 0 : slabdata 4 4 0 revoke_table 256 256 16 256 1 : tunables 0 0 0 : slabdata 1 1 0 revoke_record 512 512 32 128 1 : tunables 0 0 0 : slabdata 4 4 0 ext4_inode_cache 53306 53424 888 18 4 : tunables 0 0 0 : slabdata 2968 2968 0 ext4_free_block_extents 292 292 56 73 1 : tunables 0 0 0 : slabdata 4 4 0 ext4_alloc_context 112 112 144 28 1 : tunables 0 0 0 : slabdata 4 4 0 ext4_prealloc_space 156 156 104 39 1 : tunables 0 0 0 : slabdata 4 4 0 ext4_system_zone 0 0 40 102 1 : tunables 0 0 0 : slabdata 0 0 0 ext2_inode_cache 0 0 776 21 4 : tunables 0 0 0 : slabdata 0 0 0 ext3_inode_cache 0 0 784 20 4 : tunables 0 0 0 : slabdata 0 0 0 ext3_xattr 0 0 88 46 1 : tunables 0 0 0 : slabdata 0 0 0 dquot 0 0 256 16 1 : tunables 0 0 0 : slabdata 0 0 0 shmem_inode_cache 606 620 800 20 4 : tunables 0 0 0 : slabdata 31 31 0 pid_namespace 0 0 2112 15 8 : tunables 0 0 0 : slabdata 0 0 0 UDP-Lite 0 0 832 19 4 : tunables 0 0 0 : slabdata 0 0 0 RAW 183 210 768 21 4 : tunables 0 0 0 : slabdata 10 10 0 UDP 76 76 832 19 4 : tunables 0 0 0 : slabdata 4 4 0 tw_sock_TCP 80 80 256 16 1 : tunables 0 0 0 : slabdata 5 5 0 TCP 81 114 1664 19 8 : tunables 0 0 0 : slabdata 6 6 0 blkdev_integrity 144 144 112 36 1 : tunables 0 0 0 : slabdata 4 4 0 blkdev_queue 64 64 2024 16 8 : tunables 0 0 0 : slabdata 4 4 0 blkdev_requests 120 120 336 24 2 : tunables 0 0 0 : slabdata 5 5 0 fsnotify_event 156 156 104 39 1 : tunables 0 0 0 : slabdata 4 4 0 bip-256 7 7 4224 7 8 : tunables 0 0 0 : slabdata 1 1 0 bip-128 0 0 2176 15 8 : tunables 0 0 0 : slabdata 0 0 0 bip-64 0 0 1152 28 8 : tunables 0 0 0 : slabdata 0 0 0 bip-16 84 84 384 21 2 : tunables 0 0 0 : slabdata 4 4 0 sock_inode_cache 224 276 704 23 4 : tunables 0 0 0 : slabdata 12 12 0 file_lock_cache 88 88 184 22 1 : tunables 0 0 0 : slabdata 4 4 0 net_namespace 0 0 1920 17 8 : tunables 0 0 0 : slabdata 0 0 0 Acpi-ParseExt 640 672 72 56 1 : tunables 0 0 0 : slabdata 12 12 0 taskstats 48 48 328 24 2 : tunables 0 0 0 : slabdata 2 2 0 proc_inode_cache 1613 1750 640 25 4 : tunables 0 0 0 : slabdata 70 70 0 sigqueue 100 100 160 25 1 : tunables 0 0 0 : slabdata 4 4 0 radix_tree_node 22443 22475 560 29 4 : tunables 0 0 0 : slabdata 775 775 0 bdev_cache 72 72 896 18 4 : tunables 0 0 0 : slabdata 4 4 0 sysfs_dir_cache 9866 9894 80 51 1 : tunables 0 0 0 : slabdata 194 194 0 inode_cache 2268 2268 592 27 4 : tunables 0 0 0 : slabdata 84 84 0 dentry 285907 286062 192 21 1 : tunables 0 0 0 : slabdata 13622 13622 0 buffer_head 256447 257472 112 36 1 : tunables 0 0 0 : slabdata 7152 7152 0 vm_area_struct 1469 1541 176 23 1 : tunables 0 0 0 : slabdata 67 67 0 mm_struct 82 95 832 19 4 : tunables 0 0 0 : slabdata 5 5 0 files_cache 104 161 704 23 4 : tunables 0 0 0 : slabdata 7 7 0 signal_cache 163 187 960 17 4 : tunables 0 0 0 : slabdata 11 11 0 sighand_cache 145 165 2112 15 8 : tunables 0 0 0 : slabdata 11 11 0 task_xstate 118 140 576 28 4 : tunables 0 0 0 : slabdata 5 5 0 task_struct 128 165 5808 5 8 : tunables 0 0 0 : slabdata 33 33 0 anon_vma 731 896 32 128 1 : tunables 0 0 0 : slabdata 7 7 0 shared_policy_node 85 85 48 85 1 : tunables 0 0 0 : slabdata 1 1 0 numa_policy 170 170 24 170 1 : tunables 0 0 0 : slabdata 1 1 0 idr_layer_cache 240 240 544 30 4 : tunables 0 0 0 : slabdata 8 8 0 kmalloc-8192 27 32 8192 4 8 : tunables 0 0 0 : slabdata 8 8 0 kmalloc-4096 291 344 4096 8 8 : tunables 0 0 0 : slabdata 43 43 0 kmalloc-2048 225 240 2048 16 8 : tunables 0 0 0 : slabdata 15 15 0 kmalloc-1024 366 432 1024 16 4 : tunables 0 0 0 : slabdata 27 27 0 kmalloc-512 536 544 512 16 2 : tunables 0 0 0 : slabdata 34 34 0 kmalloc-256 406 528 256 16 1 : tunables 0 0 0 : slabdata 33 33 0 kmalloc-128 503 576 128 32 1 : tunables 0 0 0 : slabdata 18 18 0 kmalloc-64 3467 3712 64 64 1 : tunables 0 0 0 : slabdata 58 58 0 kmalloc-32 1520 1920 32 128 1 : tunables 0 0 0 : slabdata 15 15 0 kmalloc-16 3547 3840 16 256 1 : tunables 0 0 0 : slabdata 15 15 0 kmalloc-8 4607 4608 8 512 1 : tunables 0 0 0 : slabdata 9 9 0 kmalloc-192 4620 5313 192 21 1 : tunables 0 0 0 : slabdata 253 253 0 kmalloc-96 1780 1848 96 42 1 : tunables 0 0 0 : slabdata 44 44 0 kmem_cache_node 0 0 64 64 1 : tunables 0 0 0 : slabdata 0 0 0

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >