Search Results

Search found 18454 results on 739 pages for 'oracle thoughts'.

Page 512/739 | < Previous Page | 508 509 510 511 512 513 514 515 516 517 518 519  | Next Page >

  • Take Two: Comparing JVMs on ARM/Linux

    - by user12608080
    Although the intent of the previous article, entitled Comparing JVMs on ARM/Linux, was to introduce and highlight the availability of the HotSpot server compiler (referred to as c2) for Java SE-Embedded ARM v7,  it seems, based on feedback, that everyone was more interested in the OpenJDK comparisons to Java SE-E.  In fact there were two main concerns: The fact that the previous article compared Java SE-E 7 against OpenJDK 6 might be construed as an unlevel playing field because version 7 is newer and therefore potentially more optimized. That the generic compiler settings chosen to build the OpenJDK implementations did not put those versions in a particularly favorable light. With those considerations in mind, we'll institute the following changes to this version of the benchmarking: In order to help alleviate an additional concern that there is some sort of benchmark bias, we'll use a different suite, called DaCapo.  Funded and supported by many prestigious organizations, DaCapo's aim is to benchmark real world applications.  Further information about DaCapo can be found at http://dacapobench.org. At the suggestion of Xerxes Ranby, who has been a great help through this entire exercise, a newer Linux distribution will be used to assure that the OpenJDK implementations were built with more optimal compiler settings.  The Linux distribution in this instance is Ubuntu 11.10 Oneiric Ocelot. Having experienced difficulties getting Ubuntu 11.10 to run on the original D2Plug ARMv7 platform, for these benchmarks, we'll switch to an embedded system that has a supported Ubuntu 11.10 release.  That platform is the Freescale i.MX53 Quick Start Board.  It has an ARMv7 Coretex-A8 processor running at 1GHz with 1GB RAM. We'll limit comparisons to 4 JVM implementations: Java SE-E 7 Update 2 c1 compiler (default) Java SE-E 6 Update 30 (c1 compiler is the only option) OpenJDK 6 IcedTea6 1.11pre 6b23~pre11-0ubuntu1.11.10.2 CACAO build 1.1.0pre2 OpenJDK 6 IcedTea6 1.11pre 6b23~pre11-0ubuntu1.11.10.2 JamVM build-1.6.0-devel Certain OpenJDK implementations were eliminated from this round of testing for the simple reason that their performance was not competitive.  The Java SE 7u2 c2 compiler was also removed because although quite respectable, it did not perform as well as the c1 compilers.  Recall that c2 works optimally in long-lived situations.  Many of these benchmarks completed in a relatively short period of time.  To get a feel for where c2 shines, take a look at the first chart in this blog. The first chart that follows includes performance of all benchmark runs on all platforms.  Later on we'll look more at individual tests.  In all runs, smaller means faster.  The DaCapo aficionado may notice that only 10 of the 14 DaCapo tests for this version were executed.  The reason for this is that these 10 tests represent the only ones successfully completed by all 4 JVMs.  Only the Java SE-E 6u30 could successfully run all of the tests.  Both OpenJDK instances not only failed to complete certain tests, but also experienced VM aborts too. One of the first observations that can be made between Java SE-E 6 and 7 is that, for all intents and purposes, they are on par with regards to performance.  While it is a fact that successive Java SE releases add additional optimizations, it is also true that Java SE 7 introduces additional complexity to the Java platform thus balancing out any potential performance gains at this point.  We are still early into Java SE 7.  We would expect further performance enhancements for Java SE-E 7 in future updates. In comparing Java SE-E to OpenJDK performance, among both OpenJDK VMs, Cacao results are respectable in 4 of the 10 tests.  The charts that follow show the individual results of those four tests.  Both Java SE-E versions do win every test and outperform Cacao in the range of 9% to 55%. For the remaining 6 tests, Java SE-E significantly outperforms Cacao in the range of 114% to 311% So it looks like OpenJDK results are mixed for this round of benchmarks.  In some cases, performance looks to have improved.  But in a majority of instances, OpenJDK still lags behind Java SE-Embedded considerably. Time to put on my asbestos suit.  Let the flames begin...

    Read the article

  • ZFS Basics

    - by user12614620
    Stage 1 basics: creating a pool # zpool create $NAME $REDUNDANCY $DISK1_0..N [$REDUNDANCY $DISK2_0..N]... $NAME = name of the pool you're creating. This will also be the name of the first filesystem and, by default, be placed at the mountpoint "/$NAME" $REDUNDANCY = either mirror or raidzN, and N can be 1, 2, or 3. If you leave N off, then it defaults to 1. $DISK1_0..N = the disks assigned to the pool. Example 1: zpool create tank mirror c4t1d0 c4t2d0 name of pool: tank redundancy: mirroring disks being mirrored: c4t1d0 and c4t2d0 Capacity: size of a single disk Example 2: zpool create tank raidz c4t1d0 c4t2d0 c4t3d0 c4t4d0 c4t5d0 Here the redundancy is raidz, and there are five disks, in a 4+1 (4 data, 1 parity) config. This means that the capacity is 4 times the disk size. If the command used "raidz2" instead, then the config would be 3+2. Likewise, "raidz3" would be a 2+3 config. Example 3: zpool create tank mirror c4t1d0 c4t2d0 mirror c4t3d0 c4t4d0 This is the same as the first mirror example, except there are two mirrors now. ZFS will stripe data across both mirrors, which means that writing data will go a bit faster. Note: you cannot create a mirror of two raidzs. You can create a raidz of mirrors, but to do that requires trickery.

    Read the article

  • Reusing Web Forms across BPM Roles

    - by Mona Rakibe
    Recently Varsha(another BPM Product Manager) approached me with a requirement where she wanted to reuse same Web Form for different task activity.We both knew this is easily achievable.The human task outcomes can differ to distinguish the submission based on roles.Her requirement was slightly more than this, she wanted to hide some data based on the logged in user. If you have worked on Web Form rules, dynamically showing and hiding data is common requirement and easily achievable using Form Rules. In this case the challenge was accessing BPM role inside the Web Form. Although, will be addressing this requirement in future release she wanted a immediate solution(Aha, after all customers are not the only one's who can not wait). Thankfully we managed to come-up with a solution and I hope this will be helpful to larger audience. Solution has 3 steps : Step 1: We added a hidden attribute in our form (Role). The purpose of this attribute is just to store the current logged in user's role and we pass the value during data association. Step 2 : In your data association step, pass the role value based on the Swimlane Step 3 : Now use this hidden attribute value in your Web Form rule for dynamic behavior Detailed steps and sample can be downloaded from Java.net.

    Read the article

  • Finding which activities will execute next in a process instance

    - by Mark Nelson
      We have had a few queries lately about how to find out what activity (or activities) will be the next to execute in a particular process instance.  It is possible to do this, however you will need to use a couple of undocumented APIs.  That means that they could (and probably will) change in some future release and break your code.  If you understand the risks of using undocumented APIs and are prepared to accept that risk, read on… READ MORE >>

    Read the article

  • Enterprise Trade Compliance: Changing Trade Operations around the World

    - by John Murphy
    We live in a world of incredible bounty and speed where any product can be delivered anywhere on earth. However, our world is also filled with challenges for business – where volatility, uncertainty, risk, and chaos are our daily companions. To prosper amid the realities of this new world, organizations cannot rely on old strategies; they need new business models. Key trends within the global economy are mandating that companies fully integrate global trade management best practices within broader supply chain management strategies, rather than simply leaving it as a discrete event at the end of the order or procurement cycle. To explain, many companies face a complicated and changing compliance environment. This is directly linked to the speed and configuration of the supply chain, particularly with the explosion of new markets, shorter service cycles and ship times, accelerating rates of globalization and outsourcing, and increasing product complexity and regulation. Read More...

    Read the article

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 4)

    - by hinkmond
    And now here's the Java code that you'll need to read your ghost sensor on your Raspberry Pi The general idea is that you are using Java code to access the GPIO pin on your Raspberry Pi where the ghost sensor (JFET trasistor) detects minute changes in the electromagnetic field near the Raspberry Pi and will change the GPIO pin to high (+3 volts) when something is detected, otherwise there is no value (ground). Here's that Java code: try { /*** Init GPIO port(s) for input ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port File exportFileCheck = new File("/sys/class/gpio/gpio"+gpioChannel); if (exportFileCheck.exists()) { unexportFile.write(gpioChannel); unexportFile.flush(); } // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to input/output direction control of port FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for input directionFile.write(GPIO_IN); } /*** Read data from each GPIO port ***/ RandomAccessFile[] raf = new RandomAccessFile[GpioChannels.length]; int sleepPeriod = 10; final int MAXBUF = 256; byte[] inBytes = new byte[MAXBUF]; String inLine; int zeroCounter = 0; // Get current timestamp with Calendar() Calendar cal; DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss.SSS"); String dateStr; // Open RandomAccessFile handle to each GPIO port for (int channum=0; channum And, then we just load up our Java SE Embedded app, place each Raspberry Pi with a ghost sensor attached in strategic locations around our Santa Clara office (which apparently is very haunted by ghosts from the Agnews Insane Asylum 1906 earthquake), and watch our analytics for any ghosts. Easy peazy. See the previous posts for the full series on the steps to this cool demo: Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 1) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 2) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 3) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 4) Hinkmond

    Read the article

  • Why are embedded device apps still written in C/C++? Why not Java programming language?

    - by hinkmond
    At the recent Black Hat 2014 conference in Sin City, the Black Hatters were focusing on Embedded Devices and IoT. You know? Make your networked-toaster burn your bread 10,000 miles away, over the Web for grins and giggles. Well, apparently the Black Hatters say it can be done pretty easily these days, which is scary. See: Securing Embedded Devices & IoT Here's a quote: All these devices are still written in C and C++. The challenges associated with developing securely in these languages have been fought for nearly two decades. "You often hear people say, 'Well, why don't we just get rid of the C and C++ language if it's so problematic. Why don't we just write everything in C# or Java, or something that is a little safer to develop in?'," DeMott says. Gah! Why are all these IoT devices still using C/C++? Of course they should be using Java SE Embedded technology! It's a natural fit to use for better security on embedded devices. Or, I guess, developers really don't mind if their networked-toasters do char their breakfast. If it can be burned, it will be... That's what I say. Unless they use Java. Hinkmond

    Read the article

  • When to use each user research method

    - by user12277104
    There are a lot of user research methods out there, but sometimes we get stuck in a rut, conducting all formative usability testing before coding, or running surveys to gather satisfaction data. I'll be the first to admit that it happens to me, but to get out of a rut, it just takes a minute to look at where I am in the design & development cycle, what kind(s) of data I need, and what methods are available to me. We need reminders, or refreshers, every once in a while. One tool I've found useful is a graphic organizer that I created many years ago. It's been through several revisions, as I've adapted it to the product cycles of the places I've worked, changed my mind about how to categorize it, and added methods that I've used or created over time. I shared a version of this table at the 2012 International UPA conference, and I was contacted by someone yesterday who wanted to use it in a university course on user-center design. I was flattered at the the thought, but embarrassed, because I was sure it needed updating -- that was a year ago, after all. But I opened it today, and really, there's not much I'd change -- sure, I could add some nuance regarding what types of formative testing, such as modality (remote, unmoderated remote, or in-person) or flavor of testing (RITE, RITE-Krug, comparative, performance), but I think it's pretty much ok as is. Click on the image below, to get the full-size PDF. And whether it's entirely "right" or "wrong" isn't the whole value of looking at these methods across the product lifecycle. The real value lies in the reminder that I have options. And what those options are change as the field changes, so while I don't expect this graphic to have an eternal shelf life, it's still ok a year after I last updated it. That said, if you find something missing or out of place, let me know :) 

    Read the article

  • Java EE @ Devoxx UK

    - by delabassee
    Devoxx UK is taking place next week (12th and 13th June) in London. As with any Devoxx conference, this UK edition will have a nice mix of content, an impressive list of speakers and obviously Java EE will be well will covered too:  Apache TomEE, Java EE Web Profile and more on Tomcat (David Blevins) Myths, Tales and Voodoo - About Java EE and Testing (Adam Bien) 50 new features of Java EE 7 (Antonio Goncalves & Arun Gupta) Java EE 7 Hands-on Lab (Arun Gupta) In addition, there will be 2 BoF related to Java EE on Thursday evening, the first BoF will be about the Java EE platform and the second one will be about the Java EE Reference Implementation, i.e. GlassFish. I will participate in the Java EE Community BoF where will discuss Java EE general but with all recent activities, I suspect that a large portion of the BoF will spent on discussing the current plans for Java EE 8.  Right after and in the same room, I will join Steve Millidge of C2B2 for the GlassFish is here to stay! BoF. The goal is to discuss on GlassFish, the current status, the plans for the next release, how the community can contributes, etc. It should be mentioned that attending those BoFs is completely free, just make sure to register here.  So if you are in London next week, mind the Geek and see you at Devoxx UK!

    Read the article

  • Draggable & Resizable Editors

    - by Geertjan
    Thanks to a cool tip from Steven Yi (here in the comments to a blog entry), I was able to make a totally pointless but fun set of draggable and resizable editors: What you see above are two JEditorPanes within JPanels. The JPanels are within ComponentWidgets provided by the NetBeans Visual Library, which is also where the special border comes from. The ComponentWidgets are within a Visual Library Scene, which is within a JScrollPane in a TopComponent. Each editor has this, which means the NetBeans Java Editor is bound to the JEditorPane: jEditorPane1.setContentType("text/x-java"); EditorKit kit = CloneableEditorSupport.getEditorKit("text/x-java"); jEditorPane1.setEditorKit(kit); jEditorPane1.getDocument().putProperty("mimeType", "text/x-java"); A similar thing is done in the other JEditorPane, i.e., it is bound to the XML Editor. While the XML Editor also has code completion, in addition to syntax coloring, as can be seen above, this is not the case for the JEditorPane bound to the Java Editor, since the JEditorPane doesn't have a Java classpath, which is needed for Java code completion to work.

    Read the article

  • Library order is important

    - by Darryl Gove
    I've written quite extensively about link ordering issues, but I've not discussed the interaction between archive libraries and shared libraries. So let's take a simple program that calls a maths library function: #include <math.h int main() { for (int i=0; i<10000000; i++) { sin(i); } } We compile and run it to get the following performance: bash-3.2$ cc -g -O fp.c -lm bash-3.2$ timex ./a.out real 6.06 user 6.04 sys 0.01 Now most people will have heard of the optimised maths library which is added by the flag -xlibmopt. This contains optimised versions of key mathematical functions, in this instance, using the library doubles performance: bash-3.2$ cc -g -O -xlibmopt fp.c -lm bash-3.2$ timex ./a.out real 2.70 user 2.69 sys 0.00 The optimised maths library is provided as an archive library (libmopt.a), and the driver adds it to the link line just before the maths library - this causes the linker to pick the definitions provided by the static library in preference to those provided by libm. We can see the processing by asking the compiler to print out the link line: bash-3.2$ cc -### -g -O -xlibmopt fp.c -lm /usr/ccs/bin/ld ... fp.o -lmopt -lm -o a.out... The flag to the linker is -lmopt, and this is placed before the -lm flag. So what happens when the -lm flag is in the wrong place on the command line: bash-3.2$ cc -g -O -xlibmopt -lm fp.c bash-3.2$ timex ./a.out real 6.02 user 6.01 sys 0.01 If the -lm flag is before the source file (or object file for that matter), we get the slower performance from the system maths library. Why's that? If we look at the link line we can see the following ordering: /usr/ccs/bin/ld ... -lmopt -lm fp.o -o a.out So the optimised maths library is still placed before the system maths library, but the object file is placed afterwards. This would be ok if the optimised maths library were a shared library, but it is not - instead it's an archive library, and archive library processing is different - as described in the linker and library guide: "The link-editor searches an archive only to resolve undefined or tentative external references that have previously been encountered." An archive library can only be used resolve symbols that are outstanding at that point in the link processing. When fp.o is placed before the libmopt.a archive library, then the linker has an unresolved symbol defined in fp.o, and it will search the archive library to resolve that symbol. If the archive library is placed before fp.o then there are no unresolved symbols at that point, and so the linker doesn't need to use the archive library. This is why libmopt needs to be placed after the object files on the link line. On the other hand if the linker has observed any shared libraries, then at any point these are checked for any unresolved symbols. The consequence of this is that once the linker "sees" libm it will resolve any symbols it can to that library, and it will not check the archive library to resolve them. This is why libmopt needs to be placed before libm on the link line. This leads to the following order for placing files on the link line: Object files Archive libraries Shared libraries If you use this order, then things will consistently get resolved to the archive libraries rather than to the shared libaries.

    Read the article

  • Getting Started Plugging into the "Find in Projects" Dialog

    - by Geertjan
    In case you missed it amidst all the code in yesterday's blog entry, the "Find in Projects" dialog is now pluggable. I think that's really cool. The code yesterday gives you a complete example, but let's break it down a bit and deconstruct down to a very simple hello world scenario. We'll end up with as many extra tabs in the "Find in Projects" dialog as we need, for example, three in this case:  And clicking on any of those extra tabs will, in this simple example, simply show us this: Once we have that, we'll be able to continue adding small bits of code over the next few blog entries until we have something more useful. So, in this blog entry, you'll literally be able to display "Hello World" within a new tab in the "Find in Projects" dialog: import javax.swing.JComponent; import javax.swing.JLabel; import org.netbeans.spi.search.provider.SearchComposition; import org.netbeans.spi.search.provider.SearchProvider; import org.netbeans.spi.search.provider.SearchProvider.Presenter; import org.openide.NotificationLineSupport; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = SearchProvider.class) public class ExampleSearchProvider1 extends SearchProvider { @Override public Presenter createPresenter(boolean replaceMode) { return new ExampleSearchPresenter(this); } @Override public boolean isReplaceSupported() { return false; } @Override public boolean isEnabled() { return true; } @Override public String getTitle() { return "Demo Extension 1"; } public class ExampleSearchPresenter extends SearchProvider.Presenter { private ExampleSearchPresenter(ExampleSearchProvider1 sp) { super(sp, true); } @Override public JComponent getForm() { return new JLabel("Hello World"); } @Override public SearchComposition composeSearch() { return null; } @Override public boolean isUsable(NotificationLineSupport nls) { return true; } } } That's it, not much code, works fine in NetBeans IDE 7.2 Beta, and is easier to digest than the big chunk from yesterday. If you make three classes like the above in a NetBeans module, and you install it, you'll have three new tabs in the "Find in Projects" dialog. The only required dependencies are Dialogs API, Lookup API, and Search in Projects API. Read the javadoc linked above and then in next blog entries we'll continue to build out something like the sample you saw in yesterday's blog entry.

    Read the article

  • On-demand Webcast: Java in the Smart Grid

    - by Jacob Lehrbaum
    The Smart Grid is one of the most significant evolutions of our utility infrastructure in recent history. This innovative grid will soon revolutionize how utilities manage and control the energy in our homes--helping utilities reduce energy usage during peak hours, improve overall energy efficiency, and lower your energy bills. If you'd like to learn more about the Smart Grid and the role that Java is poised to play in this important initiative you can check out our on-demand webcast. We'll show you how Java solutions--including Java ME and Java SE for Embedded --can help build devices and infrastructure that take advantage of this new market. As the world's most popular developer language, Java enables you to work with a wide range of developers and provides access to tools and resources to build smarter devices, faster and more affordably.

    Read the article

  • Maxco Quickly Implements JD Edwards World A9.1

    David Bryant, Vice President and CFO of Maxco, explains to Cliff why Maxco chose to be one of the first to implement JD Edwards World A9.1, how the implementation is going to be a huge competitive advantage for Maxco and its customers, and the value Bryant sees in being part of the Quest User Group community.

    Read the article

  • Inline template efficiency

    - by Darryl Gove
    I like inline templates, and use them quite extensively. Whenever I write code with them I'm always careful to check the disassembly to see that the resulting output is efficient. Here's a potential cause of inefficiency. Suppose we want to use the mis-named Leading Zero Detect (LZD) instruction on T4 (this instruction does a count of the number of leading zero bits in an integer register - so it should really be called leading zero count). So we put together an inline template called lzd.il looking like: .inline lzd lzd %o0,%o0 .end And we throw together some code that uses it: int lzd(int); int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } We compile the code with some amount of optimisation, and look at the resulting code: $ cc -O -xtarget=T4 -S lzd.c lzd.il $ more lzd.s .L77000018: /* 0x001c 11 */ lzd %o0,%o0 /* 0x0020 9 */ ld [%i1],%i3 /* 0x0024 11 */ st %o0,[%i2] /* 0x0028 9 */ add %i3,1,%i0 /* 0x002c */ cmp %i0,999 /* 0x0030 */ ble,pt %icc,.L77000018 /* 0x0034 */ st %i0,[%i1] What is surprising is that we're seeing a number of loads and stores in the code. Everything could be held in registers, so why is this happening? The problem is that the code is only inlined at the code generation stage - when the actual instructions are generated. Earlier compiler phases see a function call. The called functions can do all kinds of nastiness to global variables (like 'a' in this code) so we need to load them from memory after the function call, and store them to memory before the function call. Fortunately we can use a #pragma directive to tell the compiler that the routine lzd() has no side effects - meaning that it does not read or write to memory. The directive to do that is #pragma no_side_effect(<routine name), and it needs to be placed after the declaration of the function. The new code looks like: int lzd(int); #pragma no_side_effect(lzd) int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } Now the loop looks much neater: /* 0x0014 10 */ add %i1,1,%i1 ! 11 ! { ! 12 ! c=lzd(c); /* 0x0018 12 */ lzd %o0,%o0 /* 0x001c 10 */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000018 /* 0x0024 */ nop

    Read the article

  • sqlplus: Running "set lines" and "set pagesize" automatially

    - by katsumii
    This is a followup to my previous entry. Using the full tty real estate with sqlplus (INOUE Katsumi @ Tokyo) 'rlwrap' is widely used for adding 'sqlplus' the history function and command line editing. Here's another but again kludgy implementation. First this is the alias. alias sqlplus="rlwrap -z ~/sqlplus.filter sqlplus" And this is the file content. #!/usr/bin/env perl use lib ($ENV{RLWRAP_FILTERDIR} or "."); use RlwrapFilter; use POSIX qw(:signal_h); use strict; my $filter = new RlwrapFilter; $filter -> prompt_handler(\&prompt); sigprocmask(SIG_UNBLOCK, POSIX::SigSet->new(28)); $SIG{WINCH} = 'winchHandler'; $filter -> run; sub winchHandler { $filter -> input_handler(\&input); sigprocmask(SIG_UNBLOCK, POSIX::SigSet->new(28)); $SIG{WINCH} = 'winchHandler'; $filter -> run; } sub input { $filter -> input_handler(undef); return `resize |sed -n "1s/COLUMNS=/set linesize /p;2s/LINES=/set pagesize /p"` . $_; } sub prompt { if ($_ =~ "SQL> ") { $filter -> input_handler(\&input); $filter -> prompt_handler(undef); } return $_; } I hope I can compare these 2 implementations after testing more and getting some feedbacks.

    Read the article

  • Sources of NetBeans Gradle Plugin

    - by Geertjan
    Here is where you can find the sources of the latest and greatest NetBeans Gradle plugin: http://java.net/projects/nb-api-samples/sources/api-samples/show/versions/7.1/misc/GradleSupport To use it, download the sources above, open the sources into the IDE (which must be 7.1.1 or above), then you'll have a NetBeans module. Right-click it to run the module into a new instance of NetBeans IDE. In the Options window's Miscellaneous tab, there's a Gradle subtab for setting the Gradle location. In the New File dialog, in the Other category, you'll find a template named "Empty Gradle file". Make sure to name it "build" and to put it in the root directory of the application (by leaving the Folder field empty, you're specifying it should be created in the root directory). You'll then be able to expand the build.gradle file: Double-click a task to run it. When you open the file, it opens in the Groovy editor, if the Groovy editor is installed. When you make changes in the file, the list of tasks, shown above, is automatically recreated. It's at a really early stage of development and it would be great if developers out there would be interested in adding more features to it.

    Read the article

  • YouTube: CoffeeScript Rocks (in NetBeans IDE)

    - by Geertjan
    CoffeeScript is a handy preprocessor for JavaScript, as shown in a quick demo below on YouTube, using the CoffeeScript plugin for NetBeans IDE. Right now, the NetBeans Plugin Portal doesn't have a CoffeeScript plugin for NetBeans IDE 7.4, but not to worry, the NetBeans IDE 7.3 plugin works just fine. http://plugins.netbeans.org/plugin/39007/coffeescript-netbeans Here's a small YouTube clip I made today showing how it all works: Also read this very handy and detailed NetBeans tutorial, on which I based the demo above: https://netbeans.org/kb/docs/web/js-toolkits-jquery.html Related info: http://www.youtube.com/watch?v=QgqVh_KpVKY http://www.ibm.com/developerworks/library/wa-coffee1/ http://blog.sethladd.com/2012/01/vanilla-dart-ftw.html http://api.jquery.com/fadeOut/

    Read the article

  • Java ME Tech Holiday Gift Idea #3: Kindle Touch Wi-Fi

    - by hinkmond
    Here's a Java ME tech-enabled device holiday gift idea: The venerable Amazon Kindle Touch with built-in Wi-Fi. Niiiice! See: Java ME Tech Gift Idea #3 Here's a quote: + Most-advanced E Ink display, now with multi-touch + New sleek design - 8% lighter, 11% smaller, holds 3,000 books + Only e-reader with text-to-speech, audiobooks and mp3 support + Built in Wi-Fi - Get books in 60 seconds If you want to give someone special a cool device, you want to give something with Java ME technology. Give only the best this holiday season! Hinkmond

    Read the article

  • RPi and Java Embedded GPIO: Connecting LEDs

    - by hinkmond
    Next, we need some low-level peripherals to connect to the Raspberry Pi GPIO header. So, we'll do what's called a "Fry's Run" in Silicon Valley, which means we go shop at the local Fry's Electronics store for parts. In this case, we'll need some breadboard jumper wires (blue wires in photo), some LEDs, and some resistors (for the RPi GPIO, 150 ohms - 300 ohms would work for the 3.3V output of the GPIO ports). And, if you want to do other projects, you might as well by a breadboard, which is a development board with lots of holes in it. Ask a Fry's clerk for help. Or, better yet, ask the customer standing next to you in the electronics components aisle for help. (Might be faster) So, go to your local hobby electronics store, or go to Fry's if you have one close by, and come back here to the next blog post to see how to hook these parts up. Hinkmond

    Read the article

  • Performance triage

    - by Dave
    Folks often ask me how to approach a suspected performance issue. My personal strategy is informed by the fact that I work on concurrency issues. (When you have a hammer everything looks like a nail, but I'll try to keep this general). A good starting point is to ask yourself if the observed performance matches your expectations. Expectations might be derived from known system performance limits, prototypes, and other software or environments that are comparable to your particular system-under-test. Some simple comparisons and microbenchmarks can be useful at this stage. It's also useful to write some very simple programs to validate some of the reported or expected system limits. Can that disk controller really tolerate and sustain 500 reads per second? To reduce the number of confounding factors it's better to try to answer that question with a very simple targeted program. And finally, nothing beats having familiarity with the technologies that underlying your particular layer. On the topic of confounding factors, as our technology stacks become deeper and less transparent, we often find our own technology working against us in some unexpected way to choke performance rather than simply running into some fundamental system limit. A good example is the warm-up time needed by just-in-time compilers in Java Virtual Machines. I won't delve too far into that particular hole except to say that it's rare to find good benchmarks and methodology for java code. Another example is power management on x86. Power management is great, but it can take a while for the CPUs to throttle up from low(er) frequencies to full throttle. And while I love "turbo" mode, it makes benchmarking applications with multiple threads a chore as you have to remember to turn it off and then back on otherwise short single-threaded runs may look abnormally fast compared to runs with higher thread counts. In general for performance characterization I disable turbo mode and fix the power governor at "performance" state. Another source of complexity is the scheduler, which I've discussed in prior blog entries. Lets say I have a running application and I want to better understand its behavior and performance. We'll presume it's warmed up, is under load, and is an execution mode representative of what we think the norm would be. It should be in steady-state, if a steady-state mode even exists. On Solaris the very first thing I'll do is take a set of "pstack" samples. Pstack briefly stops the process and walks each of the stacks, reporting symbolic information (if available) for each frame. For Java, pstack has been augmented to understand java frames, and even report inlining. A few pstack samples can provide powerful insight into what's actually going on inside the program. You'll be able to see calling patterns, which threads are blocked on what system calls or synchronization constructs, memory allocation, etc. If your code is CPU-bound then you'll get a good sense where the cycles are being spent. (I should caution that normal C/C++ inlining can diffuse an otherwise "hot" method into other methods. This is a rare instance where pstack sampling might not immediately point to the key problem). At this point you'll need to reconcile what you're seeing with pstack and your mental model of what you think the program should be doing. They're often rather different. And generally if there's a key performance issue, you'll spot it with a moderate number of samples. I'll also use OS-level observability tools to lock for the existence of bottlenecks where threads contend for locks; other situations where threads are blocked; and the distribution of threads over the system. On Solaris some good tools are mpstat and too a lesser degree, vmstat. Try running "mpstat -a 5" in one window while the application program runs concurrently. One key measure is the voluntary context switch rate "vctx" or "csw" which reflects threads descheduling themselves. It's also good to look at the user; system; and idle CPU percentages. This can give a broad but useful understanding if your threads are mostly parked or mostly running. For instance if your program makes heavy use of malloc/free, then it might be the case you're contending on the central malloc lock in the default allocator. In that case you'd see malloc calling lock in the stack traces, observe a high csw/vctx rate as threads block for the malloc lock, and your "usr" time would be less than expected. Solaris dtrace is a wonderful and invaluable performance tool as well, but in a sense you have to frame and articulate a meaningful and specific question to get a useful answer, so I tend not to use it for first-order screening of problems. It's also most effective for OS and software-level performance issues as opposed to HW-level issues. For that reason I recommend mpstat & pstack as my the 1st step in performance triage. If some other OS-level issue is evident then it's good to switch to dtrace to drill more deeply into the problem. Only after I've ruled out OS-level issues do I switch to using hardware performance counters to look for architectural impediments.

    Read the article

  • Kostenlose MySQL Seminare im Mai

    - by A&C Redaktion
    Im Mai führen wir für Sie zahlreiche MySQL Seminare mit unterschiedlichen Themenschwerpunkten durch. Vom „Skalierbarkeitstag“ über einen praxisorienterten MySQL Enterprise Workshop bis hin zum Überblick über die Hochverfügbarkeitslösungen für MySQL mit Anwendungsbeispiel aus der Praxis. Wir würden uns sehr freuen, Sie bei einem dieser Seminare begrüßen zu dürfen. Die einzelnen Termine und Anmeldungslinks finden Sie hier. Wir freuen uns auf Ihre Teilnahme!

    Read the article

  • Welcome To The Nashorn Blog

    - by jlaskey
    Welcome to all.  Time to break the ice and instantiate The Nashorn Blog.  I hope to contribute routinely, but we are very busy, at this point, preparing for the next development milestone and, of course, getting ready for open source. So, if there are long gaps between postings please forgive. We're just coming back from JavaOne and are stoked by the positive response to all the Nashorn sessions. It was great for the team to have the front and centre slide from Georges Saab early in the keynote. It seems we have support coming from all directions. Most of the session videos are posted. Check out the links. Nashorn: Optimizing JavaScript and Dynamic Language Execution on the JVM. Unfortunately, Marcus - the code generation juggernaut,  got saddled with the first session of the first day. Still, he had a decent turnout. The talk focused on issues relating to optimizations we did to get good performance from the JVM. Much yet to be done but looking good. Nashorn: JavaScript on the JVM. This was the main talk about Nashorn. I delivered the little bit of this and a little bit of that session with an overview, a follow up on the open source announcement, a run through a few of the Nashorn features and some demos. The room was SRO, about 250±. High points: Sam Pullara, from Twitter, came forward to describe how painless it was to get Mustache.js up and running (20x over Rhino), and,  John Ceccarelli, from NetBeans came forward to describe how Nashorn has become an integral part of Netbeans. A healthy Q & A at the end was very encouraging. Meet the Nashorn JavaScript Team. Michel, Attila, Marcus and myself hosted a Q & A. There was only a handful of people in the room (we assume it was because of a conflicting session ;-) .) Most of the questions centred around Node.jar, which leads me to believe, Nashorn + Node.jar is what has the most interest. Akhil, Mr. Node.jar, sitting in the audience, fielded the Node.jar questions. Nashorn, Node, and Java Persistence. Doug Clarke, Akhil and myself, discussed the title topics, followed by a lengthy Q & A (security had to hustle us out.) 80 or so in the room. Lots of questions about Node.jar. It was great to see Doug's use of Nashorn + JPA. Nashorn in action, with such elegance and grace. Putting the Metaobject Protocol to Work: Nashorn’s Java Bindings. Attila discussed how he applied Dynalink to Nashorn. Good turn out for this session as well. I have a feeling that once people discover and embrace this hidden gem, great things will happen for all languages running on the JVM. Finally, there were quite a few JavaOne sessions that focused on non-Java languages and their impact on the JVM. I've always believed that one's tool belt should carry a variety of programming languages, not just for domain/task applicability, but also to enhance your thinking and approaches to problem solving. For the most part, future blog entries will focus on 'how to' in Nashorn, but if you have any suggestions for topics you want discussed, please drop a line.  Cheers. 

    Read the article

  • JPRT: A Build & Test System

    - by kto
    DRAFT A while back I did a little blogging on a system called JPRT, the hardware used and a summary on my java.net weblog. This is an update on the JPRT system. JPRT ("JDK Putback Reliablity Testing", but ignore what the letters stand for, I change what they mean every day, just to annoy people :\^) is a build and test system for the JDK, or any source base that has been configured for JPRT. As I mentioned in the above blog, JPRT is a major modification to a system called PRT that the HotSpot VM development team has been using for many years, very successfully I might add. Keeping the source base always buildable and reliable is the first step in the 12 steps of dealing with your product quality... or was the 12 steps from Alcoholics Anonymous... oh well, anyway, it's the first of many steps. ;\^) Internally when we make changes to any part of the JDK, there are certain procedures we are required to perform prior to any putback or commit of the changes. The procedures often vary from team to team, depending on many factors, such as whether native code is changed, or if the change could impact other areas of the JDK. But a common requirement is a verification that the source base with the changes (and merged with the very latest source base) will build on many of not all 8 platforms, and a full 'from scratch' build, not an incremental build, which can hide full build problems. The testing needed varies, depending on what has been changed. Anyone that was worked on a project where multiple engineers or groups are submitting changes to a shared source base knows how disruptive a 'bad commit' can be on everyone. How many times have you heard: "So And So made a bunch of changes and now I can't build!". But multiply the number of platforms by 8, and make all the platforms old and antiquated OS versions with bizarre system setup requirements and you have a pretty complicated situation (see http://download.java.net/jdk6/docs/build/README-builds.html). We don't tolerate bad commits, but our enforcement is somewhat lacking, usually it's an 'after the fact' correction. Luckily the Source Code Management system we use (another antique called TeamWare) allows for a tree of repositories and 'bad commits' are usually isolated to a small team. Punishment to date has been pretty drastic, the Queen of Hearts in 'Alice in Wonderland' said 'Off With Their Heads', well trust me, you don't want to be the engineer doing a 'bad commit' to the JDK. With JPRT, hopefully this will become a thing of the past, not that we have had many 'bad commits' to the master source base, in general the teams doing the integrations know how important their jobs are and they rarely make 'bad commits'. So for these JDK integrators, maybe what JPRT does is keep them from chewing their finger nails at night. ;\^) Over the years each of the teams have accumulated sets of machines they use for building, or they use some of the shared machines available to all of us. But the hunt for build machines is just part of the job, or has been. And although the issues with consistency of the build machines hasn't been a horrible problem, often you never know if the Solaris build machine you are using has all the right patches, or if the Linux machine has the right service pack, or if the Windows machine has it's latest updates. Hopefully the JPRT system can solve this problem. When we ship the binary JDK bits, it is SO very important that the build machines are correct, and we know how difficult it is to get them setup. Sure, if you need to debug a JDK problem that only shows up on Windows XP or Solaris 9, you'll still need to hunt down a machine, but not as a regular everyday occurance. I'm a big fan of a regular nightly build and test system, constantly verifying that a source base builds and tests out. There are many examples of automated build/tests, some that trigger on any change to the source base, some that just run every night. Some provide a protection gateway to the 'golden' source base which only gets changes that the nightly process has verified are good. The JPRT (and PRT) system is meant to guard the source base before anything is sent to it, guarding all source bases from the evil developer, well maybe 'evil' isn't the right word, I haven't met many 'evil' developers, more like 'error prone' developers. ;\^) Humm, come to think about it, I may be one from time to time. :\^{ But the point is that by spreading the build up over a set of machines, and getting the turnaround down to under an hour, it becomes realistic to completely build on all platforms and test it, on every putback. We have the technology, we can build and rebuild and rebuild, and it will be better than it was before, ha ha... Anybody remember the Six Million Dollar Man? Man, I gotta get out more often.. Anyway, now the nightly build and test can become a 'fetch the latest JPRT build bits' and start extensive testing (the testing not done by JPRT, or the platforms not tested by JPRT). Is it Open Source? No, not yet. Would you like to be? Let me know. Or is it more important that you have the ability to use such a system for JDK changes? So enough blabbering on about this JPRT system, tell me what you think. And let me know if you want to hear more about it or not. Stay tuned for the next episode, same Bloody Bat time, same Bloody Bat channel. ;\^) -kto

    Read the article

< Previous Page | 508 509 510 511 512 513 514 515 516 517 518 519  | Next Page >