Search Results

Search found 1848 results on 74 pages for 'significant'.

Page 50/74 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • What can inexperienced admin expect after server setup completed seemingly fine? [closed]

    - by Miloshio
    Inexperienced person seems to have done everything fine so far. This is his very first time that he is the only one in charge for LAMP server. He has installed OS, network, Apache, PHP, MySQL, Proftpd, MTA & MDA software, configured VirtualHosts properly (facts because he calls himself admin), done user management and various configuration settings with respect to security recommendations and... everything is fine for now... For now. If you were directing horror movie for server admin above mentioned what would you make up for boogieman that showed up and started to pursue him? Omitting hardware disaster cases for which one cannot do anything 'from remote', what is the most common causes of server or part-of-server or server-related significant failure when managed by inexperienced admin? I have in mind something that is newbie admins very often missing which is leading to later intervention of someone with experience? May that be some uncontrolled CPU-eating leftover process, memory-related glitch, widely-used feature that messes up something unexpected on anything like that? Newbie admin for now only monitors disk-space and RAM usage, and number of running processes. He would appreciate any tips regarding what's probably going to happen to his server over time.

    Read the article

  • Apps won't start after vanilla reboot

    - by Daniel R Hicks
    I had Adobe and Norton nagging me to reboot, so I did that -- clicked Reboot from the Start button. Everything seemed pretty normal as it shut down and came back up, but once up a bunch of apps won't start. The first one I noticed was Firefox. It would flash the disk light normally, but never appear on the screen. Then I tried to bring up an OpenOffice Calc window and same thing. I tried to bring up MS Word, and the splash screen appeared, but never the main screen, and the splash screen just sat there, with a swirly over it. But I tried Solitaire, Notepad++, Paint, and several others, and they popped up just fine. And I'm typing this from IE 8, which, if anything, came up faster than usual. When I try to open up "Network and Sharing Center" the window appears, but nothing appears in it, and eventually it's tagged "not responding". When I kill that window I get (after a delay) "Windows Explorer is not responding", and when I say "OK" the screen resets. I tried rebooting again, and no joy -- same as before. Have done nothing particularly strange on this box, and it's not generally at significant risk for malware. I haven't installed anything new other than the afore-mentioned updates. One other thing: Several minutes after rebooting I get the message "Error: Unable to start Bluetooth Stack Service." The Bluetooth radio is turned on, and I rarely have anything Bluetooth attached, and I don't recall that I've ever seen this message before. Added: Looking at Event Viewer, I'm getting a lot of "The description for Event ID 1 from source xxx cannot be found." Is there any significance to this? Added: I'm looking at restoring from backup, but the procedure is, at best, unclear. Is it sufficient to restore from "Backup and Restore Center", or must I restore from the restore DVD first?

    Read the article

  • troubleshooting really slow login on a (linux) machine

    - by Peeter Joot
    Within the last couple of weeks, any attempt to login to a specific linux server has gotten really slow. Once I've logged in, things appear to run without significant delay, but some other login like activities (like starting a new screen session) are slow. The machine's been rebooted a couple of times recently and that hasn't helped. , and it doesn't appear to be $PATH search (where $PATH can sometimes include bad NFS mounts), which I've seen historically in our environment. I've also tried completely removing my .profile/.bash*/... type of init files to rule out anything bad there. I also see slow login for at least one other userid on the system. One thing I've noticed is the following message when trying to exit from a screen terminal: Utmp slot not found -> not removed and am wondering if this is related (having a vague recollection that Utmp has something to do with login). Any idea what that message means, or how to fix it, and if it would be related? Failing that, what sort of problem determination tools are available to investigate what is slowing down this login process?

    Read the article

  • Disk fragmentation when dealing with many small files

    - by Zorlack
    On a daily basis we generate about 3.4 Million small jpeg files. We also delete about 3.4 Million 90 day old images. To date, we've dealt with this content by storing the images in a hierarchical manner. The heriarchy is something like this: /Year/Month/Day/Source/ This heirarchy allows us to effectively delete days worth of content across all sources. The files are stored on a Windows 2003 server connected to a 14 disk SATA RAID6. We've started having significant performance issues when writing-to and reading-from the disks. This may be due to the performance of the hardware, but I suspect that disk fragmentation may be a culprit at well. Some people have recommended storing the data in a database, but I've been hesitant to do this. An other thought was to use some sort of container file, like a VHD or something. Does anyone have any advice for mitigating this kind of fragmentation? Additional Info: The average file size is 8-14KB Format information from fsutil: NTFS Volume Serial Number : 0x2ae2ea00e2e9d05d Version : 3.1 Number Sectors : 0x00000001e847ffff Total Clusters : 0x000000003d08ffff Free Clusters : 0x000000001c1a4df0 Total Reserved : 0x0000000000000000 Bytes Per Sector : 512 Bytes Per Cluster : 4096 Bytes Per FileRecord Segment : 1024 Clusters Per FileRecord Segment : 0 Mft Valid Data Length : 0x000000208f020000 Mft Start Lcn : 0x00000000000c0000 Mft2 Start Lcn : 0x000000001e847fff Mft Zone Start : 0x0000000002163b20 Mft Zone End : 0x0000000007ad2000

    Read the article

  • Is there a 'global media cache' in Windows 7 that may be used by third party media players?

    - by Pulse
    Here's the background. I don't use Windows Media Player or Media Centre, in fact both components have been 'turned off' via the 'Programs and Features' option. My media player of choice is a nightly build of MPC-HC, which plays virtually everything. I do, however, have VLC portable available for those rare instances when MPC-HC can't or won't play something correctly. This is the situation. I tend to download various media files via torrent, typically, game trailers or freely availably films, such as the recently released, torrent only, Pioneer One. Quite often these files are quite large, being 1GB+ so I quite often like to preview the file after it has downloaded a significant portion of the file. For the most part, this works quite well, and gives me an idea about the worth of continuing the download. Sometimes, however, the file doesn't play as expected and instead plays a completely unrelated file that has been previously played. Here's the strange thing. if I try to preview the file in MPC-HC or VLC both players play the same, previously played file, regardless of whichever player was originally responsible for playback. Most times, it's not even a file that's been played recently. I have searched the registry for some sort of MRU cache, but have found nothing. I have made sure each player has had it's respective history/cache deleted and can fine nothing on disk that seems to be storing this, apparently shared data. So, the question is, where are these unrelated players getting the file information from? Thnaks.

    Read the article

  • hg clone has stopped working on my Vista box

    - by vkraemer
    I have a Windows Vista machine that has been connecting to http://hg.netbeans.org productively for awhile... until recently. Lately, when I attempt to pull or clone, the update appears to stall... I see the following messages on the screen when I attempt to clone: destination directory: web-main requesting all changes adding changesets And then... nothing happens. I have opened the Task Manager and there doesn't appear to be any significant network activity for HOURS. I can contact the server with FireFox and see the proper output. I can clone from the repo with Solaris and/or Mac OS X... so the issue doesn't appear to be at the 'other end'. I had been running a fairly old version of Mercurial before this started happening. After it started happening, I upgraded to Mercurial 1.5.2.. which did not help resolve the issue at all. What are the likely causes and work-arounds for this?

    Read the article

  • Calculating memory footprints using /proc/sysvipc/shm

    - by MarkTeehan
    This is for a SLES 10 database server. One of my servers runs three databases and three app servers; I am analyzing how their shared memory segments grow and shrink to avoid intermittent out-of-memory scenarios. "Top" is hot helpful for this since its calculations for RES and VIRT are inconsistent. I am doing this by matching up the contents of /proc/sysvipc/shm with memory usage reported by the database admin console. I do this by totaling up saving the contents of /proc/sysvipc/shm and then total up "bytes" for all of the segments for the offending userid. This is a large server with hundreds of segments and tens (or hundreds) of GB of allocated memory per userid. However it doesn't match up - the database management software claims to be using around 25% more memory than the total I calculate. Negligible swap space is in use, so I am ignoring that. I am running it as root so I am sure I see all shared memory segments. My question is : is all (significant) allocated memory recorded in /proc/sysvipc/shm, or is this only shared memory (*and not "un-shared" memory?). If this is incorrect, what is the correct way to calculate out the total allocated memory for each userid? Also: I believe doing a 'cat' on this file locks server IPC. I check it every 5 seconds - is it likely that this frequency could be problematic? Thanks! Mark Teehan Singapore

    Read the article

  • How many guesses per second are possible against an encrypted disk? [closed]

    - by HappyDeveloper
    I understand that guesses per second depends on the hardware and the encryption algorithm, so I don't expect an absolute number as answer. For example, with an average machine you can make a lot (thousands?) of guesses per second for a hash created with a single md5 round, because md5 is fast, making brute force and dictionary attacks a real danger for most passwords. But if instead you use bcrypt with enough rounds, you can slow the attack down to 1 guess per second, for example. 1) So how does disk encryption usually work? This is how I imagine it, tell me if it is close to reality: When I enter the passphrase, it is hashed with a slow algorithm to generate a key (always the same?). Because this is slow, brute force is not a good approach to break it. Then, with the generated key, the disk is unencrypted on the fly very fast, so there is not a significant performance lose. 2) How can I test this with my own machine? I want to calculate the guesses per second my machine can make. 3) How many guesses per second are possible against an encrypted disk with the fastest PC ever so far?

    Read the article

  • strange Kernel Process Threads taking over my AIX box....

    - by Paul
    When I check the Running Stats of my box I get the following: CPU User% Kern% Wait% Idle% Physc 0 37.5 57.4 0.0 5.1 0.01 2 0.0 18.3 0.0 81.7 0.00 3 0.0 22.5 0.0 77.5 0.00 4 0.0 17.0 0.0 83.0 0.00 5 0.0 20.5 0.0 79.5 0.00 6 0.0 33.7 0.0 66.3 0.00 7 0.0 4.4 0.0 95.6 0.00 8 0.0 19.3 0.0 80.7 0.00 9 0.0 22.3 0.0 77.7 0.00 10 0.0 19.2 0.0 80.8 0.00 1 0.0 1.3 0.0 98.7 0.00 11 0.0 21.8 0.0 78.2 0.00 21 0.0 62.9 0.0 37.1 0.00 12 0.0 21.1 0.0 78.9 0.00 13 0.0 22.7 0.0 77.3 0.00 14 0.0 18.1 0.0 81.9 0.00 15 0.0 21.2 0.0 78.8 0.00 16 0.0 19.1 0.0 80.9 0.00 The Kern% seems high to me and I cannot find a reason for this much Kernel activity.... Doing a deep dive into what User processes are doing I find nothing with significant CPU utilization even though TOPAS and SAR both show the same thing.... One CPU with 30-60 % user and every processor with 5-30% Kernel % utilization... What is my box doing??? here is a second sample of CPU % from TOPAS CPU User% Kern% Wait% Idle% Physc 0 67.8 31.4 0.1 0.7 0.14 2 0.0 18.2 0.0 81.8 0.00 3 0.0 20.3 0.0 79.7 0.00 4 0.0 17.3 0.0 82.7 0.00 5 0.0 20.7 0.0 79.3 0.00 6 0.0 39.2 0.0 60.8 0.00 7 0.0 5.0 0.0 95.0 0.00 8 0.0 17.9 0.0 82.1 0.00 9 0.0 22.0 0.0 78.0 0.00 10 0.0 18.0 0.0 82.0 0.00 1 0.0 0.7 0.0 99.3 0.02 11 0.0 21.7 0.0 78.3 0.00 21 0.0 21.7 0.0 78.3 0.00 12 0.0 17.0 0.0 83.0 0.00 13 0.0 21.1 0.0 78.9 0.00 14 0.0 17.8 0.0 82.2 0.00 15 0.0 21.8 0.0 78.2 0.00 16 0.0 17.6 0.0 82.4 0.00 Any ideas to help identify what is running in the Kernel Space would be great....

    Read the article

  • Could I have destroyed Partitioning-Scheme/Filesystem of HDDs with External Harddrive Case with builtin Raid-Controller?

    - by th3m3s
    I had just recently bought a Fantec QB-35US3R to have a nice box on my desk to make some backups to. Along with the HDD-Bay I had ordered some 4TB HDDs to let them run in Raid 5, which is handled by the hardware RAID controller of the Fantec HDD-Bay. The QB-35US3R arrived a few days before the hard drives, so I got impatient and had the idea to put three old 1TB disks in the Fantec device, just to test it... Long story short: I made a backup of the most important data on these three disks before they broke. I had set the configuration scheme to RAID 3 at the Fantec device. It seems, that the Fantec RAID controller has "somehow" destroyed the partitioning scheme or the file system, because when put into a HDD docking station, they get recognized by the OS (Ubuntu/Linux) but are not mountable anymore. I tried to recover the data from one HDD via gParted (parted), which ran some hours without success. Here I stopped, before trying other tools, cos I read that the longer a hard drive is running after a the partitioning got destroyed, the worse it gets. What could the HDD-Bay probably have done to my lovely hard drive disks? Is there some routine a RAID controller is executing, when it wants to create a RAID system? Like erasing the partition table (seems not plausible to me.) or writing some information to every hard drive in the RAID (seems more likely to me.)? Is there a chance to recover the data from these HDDs, or is the change a RAID controller makes so significant, that no software is of help?

    Read the article

  • Nginx and 1000 WordPress Installs - Optimization

    - by GTE
    Hey, I'm trying to create a rather unusual (imo) configuration where I have: nginx php-fastcgi mysql 1000 seperate WordPress installs (with WP Super Cache). Each WP install corresponds to a seperate subdomain. Furthermore, I have 1000 cron jobs being called every hour that in turn call a WP plugin (using wget) which retrieves data from an API and posts it to the respective blog. This is all being run on a virtual server with 1024MB of RAM, 4 shared processors, etc. The server is not doing well, especially during the times that the cron jobs are being executed. Nginx constantly throws 504 errors and the site has a significant lag. 1) Am I crazy for having 1000 individual WP installs? Should I be using WP-MU and will this help significantly? (I have certain plugin restrictions that I prefer having seperate installs but could switch if need be.) 2) Instead of having 1000 unique cron jobs - should be calling say a bash script that will then process the 1000 HTTP requests I need? Could this be done in a succesive order instead of a sequential one? 3) Any other kind of suggestion you may have for optimization? Should I be proxying to Apache instead of just using nginx, etc. Any kind of advice would be appreciated. Thanks in advance

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • April 14th Links: ASP.NET, ASP.NET MVC, ASP.NET Web API and Visual Studio

    - by ScottGu
    Here is the latest in my link-listing blog series: ASP.NET Easily overlooked features in VS 11 Express for Web: Good post by Scott Hanselman that highlights a bunch of easily overlooked improvements that are coming to VS 11 (and specifically the free express editions) for web development: unit testing, browser chooser/launcher, IIS Express, CSS Color Picker, Image Preview in Solution Explorer and more. Get Started with ASP.NET 4.5 Web Forms: Good 5-part tutorial that walks-through building an application using ASP.NET Web Forms and highlights some of the nice improvements coming with ASP.NET 4.5. What is New in Razor V2 and What Else is New in Razor V2: Great posts by Andrew Nurse, a dev on the ASP.NET team, about some of the new improvements coming with ASP.NET Razor v2. ASP.NET MVC 4 AllowAnonymous Attribute: Nice post from David Hayden that talks about the new [AllowAnonymous] filter introduced with ASP.NET MVC 4. Introduction to the ASP.NET Web API: Great tutorial by Stephen Walher that covers how to use the new ASP.NET Web API support built-into ASP.NET 4.5 and ASP.NET MVC 4. Comprehensive List of ASP.NET Web API Tutorials and Articles: Tugberk Ugurlu links to a huge collection of articles, tutorials, and samples about the new ASP.NET Web API capability. Async Mashups using ASP.NET Web API: Nice post by Henrik on how you can use the new async language support coming with .NET 4.5 to easily and efficiently make asynchronous network requests that do not block threads within ASP.NET. ASP.NET and Front-End Web Development Visual Studio 11 and Front End Web Development - JavaScript/HTML5/CSS3: Nice post by Scott Hanselman that highlights some of the great improvements coming with VS 11 (including the free express edition) for front-end web development. HTML5 Drag/Drop and Async Multi-file Upload with ASP.NET Web API: Great post by Filip W. that demonstrates how to implement an async file drag/drop uploader using HTML5 and ASP.NET Web API. Device Emulator Guide for Mobile Development with ASP.NET: Good post from Rachel Appel that covers how to use various device emulators with ASP.NET and VS to develop cross platform mobile sites. Fixing these jQuery: A Guide to Debugging: Great presentation by Adam Sontag on debugging with JavaScript and jQuery.  Some really good tips, tricks and gotchas that can save a lot of time. ASP.NET and Open Source Getting Started with ASP.NET Web Stack Source on CodePlex: Fantastic post by Henrik (an architect on the ASP.NET team) that provides step by step instructions on how to work with the ASP.NET source code we recently open sourced. Contributing to ASP.NET Web Stack Source on CodePlex: Follow-on to the post above (also by Henrik) that walks-through how you can submit a code contribution to the ASP.NET MVC, Web API and Razor projects. Overview of the WebApiContrib project: Nice post by Pedro Reys on the new open source WebApiContrib project that has been started to deliver cool extensions and libraries for use with ASP.NET Web API. Entity Framework Entity Framework 5 Performance Improvements and Performance Considerations for EF5:  Good articles that describes some of the big performance wins coming with EF5 (which will ship with both .NET 4.5 and ASP.NET MVC 4). Automatic compilation of LINQ queries will yield some significant performance wins (up to 600% faster). ASP.NET MVC 4 and EF Database Migrations: Good post by David Hayden that covers the new database migrations support within EF 4.3 which allows you to easily update your database schema during development - without losing any of the data within it. Visual Studio What's New in Visual Studio 11 Unit Testing: Nice post by Peter Provost (from the VS team) that talks about some of the great improvements coming to VS11 for unit testing - including built-in VS tooling support for a broad set of unit test frameworks (including NUnit, XUnit, Jasmine, QUnit and more) Hope this helps, Scott

    Read the article

  • Links to my “Best of 2010” Posts

    - by ScottGu
    I hope everyone is having a Happy New Years! 2010 has been a busy blogging year for me (this is the 100th blog post I’ve done in 2010).  Several people this week suggested I put together a summary post listing/organizing my favorite posts from the year.  Below is a quick listing of some of my favorite posts organized by topic area: VS 2010 and .NET 4 Below is a series of posts I wrote (some in late 2009) about the VS 2010 and .NET 4 (including ASP.NET 4 and WPF 4) release we shipped in April: Visual Studio 2010 and .NET 4 Released Clean Web.Config Files Starter Project Templates Multi-targeting Multiple Monitor Support New Code Focused Web Profile Option HTML / ASP.NET / JavaScript Code Snippets Auto-Start ASP.NET Applications URL Routing with ASP.NET 4 Web Forms Searching and Navigating Code in VS 2010 VS 2010 Code Intellisense Improvements WPF 4 Add Reference Dialog Improvements SEO Improvements with ASP.NET 4 Output Cache Extensibility with ASP.NET 4 Built-in Charting Controls for ASP.NET and Windows Forms Cleaner HTML Markup with ASP.NET 4 - Client IDs Optional Parameters and Named Arguments in C# 4 - and a cool scenarios with ASP.NET MVC 2 Automatic Properties, Collection Initializers and Implicit Line Continuation Support with VB 2010 New <%: %> Syntax for HTML Encoding Output using ASP.NET 4 JavaScript Intellisense Improvements with VS 2010 VS 2010 Debugger Improvements (DataTips, BreakPoints, Import/Export) Box Selection and Multi-line Editing Support with VS 2010 VS 2010 Extension Manager (and the cool new PowerCommands Extension) Pinning Projects and Solutions VS 2010 Web Deployment Debugging Tips/Tricks with Visual Studio Search and Navigation Tips/Tricks with Visual Studio Visual Studio Below are some additional Visual Studio posts I’ve done (not in the first series above) that I thought were nice: Download and Share Visual Studio Color Schemes Visual Studio 2010 Keyboard Shortcuts VS 2010 Productivity Power Tools Fun Visual Studio 2010 Wallpapers Silverlight We shipped Silverlight 4 in April, and announced Silverlight 5 the beginning of December: Silverlight 4 Released Silverlight 4 Tools for VS 2010 and WCF RIA Services Released Silverlight 4 Training Kit Silverlight PivotViewer Now Available Silverlight Questions Announcing Silverlight 5 Silverlight for Windows Phone 7 We shipped Windows Phone 7 this fall and shipped free Visual Studio development tools with great Silverlight and XNA support in September: Windows Phone 7 Developer Tools Released Building a Windows Phone 7 Twitter Application using Silverlight ASP.NET MVC We shipped ASP.NET MVC 2 in March, and started previewing ASP.NET MVC 3 this summer.  ASP.NET MVC 3 will RTM in less than 2 weeks from today: ASP.NET MVC 2: Strongly Typed Html Helpers ASP.NET MVC 2: Model Validation Introducing ASP.NET MVC 3 (Preview 1) Announcing ASP.NET MVC 3 Beta and NuGet (nee NuPack) Announcing ASP.NET MVC 3 Release Candidate 1  Announcing ASP.NET MVC 3 Release Candidate 2 Introducing Razor – A New View Engine for ASP.NET ASP.NET MVC 3: Layouts with Razor ASP.NET MVC 3: New @model keyword in Razor ASP.NET MVC 3: Server-Side Comments with Razor ASP.NET MVC 3: Razor’s @: and <text> syntax ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor ASP.NET MVC 3: Layouts and Sections with Razor IIS and Web Server Stack The IIS and Web Stack teams have made a bunch of great improvements to the core web server this year: Fix Common SEO Problems using the URL Rewrite Extension Introducing the Microsoft Web Farm Framework Automating Deployment with Microsoft Web Deploy Introducing IIS Express SQL CE 4 (New Embedded Database Support with ASP.NET) Introducing Web Matrix EF Code First EF Code First is a really nice new data option that enables a very clean code-oriented data workflow: Announcing Entity Framework Code-First CTP5 Release Class-Level Model Validation with EF Code First and ASP.NET MVC 3 Code-First Development with Entity Framework 4 EF 4 Code First: Custom Database Schema Mapping Using EF Code First with an Existing Database jQuery and AJAX Contributions My team began making some significant source code contributions to the jQuery project this year: jQuery Templates, Data Link and Globalization Accepted as Official jQuery Plugins jQuery Templates and Data Linking (and Microsoft contributing to jQuery) jQuery Globalization Plugin from Microsoft Patches and Hot Fixes Some useful fixes you can download prior to VS 2010 SP1: Patch for Cut/Copy “Insufficient Memory” issue with VS 2010 Patch for VS 2010 Find and Replace Dialog Growing Patch for VS 2010 Scrolling Context Menu Videos of My Talks Some recordings of technical talks I’ve done this year: ASP.NET 4, ASP.NET MVC, and Silverlight 4 Talks I did in Europe VS 2010 and ASP.NET 4 Web Forms Talk in Arizona Other About Technical Debates (and ASP.NET Web Forms and ASP.NET MVC debates in particular) ASP.NET Security Fix Now on Windows Update Upcoming Web Camps I’d like to say a big thank you to everyone who follows my blog – I really appreciate you reading it (the comments you post help encourage me to write it).  See you in the New Year! Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Handling WCF Service Paths in Silverlight 4 – Relative Path Support

    - by dwahlin
    If you’re building Silverlight applications that consume data then you’re probably making calls to Web Services. We’ve been successfully using WCF along with Silverlight for several client Line of Business (LOB) applications and passing a lot of data back and forth. Due to the pain involved with updating the ServiceReferences.ClientConfig file generated by a Silverlight service proxy (see Tim Heuer’s post on that subject to see different ways to deal with it) we’ve been using our own technique to figure out the service URL. Going that route makes it a peace of cake to switch between development, staging and production environments. To start, we have a ServiceProxyBase class that handles identifying the URL to use based on the XAP file’s location (this assumes that the service is in the same Web project that serves up the XAP file). The GetServiceUrlBase() method handles this work: public class ServiceProxyBase { public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrlBase = GetServiceUrlBase(); } } public string ServiceUrlBase { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrlBase() { if (!IsDesignTime) { string url = Application.Current.Host.Source.OriginalString; return url.Substring(0, url.IndexOf("/ClientBin", StringComparison.InvariantCultureIgnoreCase)); } return null; } } Silverlight 4 now supports relative paths to services which greatly simplifies things.  We changed the code above to the following: public class ServiceProxyBase { private const string ServiceUrlPath = "../Services/JobPlanService.svc"; public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrl = ServiceUrlPath; } } public string ServiceUrl { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrl() { if (!IsDesignTime) { return ServiceUrlPath; } return null; } } Our ServiceProxy class derives from ServiceProxyBase and handles creating the ABC’s (Address, Binding, Contract) needed for a WCF service call. Looking through the code (mainly the constructor) you’ll notice that the service URI is created by supplying the base path to the XAP file along with the relative path defined in ServiceProxyBase:   public class ServiceProxy : ServiceProxyBase, IServiceProxy { private const string CompletedEventargs = "CompletedEventArgs"; private const string Completed = "Completed"; private const string Async = "Async"; private readonly CustomBinding _Binding; private readonly EndpointAddress _EndPointAddress; private readonly Uri _ServiceUri; private readonly Type _ProxyType = typeof(JobPlanServiceClient); public ServiceProxy() { _ServiceUri = new Uri(Application.Current.Host.Source, ServiceUrl); var elements = new BindingElementCollection { new BinaryMessageEncodingBindingElement(), new HttpTransportBindingElement { MaxBufferSize = 2147483647, MaxReceivedMessageSize = 2147483647 } }; // order of entries in collection is significant: dumb _Binding = new CustomBinding(elements); _EndPointAddress = new EndpointAddress(_ServiceUri); } #region IServiceProxy Members /// <summary> /// Used to call a WCF service operation. /// </summary> /// <typeparam name="T">The type of EventArgs that will be returned by the service operation.</typeparam> /// <param name="callback">The method to call once the WCF call returns (the callback).</param> /// <param name="parameters">Any parameters that the service operation expects.</param> public void CallService<T>(EventHandler<T> callback, params object[] parameters) where T : EventArgs { try { var proxy = new JobPlanServiceClient(_Binding, _EndPointAddress); string action = typeof (T).Name.Replace(CompletedEventargs, String.Empty); _ProxyType.GetEvent(action + Completed).AddEventHandler(proxy, callback); _ProxyType.InvokeMember(action + Async, BindingFlags.InvokeMethod, null, proxy, parameters); } catch (Exception exp) { MessageBox.Show("Unable to use ServiceProxy.CallService to retrieve data: " + exp.Message); } } #endregion } The relative path support for calling services in Silverlight 4 definitely simplifies code and is yet another good reason to move from Silverlight 3 to Silverlight 4.   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Some VS 2010 RC Updates (including patches for Intellisense and Web Designer fixes)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] We are continuing to make progress on shipping Visual Studio 2010.  I’d like to say a big thank you to everyone who has downloaded and tried out the VS 2010 Release Candidate, and especially to those who have sent us feedback or reported issues with it. This data has been invaluable in helping us find and fix remaining bugs before we ship the final release. Last month I blogged about a patch we released for the VS 2010 RC that fixed a bad intellisense crash issue.  This past week we released two additional patches that you can download and apply to the VS 2010 RC to immediately fix two other common issues we’ve seen people run into: Patch that fixes crashes with Tooltip invocation and when hovering over identifiers The Visual Studio team recently released a second patch that fixes some crashes we’ve seen when tooltips are displayed – most commonly when hovering over an identifier to view a QuickInfo tooltip. You can learn more about this issue from this blog post, and download and apply the patch here. Patch that fixes issues with the Web Forms designer not correctly adding controls to the auto-generated designer files The Visual Web Developer team recently released a patch that fixes issues where web controls are not correctly added to the .designer.cs file associated with the .aspx file – which means they can’t be programmed against in the code-behind file.  This issue is most commonly described as “controls are not being recognized in the code-behind” or “editing existing .aspx files regenerates the .aspx.designer.(vb or cs) file and controls are now missing” or “I can’t embed controls within the Ajax Control Toolkit TabContainer or the <asp:createuserwizard> control”. You can learn more about the issue here, and download the patch that fixes it here. Common Cause of Intellisense and IDE sluggishness on Windows XP, Vista, Win Server 2003/2008 systems Over the last few months we’ve occasionally seen reports of people seeing tremendous slowness when typing and using intellisense within VS 2010 despite running on decent machines.  It took us awhile to track down the cause – but we have found that the common culprit seems to be that these machines don’t have the latest versions of the UIA (Windows Automation) component installed. UIA 3 ships with Windows 7, and is a recommended Windows Update patch on XP and Vista (which is why we didn’t see the problem in our tests – since our machines are patched with all recommended updates).  Many systems (especially on XP) don’t automatically install recommended updates, though, and are running with older versions of UIA. This can cause significant performance slow-downs within the VS 2010 editor when large lists are displayed (for example: with intellisense). If you are running on Windows XP, Vista, or Windows Server 2003 or 2008 and are seeing any performance issues with the editor or IDE, please install the free UIA 3 update that can be downloaded from this page.  If you scroll down the page you’ll find direct links to versions for each OS. Note that we are making improvements to the final release of VS 2010 so that we don’t have big perf issues when UIA 3 isn’t installed – and we are also adding a message within the IDE that will warn you if you don’t have UIA 3 installed and accessibility is activated. Improved Text Rendering with WPF 4 and VS 2010 We recently made some nice changes to WPF 4 which improve the text clarity and text crispness over what was in the VS 2010/.NET 4 Release Candidate.  In particular these changes improve scenarios where you have a dark background with light text. You can learn more about these improvements in this WPF Team blog post.  These changes will be in the final release of VS 2010 and .NET 4. Hope this helps, Scott

    Read the article

  • Advanced Data Source Engine coming to Telerik Reporting Q1 2010

    This is the final blog post from the pre-release series. In it we are going to share with you some of the updates coming to our reporting solution in Q1 2010. A new Declarative Data Source Engine will be added to Telerik Reporting, that will allow full control over data management, and deliver significant gains in rendering performance and memory consumption. Some of the engines new features will be: Data source parameters - those parameters will be used to limit data retrieved from the data source to just the data needed for the report. Data source parameters are processed on the data source side, however only queried data is fetched to the reporting engine, rather than the full data source. This leads to lower memory consumption, because data operations are performed on queried data only, rather than on all data. As a result, only the queried data needs to be stored in the memory vs. the whole dataset, which was the case with the old approach Support for stored procedures - they will assist in achieving a consistent implementation of logic across applications, and are especially practical for performing repetitive tasks. A stored procedure stores the SQL statements and logic, which can then be executed in different reports and/or applications. Stored Procedures will not only save development time, but they will also improve performance, because each stored procedure is compiled on the data base server once, and then is reutilized. In Telerik Reporting, the stored procedure will also be parameterized, where elements of the SQL statement will be bound to parameters. These parameterized SQL queries will be handled through the data source parameters, and are evaluated at run time. Using parameterized SQL queries will improve the performance and decrease the memory footprint of your application, because they will be applied directly on the database server and only the necessary data will be downloaded on the middle tier or client machine; Calculated fields through expressions - with the help of the new reporting engine you will be able to use field values in formulas to come up with a calculated field. A calculated field is a user defined field that is computed "on the fly" and does not exist in the data source, but can perform calculations using the data of the data source object it belongs to. Calculated fields are very handy for adding frequently used formulas to your reports; Improved performance and optimized in-memory OLAP engine - the new data source will come with several improvements in how aggregates are calculated, and memory is managed. As a result, you may experience between 30% (for simpler reports) and 400% (for calculation-intensive reports) in rendering performance, and about 50% decrease in memory consumption. Full design time support through wizards - Declarative data sources are a great advance and will save developers countless hours of coding. In Q1 2010, and true to Telerik Reportings essence, using the new data source engine and its features requires little to no coding, because we have extended most of the wizards to support the new functionality. The newly extended wizards are available in VS2005/VS2008/VS2010 design-time. More features will be revealed on the product's what's new page when the new version is officially released in a few days. Also make sure you attend the free webinar on Thursday, March 11th that will be dedicated to the updates in Telerik Reporting Q1 2010. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Oracle Announces Oracle Exadata X3 Database In-Memory Machine

    - by jgelhaus
    Fourth Generation Exadata X3 Systems are Ideal for High-End OLTP, Large Data Warehouses, and Database Clouds; Eighth-Rack Configuration Offers New Low-Cost Entry Point ORACLE OPENWORLD, SAN FRANCISCO – October 1, 2012 News Facts During his opening keynote address at Oracle OpenWorld, Oracle CEO, Larry Ellison announced the Oracle Exadata X3 Database In-Memory Machine - the latest generation of its Oracle Exadata Database Machines. The Oracle Exadata X3 Database In-Memory Machine is a key component of the Oracle Cloud. Oracle Exadata X3-2 Database In-Memory Machine and Oracle Exadata X3-8 Database In-Memory Machine can store up to hundreds of Terabytes of compressed user data in Flash and RAM memory, virtually eliminating the performance overhead of reads and writes to slow disk drives, making Exadata X3 systems the ideal database platforms for the varied and unpredictable workloads of cloud computing. In order to realize the highest performance at the lowest cost, the Oracle Exadata X3 Database In-Memory Machine implements a mass memory hierarchy that automatically moves all active data into Flash and RAM memory, while keeping less active data on low-cost disks. With a new Eighth-Rack configuration, the Oracle Exadata X3-2 Database In-Memory Machine delivers a cost-effective entry point for smaller workloads, testing, development and disaster recovery systems, and is a fully redundant system that can be used with mission critical applications. Next-Generation Technologies Deliver Dramatic Performance Improvements Oracle Exadata X3 Database In-Memory Machines use a combination of scale-out servers and storage, InfiniBand networking, smart storage, PCI Flash, smart memory caching, and Hybrid Columnar Compression to deliver extreme performance and availability for all Oracle Database Workloads. Oracle Exadata X3 Database In-Memory Machine systems leverage next-generation technologies to deliver significant performance enhancements, including: Four times the Flash memory capacity of the previous generation; with up to 40 percent faster response times and 100 GB/second data scan rates. Combined with Exadata’s unique Hybrid Columnar Compression capabilities, hundreds of Terabytes of user data can now be managed entirely within Flash; 20 times more capacity for database writes through updated Exadata Smart Flash Cache software. The new Exadata Smart Flash Cache software also runs on previous generation Exadata systems, increasing their capacity for writes tenfold; 33 percent more database CPU cores in the Oracle Exadata X3-2 Database In-Memory Machine, using the latest 8-core Intel® Xeon E5-2600 series of processors; Expanded 10Gb Ethernet connectivity to the data center in the Oracle Exadata X3-2 provides 40 10Gb network ports per rack for connecting users and moving data; Up to 30 percent reduction in power and cooling. Configured for Your Business, Available Today Oracle Exadata X3-2 Database In-Memory Machine systems are available in a Full-Rack, Half-Rack, Quarter-Rack, and the new low-cost Eighth-Rack configuration to satisfy the widest range of applications. Oracle Exadata X3-8 Database In-Memory Machine systems are available in a Full-Rack configuration, and both X3 systems enable multi-rack configurations for virtually unlimited scalability. Oracle Exadata X3-2 and X3-8 Database In-Memory Machines are fully compatible with prior Exadata generations and existing systems can also be upgraded with Oracle Exadata X3-2 servers. Oracle Exadata X3 Database In-Memory Machine systems can be used immediately with any application certified with Oracle Database 11g R2 and Oracle Real Application Clusters, including SAP, Oracle Fusion Applications, Oracle’s PeopleSoft, Oracle’s Siebel CRM, the Oracle E-Business Suite, and thousands of other applications. Supporting Quotes “Forward-looking enterprises are moving towards Cloud Computing architectures,” said Andrew Mendelsohn, senior vice president, Oracle Database Server Technologies. “Oracle Exadata’s unique ability to run any database application on a fully scale-out architecture using a combination of massive memory for extreme performance and low-cost disk for high capacity delivers the ideal solution for Cloud-based database deployments today.” Supporting Resources Oracle Press Release Oracle Exadata Database Machine Oracle Exadata X3-2 Database In-Memory Machine Oracle Exadata X3-8 Database In-Memory Machine Oracle Database 11g Follow Oracle Database via Blog, Facebook and Twitter Oracle OpenWorld 2012 Oracle OpenWorld 2012 Keynotes Like Oracle OpenWorld on Facebook Follow Oracle OpenWorld on Twitter Oracle OpenWorld Blog Oracle OpenWorld on LinkedIn Mark Hurd's keynote with Andy Mendelsohn and Juan Loaiza - - watch for the replay to be available soon at http://www.youtube.com/user/Oracle or http://www.oracle.com/openworld/live/on-demand/index.html

    Read the article

  • Oracle Functional Testing Suite Advanced Pack for Oracle EBS Now Available

    - by Anne Carlson (Oracle Development)
    There’s new news about automated testing of E-Business Suite using the Oracle Application Testing Suite, a.k.a, “OATS”. E-Business Suite Development is pleased to announce the availability of the new Oracle Functional Testing Suite Advanced Pack for Oracle E-Business Suite. The new pack, available with the latest release of Oracle Application Testing Suite (12.4.0.2), provides pre-built test components and flows to automate the in-depth testing of Oracle E-Business Suite applications. Designed for use with the Oracle Application Testing Suite and its Oracle Flow Builder capability, these pre-built components and flows can help Oracle E-Business Suite customers to significantly reduce the time and effort needed to create and maintain automated test scripts. The Oracle Functional Testing Suite Advanced Pack for Oracle E-Business Suite is available now for EBS 12.1.3, and availability for EBS 12.2 is planned. Some Background on Automating Testing with Oracle Application Testing Suite and Oracle Flow Builder      Testing complex packaged applications like Oracle E-Business Suite can be time-consuming and challenging for organizations, hampering their ability to upgrade to latest releases or apply latest patches. Oracle Application Testing Suite offers organizations a unique and powerful testing platform for Oracle E-Business Suite and other Oracle applications. With the 12.3.0.1 release of Oracle Application Testing Suite, we introduced the Oracle Flow Builder testing framework and accompanying starter pack of pre-built test components and flows. The starter pack, which contains over 2000 components and 200 flows, provides broad coverage of commonly-used base functionality and is designed to jump-start the test automation effort. Using Oracle Flow Builder, even non-technical testers can create working test scripts using the pre-built components that Oracle provides. Each component represents an atomic test operation such as “create an invoice batch” or “apply an invoice hold.” Testers can assemble the pre-built components into test flows, and combine test flows with spreadsheet data to drive the testing of multiple data conditions. The Oracle Flow Builder framework allows customers to add, modify and extend the pre-built components to address new functionality and customizations of the Oracle E-Business Suite. Using Oracle Flow Builder’s component-based test generation framework instead of a traditional record/playback approach has allowed the EBS Quality Assurance team to reduce their test automation effort by 60%. E-Business Suite customers can significantly reduce their test automation effort using Oracle Application Testing Suite with Oracle Flow Builder and the pre-built test components and flows that Oracle provides. Oracle Functional Testing Suite Advanced Pack for Oracle E-Business Suite Improves Test Coverage With the Oracle Application Testing Suite 12.4.0.2 and the new Oracle Functional Testing Suite Advanced Pack for Oracle E-Business Suite, we are now delivering a significant number of additional test components and flows beyond those contained in the Oracle Flow Builder starter pack. These additional test components and flows provide 70-80% test coverage and enable the automation of detailed and complex test flows across the following Oracle E-Business Suite products: Oracle Asset Lifecycle Management Oracle Channel Revenue Management Oracle Discrete Manufacturing Oracle Incentive Compensation Oracle Lease and Finance Management Oracle Process Manufacturing Oracle Procurement Oracle Project Management Oracle Property Manager Oracle Service Downloads You can download the Oracle Functional Testing Suite Advanced Pack for Oracle E-Business Suite from the Oracle Technology Network. References Oracle Applications Testing Suite YouTube: Oracle Flow Builder Training YouTube: Oracle Applications Testing Suite and Flow Builder Demonstration Oracle Functional Testing Suite Advanced Pack Readme for E-Business Suite, id=1905989.1">Note 1905989.1 Related Articles Automate Testing Using Oracle Application Testing Suite with Flow Builder for E-Business Suite EBS 12.1.1 Test Starter Kit Now Available for Oracle Applications Testing Suite Oracle Application Testing Suite 9.0 Supported with Oracle E-Business Suite Using the Oracle Application Testing Suite with EBS: Interim Update #1

    Read the article

  • Clean Code: A Handbook of Agile Software Craftsmanship – book review

    - by DigiMortal
       Writing code that is easy read and test is not something that is easy to achieve. Unfortunately there are still way too much programming students who write awful spaghetti after graduating. But there is one really good book that helps you raise your code to new level – your code will be also communication tool for you and your fellow programmers. “Clean Code: A Handbook of Agile Software Craftsmanship” by Robert C. Martin is excellent book that helps you start writing the easily readable code. Of course, you are the one who has to learn and practice but using this book you have very good guide that keeps you going to right direction. You can start writing better code while you read this book and you can do it right in your current projects – you don’t have to create new guestbook or some other simple application to start practicing. Take the project you are working on and start making it better! My special thanks to Robert C. Martin I want to say my special thanks to Robert C. Martin for this book. There are many books that teach you different stuff and usually you have markable learning curve to go before you start getting results. There are many books that show you the direction to go and then leave you alone figuring out how to achieve all that stuff you just read about. Clean Code gives you a lot more – the mental tools to use so you can go your way to clean code being sure you will be soon there. I am reading books as much as I have time for it. Clean Code is top-level book for developers who have to write working code. Before anything else take Clean Code and read it. You will never regret your decision. I promise. Fragment of editorial review “Even bad code can function. But if code isn’t clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn’t have to be that way. What kind of work will you be doing? You’ll be reading code—lots of code. And you will be challenged to think about what’s right about that code, and what’s wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Readers will come away from this book understanding How to tell the difference between good and bad code How to write good code and how to transform bad code into good code How to create good names, good functions, good objects, and good classes How to format code for maximum readability How to implement complete error handling without obscuring code logic How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.” Table of contents Clean code Meaningful names Functions Comments Formatting Objects and data structures Error handling Boundaries Unit tests Classes Systems Emergence Concurrency Successive refinement JUnit internals Refactoring SerialDate Smells and heuristics A Concurrency II org.jfree.date.SerialDate Cross references of heuristics Epilogue Index

    Read the article

  • BI and EPM Landscape

    - by frank.buytendijk
    Most of my blog entries are not about Oracle products, and most of the latest entries are about topics such as IT strategy and enterprise architecture. However, given my background at Gartner, and at Hyperion, I still keep a close eye on what's happening in BI and EPM. One important reason is that I believe there is significant competitive value for organizations getting BI and EPM right. Davenport and Harris wrote a great book called "Competing on Analytics", in which they explain this in a very engaging and convincing way. At Oracle we have defined the concept of "management excellence" that outlines what organizations have to do to keep or create a competitive edge. It's not only in the business processes, but also in the management processes. Recently, Gartner published its 2009 market shares report for BI, Analytics, and Performance Management. Gartner identifies the same three segments that Oracle does: (1) CPM Suites (Oracle refers not to Corporate Performance Management, but Enterprise Performance Management), (2) BI Platform, and (3) Analytic Applications & Performance Management. According to Gartner, Oracle's share is increasing with revenue growing by more than 5%. Oracle currently holds the #2 market share position in the overall BI Software space based on total BI software revenue. Source: Gartner Dataquest Market Share: Business Intelligence, Analytics and Performance Management Software, Worldwide, 2009; Dan Sommer and Bhavish Sood; Apr 2010 Gartner has ranked Oracle as #1 in the CPM Suites worldwide sub-segment based on total BI software revenue, and Oracle is gaining share with revenue growing by more than 6% in 2009. Source: Gartner Dataquest Market Share: Business Intelligence, Analytics and Performance Management Software, Worldwide, 2009; Dan Sommer and Bhavish Sood; Apr 2010 The Analytic Applications & Performance Management subsegment is more fragmented. It has for instance a very large "Other Vendors" category. The largest player traditionally is SAS. Analytic Applications are often meant for very specific analytic needs in very specific industry sectors. According to Gartner, from the large vendors, again Oracle is the one who is gaining the most share - with total BI software revenue growth close to 15% in 2009. Source: Gartner Dataquest Market Share: Business Intelligence, Analytics and Performance Management Software, Worldwide, 2009; Dan Sommer and Bhavish Sood; Apr 2010 I believe this shows Oracle's integration strategy is working. In fact, integration actually is the innovation. BI and EPM have been silo technology platforms and application suites way too long. Management and measuring performance should be very closely linked to strategy execution, which is the domain of other business application areas such as CRM, ERP, and Supply Chain. BI and EPM are not about "making better decisions" anymore, but are part of a tangible action framework. Furthermore, organizations are getting more serious about ecosystem thinking. They do not evaluate single tools anymore for different application areas, but buy into a complete ecosystem of hardware, software and services. The best ecosystem is the one that offers the most options, in environments where the uncertainty is high and investments are hard to reverse. The key to successfully managing such an environment is middleware, and BI and EPM become increasingly middleware intensive. In fact, given the horizontal nature of BI and EPM, sitting on top of all business functions and applications, you could call them "upperware". Many are active in the BI and EPM space. Big players can offer a lot, but there are always many areas that are covered by specialty vendors. Oracle openly embraces those technologies within the ecosystem as well. Complete, open and integrated still accurately describes the Oracle product strategy. frank

    Read the article

  • Principles of Big Data By Jules J Berman, O&rsquo;Reilly Media Book Review

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2013/11/04/principles-of-big-data-by-jules-j-berman-orsquoreilly-media.aspx A fantastic book! Must be part, if not yet, of the fundamentals of the Big Data as a field of science. Highly recommend to those who are into the Big Data practice. Yet, I confess this book is one of my best reads this year and for a number of reasons: The book is full of wisdom, intimate insight, historical facts and real life examples to how Big Data projects get conceived, operate and sadly, yes, sometimes die. But not only that, the book is most importantly is filled with valuable advice, accurate and even overwhelming amount of reference (from the positive side), and the author does not event stop there: there are numerous technical excerpts, links and examples allowing to quickly accomplish many daunting tasks or make you aware of what one needs to perform as a data practitioner (excuse my use of the word practitioner, I just did not find a better substitute to it to trying to reference all who face Big Data). Be aware that Jules Berman’s background is in medicine, naturally, this book discusses this subject a lot as it is very dear to the author’s heart I believe, this does not make this book any less significant however, quite the opposite, I trust if there is an area in science or practice where the biggest benefits can be ripped from Big Data projects it is indeed the medical science, let’s make Cancer history! On a personal note, for me as a database, BI professional it has helped to understand better the motives behind Big Data initiatives, their underwater rivers and high altitude winds that divert or propel them forward. Additionally, I was impressed by the depth and number of mining algorithms covered in it. I must tell this made me very curious and tempting to find out more about these indispensable attributes of Big Data so sure I will be trying stretching my wallet to acquire several books that go more in depth on several most popular of them. My favorite parts of the book, well, all of them actually, but especially chapter 9: Analysis, it is just very close to my heart. But the real reason is it let me see what I do with data from a different angle. And then the next - “Special Considerations”, they are just two logical parts. The writing language is of this book is very acceptable for all levels, I had no technical problem reading it in ebook format on my 8” tablet or a large screen monitor. If I would be asked to say at least something negative I have to state I had a feeling initially that the book’s first part reads like an academic material relaxing the reader as the book progresses forward. I admit I am impressed with Jules’ abilities to use several programming languages and OSS tools, bravo! And I agree, it is not too, too hard to grasp at least the principals of a modern programming language, which seems becomes a defacto knowledge standard item for any modern human being. So grab a copy of this book, read it end to end and make yourself shielded from making mistakes at any stage of your Big Data initiative, by the way this book also helps build better future Big Data projects. Disclaimer: I received a free electronic copy of this book as part of the O'Reilly Blogger Program.

    Read the article

  • How To Clear An Alert - Part 2

    - by werner.de.gruyter
    There were some interesting comments and remarks on the original posting, so I decided to do a follow-up and address some of the issues that got raised... Handling Metric Errors First of all, there is a significant difference between an 'error' and an 'alert'. An 'alert' is the violation of a condition (a threshold) specified for a given metric. That means that the Agent is collecting and gathering the data for the metric, but there is a situation that requires the attention of an administrator. An 'error' on the other hand however, is a failure to collect metric data: The Agent is throwing the error because it cannot determine the value for the metric Whereas the 'alert' guarantees continuity of the metric data, an 'error' signals a big unknown. And the unknown aspect of all this is what makes an error a lot more serious than a regular alert: If you don't know what the current state of affairs is, there could be some serious issues brewing that nobody is aware of... The life-cycle of a Metric Error Clearing a metric error is pretty much the same workflow as a metric 'alert': The Agent signals the error after it failed to execute the metric The error is uploaded to the OMS/repository, where it becomes visible in the Console The error will remain active until the Agent is able to execute the metric successfully. Even though the metric is still getting scheduled and executed on a regular basis, the error will remain outstanding as long as the Agent is not capable of executing the metric correctly Knowing this, the way to fix the metric error should be obvious: Take the 'problem' away, and as soon as the metric is executed again (based on the frequency of the metric), the error will go away. The same tricks used to clear alerts can be used here too: Wait for the next scheduled execution. For those metrics that are executed regularly (like every 15 minutes or so), it's just a matter of waiting those minutes to see the updates. The 'Reevaluate Alert' button can be used to force a re-execution of the metric. In case a metric is executed once a day, this will be a better way to make sure that the underlying problem has been solved. And if it has been, the metric error will be removed, and the regular data points will be uploaded to the repository. And just in case you have to 'force' the issue a little: If you disable and re-enable a metric, it will get re-scheduled. And that means a new metric execution, and an update of the (hopefully) fixed problem. Database server-generated alerts and problem checkers There are various ways the Agent can collect metric data: Via a script or a SQL statement, reading a log file, getting a value from an SNMP OID or listening for SNMP traps or via the DBMS_SERVER_ALERTS mechanism of an Oracle database. For those alert which are generated by the database (like tablespace metrics for 10g and above databases), the Agent just 'waits' for the database to report any new findings. If the Agent has lost the current state of the server-side metrics (due to an incomplete recovery after a disaster, or after an improper use of the 'emctl clearstate' command), the Agent might be still aware of an alert that the database no longer has (or vice versa). The same goes for 'problem checker' alerts: Those metrics that only report data if there is a problem (like the 'invalid objects' metric) will also have a problem if the Agent state has been tampered with (again, the incomplete recovery, and after improper use of 'emctl clearstate' are the two main causes for this). The best way to deal with these kinds of mismatches, is to simple disable and re-enable the metric again: The disabling will clear the state of the metric, and the re-enabling will force a re-execution of the metric, so the new and updated results can get uploaded to the repository. Starting 10gR5, the Agent performs additional checks and verifications after each restart of the Agent and/or each state change of the database (shutdown/startup or failover in case of DataGuard) to catch these kinds of mismatches.

    Read the article

  • Error Handling Examples(C#)

    “The purpose of reviewing the Error Handling code is to assure that the application fails safely under all possible error conditions, expected and unexpected. No sensitive information is presented to the user when an error occurs.” (OWASP, 2011) No Error Handling The absence of error handling is still a form of error handling. Based on the code in Figure 1, if an error occurred and was not handled within either the ReadXml or BuildRequest methods the error would bubble up to the Search method. Since this method does not handle any acceptations the error will then bubble up the stack trace. If this continues and the error is not handled within the application then the environment in which the application is running will notify the user running the application that an error occurred based on what type of application. Figure 1: No Error Handling public DataSet Search(string searchTerm, int resultCount) { DataSet dt = new DataSet(); dt.ReadXml(BuildRequest(searchTerm, resultCount)); return dt; } Generic Error Handling One simple way to add error handling is to catch all errors by default. If you examine the code in Figure 2, you will see a try-catch block. On April 6th 2010 Louis Lazaris clearly describes a Try Catch statement by defining both the Try and Catch aspects of the statement. “The try portion is where you would put any code that might throw an error. In other words, all significant code should go in the try section. The catch section will also hold code, but that section is not vital to the running of the application. So, if you removed the try-catch statement altogether, the section of code inside the try part would still be the same, but all the code inside the catch would be removed.” (Lazaris, 2010) He also states that all errors that occur in the try section cause it to stops the execution of the try section and redirects all execution to the catch section. The catch section receives an object containing information about the error that occurred so that they system can gracefully handle the error properly. When errors occur they commonly log them in some form. This form could be an email, database entry, web service call, log file, or just an error massage displayed to the user.  Depending on the error sometimes applications can recover, while others force an application to close. Figure 2: Generic Error Handling public DataSet Search(string searchTerm, int resultCount) { DataSet dt = new DataSet(); try { dt.ReadXml(BuildRequest(searchTerm, resultCount)); } catch (Exception ex) { // Handle all Exceptions } return dt; } Error Specific Error Handling Like the Generic Error Handling, Error Specific error handling allows for the catching of specific known errors that may occur. For example wrapping a try catch statement around a soap web service call would allow the application to handle any error that was generated by the soap web service. Now, if the systems wanted to send a message to the web service provider every time a soap error occurred but did not want to notify them if any other type of error occurred like a network time out issue. This would be varying tedious to accomplish using the General Error Handling methodology. This brings us to the use case for using the Error Specific error handling methodology.  The Error Specific Error handling methodology allows for the TryCatch statement to catch various types of errors depending on the type of error that occurred. In Figure 3, the code attempts to handle DataException differently compared to how it potentially handles all other errors. This allows for specific error handling for each type of known error, and still allows for error handling of any unknown error that my occur during the execution of the TryCatch statement. Figure 5: Error Specific Error Handling public DataSet Search(string searchTerm, int resultCount) { DataSet dt = new DataSet(); try { dt.ReadXml(BuildRequest(searchTerm, resultCount)); } catch (TimeoutException ex) { // Handle Timeout TimeoutException Only } catch (Exception) { // Handle all Exceptions } return dt; }

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >