Search Results

Search found 2844 results on 114 pages for 'iterative conversion'.

Page 50/114 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • python-wordmatching

    - by challarao
    Write two functions, called countSubStringMatch and countSubStringMatchRecursive that take two arguments, a key string and a target string. These functions iteratively and recursively count the number of instances of the key in the target string. You should complete definitions for def countSubStringMatch(target,key): and def countSubStringMatchRecursive (target, key): For the remaining problems, we are going to explore other substring matching ideas. These problems can be solved with either an iterative function or a recursive one. You are welcome to use either approach, though you may find iterative approaches more intuitive in these cases of matching linear structures.

    Read the article

  • handling matrix data in python

    - by Ovisek
    I was trying to progressively subtract values of a 3D matrix. The matrix looks like: ATOM 1223 ZX SOD A 11 2.11 -1.33 12.33 ATOM 1224 ZY SOD A 11 -2.99 -2.92 20.22 ATOM 1225 XH HEL A 12 -3.67 9.55 21.54 ATOM 1226 SS ARG A 13 -6.55 -3.09 42.11 ... here the last three columns are representing values for axes x,y,z respectively. now I what I wanted to do is, take the values of x,y,z for 1st line and subtract with 2nd,3rd,4th line in a iterative way and print the values for each axes. I was using: for line in map(str.split,inp): x = line[-3] y = line[-2] z = line[-1] for separating the values, but how to do in iterative way. should I do it by using Counter.

    Read the article

  • Recursive solution to finding patterns

    - by user2997162
    I was solving a problem on recursion which is to count the total number of consecutive 8's in a number. For example: input: 8801 output: 2 input: 801 output: 0 input: 888 output: 3 input: 88088018 output:4 I am unable to figure out the logic of passing the information to the next recursive call about whether the previous digit was an 8. I do not want the code but I need help with the logic. For an iterative solution, I could have used a flag variable, but in recursion how do I do the work which flag variable does in an iterative solution. Also, it is not a part of any assignment. This just came to my mind because I am trying to practice coding using recursion.

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • Remove accents from String .NET

    - by developerit
    Private Const ACCENT As String = “ÀÁÂÃÄÅàáâãäåÒÓÔÕÖØòóôõöøÈÉÊËèéêëÌÍÎÏìíîïÙÚÛÜùúûüÿÑñÇç” Private Const SANSACCENT As String = “AAAAAAaaaaaaOOOOOOooooooEEEEeeeeIIIIiiiiUUUUuuuuyNnCc” Public Shared Function FormatForUrl(ByVal uriBase As String) As String If String.IsNullOrEmpty(uriBase) Then Return uriBase End If ‘// Declaration de variables Dim chaine As String = uriBase.Trim.Replace(” “, “-”) chaine = chaine.Replace(” “c, “-”c) chaine = chaine.Replace(“–”, “-”) chaine = chaine.Replace(“‘”c, String.Empty) chaine = chaine.Replace(“?”c, String.Empty) chaine = chaine.Replace(“#”c, String.Empty) chaine = chaine.Replace(“:”c, String.Empty) chaine = chaine.Replace(“;”c, String.Empty) ‘// Conversion des chaines en tableaux de caractŠres Dim tableauSansAccent As Char() = SANSACCENT.ToCharArray Dim tableauAccent As Char() = ACCENT.ToCharArray ‘// Pour chaque accent For i As Integer = 0 To ACCENT.Length – 1 ‘ // Remplacement de l’accent par son ‚quivalent sans accent dans la chaŒne de caractŠres chaine = chaine.Replace(tableauAccent(i).ToString(), tableauSansAccent(i).ToString()) Next ‘// Retour du resultat Return chaine End Function

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • SQL Server DATA Tools CTP4 Released!

    - by hassanfadili
    SQL Server team has released the new SQL Server Data Tools CTP4. Congratulations and Thanks to Gert Drapers and his team with this great milestone. To lear more about this SSDT CTP4 Release, check: What’s new in SQL Server Data Tools CTP4?http://blogs.msdn.com/b/ssdt/archive/2011/11/21/what-s-new-in-sql-server-data-tools-ctp4.aspxSQL Server Data Tools CTP4 vs. VS2010 Database Projectshttp://blogs.msdn.com/b/ssdt/archive/2011/11/21/sql-server-data-tools-ctp4-vs-vs2010-database-projects.aspxTop VSDB->SSDT Project Conversion Issueshttp://blogs.msdn.com/b/ssdt/archive/2011/11/21/top-vsdb-gt-ssdt-project-conversion issues.aspxUninstalling SQL Server Developer Tools CTP3 (Code-named “Juneau”) http://blogs.msdn.com/b/ssdt/archive/2011/11/21/uninstalling-ssdt-ctp3-code-named-juneau.aspxThis actually points to a nifty PowerShell script to help you uninstall.Have Fun.v

    Read the article

  • What is the most efficient way to convert to binary and back in C#?

    - by Saad Imran.
    I'm trying to write a general purpose socket server for a game I'm working on. I know I could very well use already built servers like SmartFox and Photon, but I wan't to go through the pain of creating one myself for learning purposes. I've come up with a BSON inspired protocol to convert the the basic data types, their arrays, and a special GSObject to binary and arrange them in a way so that it can be put back together into object form on the client end. At the core, the conversion methods utilize the .Net BitConverter class to convert the basic data types to binary. Anyways, the problem is performance, if I loop 50,000 times and convert my GSObject to binary each time it takes about 5500ms (the resulting byte[] is just 192 bytes per conversion). I think think this would be way too slow for an MMO that sends 5-10 position updates per second with a 1000 concurrent users. Yes, I know it's unlikely that a game will have a 1000 users on at the same time, but like I said earlier this is supposed to be a learning process for me, I want to go out of my way and build something that scales well and can handle at least a few thousand users. So yea, if anyone's aware of other conversion techniques or sees where I'm loosing performance I would appreciate the help. GSBitConverter.cs This is the main conversion class, it adds extension methods to main datatypes to convert to the binary format. It uses the BitConverter class to convert the base types. I've shown only the code to convert integer and integer arrays, but the rest of the method are pretty much replicas of those two, they just overload the type. public static class GSBitConverter { public static byte[] ToGSBinary(this short value) { return BitConverter.GetBytes(value); } public static byte[] ToGSBinary(this IEnumerable<short> value) { List<byte> bytes = new List<byte>(); short length = (short)value.Count(); bytes.AddRange(length.ToGSBinary()); for (int i = 0; i < length; i++) bytes.AddRange(value.ElementAt(i).ToGSBinary()); return bytes.ToArray(); } public static byte[] ToGSBinary(this bool value); public static byte[] ToGSBinary(this IEnumerable<bool> value); public static byte[] ToGSBinary(this IEnumerable<byte> value); public static byte[] ToGSBinary(this int value); public static byte[] ToGSBinary(this IEnumerable<int> value); public static byte[] ToGSBinary(this long value); public static byte[] ToGSBinary(this IEnumerable<long> value); public static byte[] ToGSBinary(this float value); public static byte[] ToGSBinary(this IEnumerable<float> value); public static byte[] ToGSBinary(this double value); public static byte[] ToGSBinary(this IEnumerable<double> value); public static byte[] ToGSBinary(this string value); public static byte[] ToGSBinary(this IEnumerable<string> value); public static string GetHexDump(this IEnumerable<byte> value); } Program.cs Here's the the object that I'm converting to binary in a loop. class Program { static void Main(string[] args) { GSObject obj = new GSObject(); obj.AttachShort("smallInt", 15); obj.AttachInt("medInt", 120700); obj.AttachLong("bigInt", 10900800700); obj.AttachDouble("doubleVal", Math.PI); obj.AttachStringArray("muppetNames", new string[] { "Kermit", "Fozzy", "Piggy", "Animal", "Gonzo" }); GSObject apple = new GSObject(); apple.AttachString("name", "Apple"); apple.AttachString("color", "red"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.5); GSObject lemon = new GSObject(); apple.AttachString("name", "Lemon"); apple.AttachString("color", "yellow"); apple.AttachBool("inStock", false); apple.AttachFloat("price", (float)0.8); GSObject apricoat = new GSObject(); apple.AttachString("name", "Apricoat"); apple.AttachString("color", "orange"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.9); GSObject kiwi = new GSObject(); apple.AttachString("name", "Kiwi"); apple.AttachString("color", "green"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)2.3); GSArray fruits = new GSArray(); fruits.AddGSObject(apple); fruits.AddGSObject(lemon); fruits.AddGSObject(apricoat); fruits.AddGSObject(kiwi); obj.AttachGSArray("fruits", fruits); Stopwatch w1 = Stopwatch.StartNew(); for (int i = 0; i < 50000; i++) { byte[] b = obj.ToGSBinary(); } w1.Stop(); Console.WriteLine(BitConverter.IsLittleEndian ? "Little Endian" : "Big Endian"); Console.WriteLine(w1.ElapsedMilliseconds + "ms"); } Here's the code for some of my other classes that are used in the code above. Most of it is repetitive. GSObject GSArray GSWrappedObject

    Read the article

  • Convert a PDF eBook to ePub Format

    - by Matthew Guay
    Would you like to read a PDF eBook on an eReader or mobile device, but aren’t happy with the performance? Here’s how you can convert your PDFs to the popular ePub format so you can easily read them on any device. PDFs are a popular format for eBooks since they render the same on any device and can preserve the exact layout of the print book.  However, this benefit is their major disadvantage on mobile devices, as you often have to zoom and pan back and forth to see everything on the page.  ePub files, on the other hand, are an increasingly popular option. They can reflow to fill your screen instead of sticking to a strict layout style.  With the free Calibre program, you can quickly convert your PDF eBooks to ePub format. Getting Started Download the Calibre installer (link below) for your operating system, and install as normal.  Calibre works on recent versions of Windows, OS X, and Linux.  The Calibre installer is very streamlined, so the install process was quite quick. Calibre is a great application for organizing your eBooks.  It can automatically sort your books by their metadata, and even display their covers in a Coverflow-style viewer. To add an eBook to your library, simply drag-and-drop the file into the Calibre window, or click Add books at the top.  Here you can choose to add all the books from a folder and more. Calibre will then add the book(s) to your library, import the associated metadata, and organize them in the catalog. Convert your Books Once you’ve imported your books into Calibre, it’s time to convert them to the format you want.  Select the book or books you want to convert, and click Convert E-books.  Select whether you want to convert them individually or bulk convert them. The convertor window has lots of options, so you can get your ePub book exactly like you want.  You can simply click Ok and go with the defaults, or you can tweak the settings. Do note that the conversion will only work successfully with PDFs that contain actual text.  Some PDFs are actually images scanned in from the original books; these will appear just like the PDF after the conversion, and won’t be any easier to read. On the first tab, you’ll notice that Calibri will repopulate most of the metadata fields with info from your PDF.  It will also use the first page of the PDF as the cover.  Edit any of the information that may be incorrect, and add any additional information you want associated with the book. If you want to convert your eBook to a different format other than ePub, Calibri’s got you covered, too.  On the top right, you can choose to output the converted eBook into a many different file formats, including the Kindle-friendly MOBI format. One other important settings page is the Structure Detection tab.  Here you can choose to have it remove headers and footers in the converted book, as well as automatically detect chapter breaks. Click Ok when you’ve finished choosing your settings and Calibre will convert the book.  This may take a few minutes, depending on the size of the PDF.  If the conversion seems to be taking too long, you can click Show job details for more information on the progress.   The conversion usually works good, but we did have one job freeze on us.  When we checked the job details, it indicated that the PDF was copy-protected.  Most PDF eBooks, however, worked fine. Now, back in the main Calibri window, select your book and save it to disk.  You can choose to save only the EPUB format, or you can select Save to disk to save all formats of the book to your computer. You can also view the ePub file directly in Calibri’s built-in eBook viewer.  This is the PDF book we converted, and it looks fairly good in the converted format.  It does have some odd line breaks and some misplaced numbers, but on the whole, the converted book is much easier to read, especially on small mobile devices.   Even images get included inline, so you shouldn’t be missing anything from the original eBook. Conclusion Calibri makes it simple to read your eBooks in any format you need. It is a project that is in constant development, and updates regularly adding better stability and features.  Whether you want to ready your PDF eBooks on a Sony Reader, Kindle, netbook or Smartphone, your books will now be more accessible than ever.  And with thousands of free PDF eBooks out there, you’ll be sure to always have something to read. If you’d like some Geeky PDF eBooks, Microsoft Press is offering a number of free PDF eBooks right now.  Check them out at this link (Account Required). Download the Calibre eBook program Similar Articles Productive Geek Tips Format a String as Currency in C#Convert Older Excel Documents to Excel 2007 FormatShare OneNote 2010 Notebooks with OneNote 2007Install an RPM Package on Ubuntu LinuxConvert PDF Files to Word Documents and Other Formats TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Nice Websites To Watch TV Shows Online 24 Million Sites Windows Media Player Glass Icons (icons we like) How to Forecast Weather, without Gadgets Outlook Tools, one stop tweaking for any Outlook version Zoofs, find the most popular tweeted YouTube videos

    Read the article

  • Convert DVDs and ISO Files to MKV with MakeMKV

    - by DigitalGeekery
    Looking for a quick and easy way to convert your DVDs or ISOs to MKV files? Today we take a look at the MakeMKV Beta which gets the job done very well. Installing and Using MakeMKV Download and install MakeMKV (See download link below) If converting a DVD, place it into your optical drive. When you open MakeMKV you will be greeted by it’s minimalistic interface. Click on the DVD to hard drive button to open the DVD, or the folder icon on the top menu to browse for an ISO file.   MakeMKV will open the disc or file. Once the disc or file is opened, you’ll see the titles listed in the window on the left. Double-click on the titles to expand the tree structure.   Remove any title or tracks you don’t want to convert by unselecting the check box to the left. On the right side of the window, click the folder icon to select browse for your file output directory. When ready, click the MakeMkv button to begin the conversion process.   Conversion will proceed.   When the conversion is finished. Click OK. That’s all there is to it! Your MKV file is ready to play. Conclusion MakeMKV is currently still in beta and during the beta phase it will rip both DVD and Blu-ray for free. However, the DVD ripping functionality will always remain free. After 30 days if you want to continue ripping Blu-ray discs, you’ll need to purchase a license. DVD rips are very quick…typically around 15-20 minutes depending on the length of the movie. MakeMKV is available for Windows, Mac, Linux and will rip and convert DVDs to MKV files. Not all media players natively support MKV playback, so if you’re having trouble playing MKV files, try downloading VLC Media player, or the latest version of the DivX codec. Download MakeMKV Similar Articles Productive Geek Tips How To Rip DVDs with VLCEasily Change Audio File Formats with XRECODEHow To Convert Video Files to MP3 with VLCConvert PDF Files to Word Documents and Other FormatsConvert DVD to MP4 / H.264 with HD Decrypter and Handbrake TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi LocPDF is a Visual PDF Search Tool Download Free iPad Wallpapers at iPad Decor Get Your Delicious Bookmarks In Firefox’s Awesome Bar

    Read the article

  • Non-English Character Display in Oracle SQL Developer

    - by thatjeffsmith
    I get a variation on this question at least once a week, if not more frequently. I’m from Israel, and the language on the databases is Hebrew. When I use the old and deprecated SQL*Plus (windows rich client) I can see the hebrew clearly, when I use the latest SQL Developer, I get gibberish. This question appears on the forums about every week or so as well. So what’s the deal? Well, it starts with a basic misunderstanding of NLS Client parameters. These should accurately reflect the language and locality setup on your LOCAL machine. DO NOT COPY what’s set in the database. The these parameters work together with the database so that information can be transferred back and forth correctly. Having the wrong NLS parameters locally can be bad. [ORACLE DOCS]Setting the NLS_LANG parameter properly is essential to proper data conversion. The character set that is specified by the NLS_LANG parameter should reflect the setting for the client operating system. Setting NLS_LANG correctly enables proper conversion from the client operating system character encoding to the database character set. When these settings are the same, Oracle Database assumes that the data being sent or received is encoded in the same character set as the database character set, so character set validation or conversion may not be performed. This can lead to corrupt data if conversions are necessary. OK, so what are you supposed to do? Set the Font! 9 times out of 10, this preference fixes the problem with display issues. Make sure you set a Font that supports the characters you’re trying to display. It’s as simple as that. This preference defines the font used to display characters in the editors and the data grids. If you have it set to a font that doesn’t have Hebrew character support – you’re not going to see Hebrew in SQL Developer. A few years ago…wow, like 15 years ago, I learned that the Tohama Font is pretty Unicode-friendly. Bad Font Selection A Font that’s not non-English friendly Good Font Selection Exact same text, except rendered with the Tahoma font Summary Having problems seeing non-English text in SQL Developer? Check the font! And do not start messing with NLS parameters without talking to your DBA first.

    Read the article

  • A Quantity class with units

    - by Ryan Ohs
    Goals Create a class that associates a numeric quantity with a unit of measurement. Provide support for simple arithmetic and comparison operations. Implementation An immutable class (Could have been struct but I may try inheritance later) Unit is stored in an enumeration Supported operations: Addition w/ like units Subtraction w/ like units Multiplication by scalar Division by scalar Modulus by scalar Equals() >, >=, <, <=, == IComparable ToString() Implicit cast to Decimal The Source The souce can be downloaded from Github. Notes This class does not support any arithmetic that would modify the unit. This class is not suitable for manipulating currencies. Future Ideas Have a CompositeQuantity class that would allow quantities with unlike units to be combined. Similar currency class with support for allocations/distributions. Provide conversion between units. (Actually I think this would be best placed in an external service. Many situations I deal with require some sort of dynamic conversion ratio.)

    Read the article

  • Bin packing part 6: Further improvements

    - by Hugo Kornelis
    In part 5 of my series on the bin packing problem, I presented a method that sits somewhere in between the true row-by-row iterative characteristics of the first three parts and the truly set-based approach of the fourth part. I did use iteration, but each pass through the loop would use a set-based statement to process a lot of rows at once. Since that statement is fairly complex, I am sure that a single execution of it is far from cheap – but the algorithm used is efficient enough that the entire...(read more)

    Read the article

  • Customer won't decide, how to deal?

    - by Crazy Eddie
    I write software that involves the use of measured quantities, many input by the user, most displayed, that are fed into calculation models to simulate various physical thing-a-majigs. We have created a data type that allows us to associate a numeric value with a unit, we call these "quantities" (big duh). Quantities and units are unique to dimension. You can't attach kilogram to a length for example. Math on quantities does automatic unit conversion to SI and the type is dimension safe (you can't assign a weight to a pressure for example). Custom UI components have been developed that display the value and its unit and/or allow the user to edit them. Dimensionless quantities, having no units, are a single, custom case implemented within the system. There's a set of related quantities such that our target audience apparently uses them interchangeably. The quantities are used in special units that embed the conversion factors for the related quantity dimensions...in other words, when using these units converting from one to another simply involves multiplying the value by 1 to the dimensional difference. However, conversion to/from the calculation system (SI) still involves these factors. One of these related quantities is a dimensionless one that represents a ratio. I simply can't get the "customer" to recognize the necessity of distinguishing these values and their use. They've picked one and want to use it everywhere, customizing the way we deal with it in special places. In this case they've picked one of the dimensions that has a unit...BUT, they don't want there to be a unit (GRR!!!). This of course is causing us to implement these special overrides for our UI elements and such. That of course is often times forgotten and worse...after a couple months everyone forgets why it was necessary and why we're using this dimensional value, calling it the wrong thing, and disabling the unit. I could just ignore the "customer" and implement the type as the dimensionless quantity, which makes most sense. However, that leaves the team responsible for figuring it out when they've given us a formula using one of the other quantities. We have to not only figure out that it's happening, we have to decide what to do. This isn't a trivial deal. The other option is just to say to hell with it, do it the customer's way, and let it waste continued time and effort because it's just downright confusing as hell. However, I can't count the amount of times someone has said, "Why is this being done this way, it makes no sense at all," and the team goes off the deep end trying to figure it out. What would you do? Currently I'm still attempting to convince them that even if they use terms interchangeably, we at the least can't do that within the product discussion. Don't have high hopes though.

    Read the article

  • Computer Arithmetic - Binary for Decimal Numbers

    - by MarkPearl
    This may be of use to someone else doing this course… The Problem In the section on Computer Arithmetic it gives an example of converting -7.6875 to IEEE floating point format. I understand all the steps except for the first one, where it does the following... 7.6875 (base 10) = 111.1011 (base 2) I don't understand the conversion - I realize that 111 (base 2) = 7 (base 10), but how does the .6875 part relate to the .1011? Or am I totally off track with this? The Solution The fractional part of the decimal to binary conversion is done as follows: 0.6875 x 2 = 1.375 = 0.375 + 1 (Keep the 1 separate) 0.375 x 2   = 0.75   = 0.75    + 0 0.75 x 2    = 1.5      = 0.5      + 1 0.5 x 2     = 1.0       = 0.0       + 1 The bit pattern of 0s and 1s on the right-hand side gives you the fractional part. So 0.6875 (base 10) = .1011 (Base 2) See also Stallings, chapter 19.

    Read the article

  • Should one comment differently in functional languages

    - by Tom Squires
    I'm just getting started with functional programming and I'm wondering the correct way to comment my code. It seems a little redundant to comment a short function as the names and signature already should tell you everything you need to know. Commenting larger functions also seems a little redundant since they are generally comprised of smaller self-descriptive functions. What is the correct way to comment a functional program? Should I use the same approach as in iterative programming?

    Read the article

  • Using 'new' in a projection?

    - by davenewza
    I wish to project a collection from one type (Something) to another type (SomethingElse). Yes, this is a very open-eneded question, but which of the two options below do you prefer? Creating a new instance using new: var result = query.Select(something => new SomethingElse(something)); Using a factory: var result = query.Select(something => SomethingElse.FromSomething(something)); When I think of a projection, I generally think of it as a conversion. Using new gives me this idea that I'm creating new objects during a conversion, which doesn't feel right. Semantically, SomethingElse.FromSomething() most definitely fits better. Although, the second option does require addition code to setup a factory, which could become unnecessarily compulsive.

    Read the article

  • GPL question : web application using Imagick and GhostScript => Which would be the final licence?

    - by sdespont
    I am a bit confusing and I need your help to undertand my problem. I have developed a web application (PHP, JQuery) for one of my customer. Recently, my customer ask me to add a new feature permitting PDF to JPG conversion. After web browsing, I have discovered that iMagick (Apache licence) PHP extension with GhostScript (GPL licence) is the only solution. But, as my customer want to sell the web application to others companies, I have to use non-GPL licences. By the way, this feature is OPTIONAL and the final user must download and install manually iMagick and GhostScript if he his interesting by using the PDF conversion. Is there someone to tell me if the fact to use Imagick to convert PDF to JPG (and therefore use GhostScript) turns my current proprietary licence to GPL? And what about if I don't use Imagick but call GhostScript using PHP exec() function? Is there others non-GPL projects to convert PDF to JPG that I could use with PHP? Any help would be greatly appreciated.

    Read the article

  • Cursor-Killing: Retrieving Recently Modified Data

    Cursors are considered by many to be the bane of good T-SQL. What are the best ways to avoid iterative T-SQL and to write queries that look and perform beautifully? In the next part of an ongoing series, we look at ways to efficiently retrieve recently modified data. FREE eBook – "45 Database Performance Tips for Developers"Improve your database performance with 45 tips from SQL Server MVPs and industry experts. Get the eBook here.

    Read the article

  • Physics Engine [Collision Response, 2-dimensional] experts, help!! My stack is unstable!

    - by Register Sole
    Previously, I struggle with the sequential impulse-based method I developed. Thanks to jedediah referring me to this paper, I managed to rebuild the codes and implement the simultaneous impulse based method with Projected-Gauss-Seidel (PGS) iterative solver as described by Erin Catto (mentioned in the reference of the paper as [Catt05]). So here's how it currently is: The simulation handles 2-dimensional rotating convex polygons. Detection is using separating-axis test, with a SKIN, meaning closest points between two polygons is detected and determined if their distance is less than SKIN. To resolve collision, simultaneous impulse-based method is used. It is solved using iterative solver (PGS-solver) as in Erin Catto's paper. Error-correction is implemented using Baumgarte's stabilization (you can refer to either paper for this) using J V = beta/dt*overlap, J is the Jacobian for the constraints, V the matrix containing the velocities of the bodies, beta an error-correction parameter that is better be < 1, dt the time-step taken by the engine, and overlap, the overlap between the bodies (true overlap, so SKIN is ignored). However, it is still less stable than I expected :s I tried to stack hexagons (or squares, doesn't really matter), and even with only 4 to 5 of them, they hardly stand still! Also note that I am not looking for a sleeping scheme. But I would settle if you have any explicit scheme to handle resting contacts. That said, I would be more than happy if you have a way of treating it generally (as continuous collision, instead of explicitly as a special state). Ideas I have: I would try adding a damping term (proportional to velocity) to the Baumgarte. Is this a good idea in general? If not I would not want to waste my time trying to tune the parameter hoping it magically works. Ideas I have tried: Using simultaneous position based error correction as described in the paper in section 5.3.2, turned out to be worse than the current scheme. If you want to know the parameters I used: Hexagons, side 50 (pixels) gravity 2400 (pixels/sec^2) time-step 1/60 (sec) beta 0.1 restitution 0 to 0.2 coeff. of friction 0.2 PGS iteration 10 initial separation 10 (pixels) mass 1 (unit is irrelevant for now, i modified velocity directly<-impulse method) inertia 1/1000 Thanks in advance! I really appreciate any help from you guys!! :)

    Read the article

  • J2ObjC : l'outil de portage de Java vers Objective-C de Google vient d'être mis en ligne, il est open-source

    Google sort J2ObjC un outil open source pour la conversion du code Java en Objective-C Bonne nouvelle pour les développeurs Java qui souhaitent cibler iOS sans toutefois se mettre à l'Objective-C. Google vient de publier sur son blog dédié aux outils open source une application pour la conversion du code Java en code Objective-C. Le projet J2ObjC a pour objectif de permettre aux développeurs de partager facilement du code qui n'est pas utilisé pour l'interface utilisateur (logique métier, accès aux données, etc.) pour les applications Android, les applications Web (qui utilisent le serveur GWT) avec iOS. J2ObjC convertit les classes Java en classes Objective-C qui u...

    Read the article

  • Possible reasons for tellg() failing?

    - by Andreas Bonini
    ifstream::tellg() is returning -13 for a certain file. Basically, I wrote a utility that analyzes some source code; I open all files alphabetically, I start with "Apple.cpp" and it works perfectly.. But when it gets to "Conversion.cpp", always on the same file, after reading one line successfully tellg() returns -13. The code in question is: for (int i = 0; i < files.size(); ++i) { /* For each .cpp and .h file */ TextIFile f(files[i]); while (!f.AtEof()) // When it gets to conversion.cpp (not on the others) // first is always successful, second always fails lines.push_back(f.ReadLine()); The code for AtEof is: bool AtEof() { if (mFile.tellg() < 0) FATAL(format("DEBUG - tellg(): %d") % mFile.tellg()); if (mFile.tellg() >= GetSize()) return true; return false; } After it reads successfully the first line of Conversion.cpp, it always crashes with DEBUG - tellg(): -13. This is the whole TextIFile class (wrote by me, the error may be there): class TextIFile { public: TextIFile(const string& path) : mPath(path), mSize(0) { mFile.open(path.c_str(), std::ios::in); if (!mFile.is_open()) FATAL(format("Cannot open %s: %s") % path.c_str() % strerror(errno)); } string GetPath() const { return mPath; } size_t GetSize() { if (mSize) return mSize; const size_t current_position = mFile.tellg(); mFile.seekg(0, std::ios::end); mSize = mFile.tellg(); mFile.seekg(current_position); return mSize; } bool AtEof() { if (mFile.tellg() < 0) FATAL(format("DEBUG - tellg(): %d") % mFile.tellg()); if (mFile.tellg() >= GetSize()) return true; return false; } string ReadLine() { string ret; getline(mFile, ret); CheckErrors(); return ret; } string ReadWhole() { string ret((std::istreambuf_iterator<char>(mFile)), std::istreambuf_iterator<char>()); CheckErrors(); return ret; } private: void CheckErrors() { if (!mFile.good()) FATAL(format("An error has occured while performing an I/O operation on %s") % mPath); } const string mPath; ifstream mFile; size_t mSize; }; Platform is Visual Studio, 32 bit, Windows. Edit: Works on Linux. Edit: I found the cause: line endings. Both Conversion and Guid and others had \n instead of \r\n. I saved them with \r\n instead and it worked. Still, this is not supposed to happen is it?

    Read the article

  • Visual Studio macro to read compilation errors and fix implicit conversions automatically in VB.NET

    - by eckesicle
    I am converting a large project in VB.NET that is using Option Strict Off into Option Strict On Naturally I am running into the same compilation error over and over. Strict On does not allow implicit conversion from Object to String/Integer/Double Is it possible to to access the compilation errors with a macro and automatically append .ToString() to the erroneous implicit conversion. Essentially my question is a duplicate off http://stackoverflow.com/questions/2532340/tools-to-convert-option-strict-off-code-into-option-strict-on but that question had no answers. Cheers.

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >