Search Results

Search found 18454 results on 739 pages for 'oracle thoughts'.

Page 513/739 | < Previous Page | 509 510 511 512 513 514 515 516 517 518 519 520  | Next Page >

  • ZFS for Database Log Files

    - by user12620111
    I've been troubled by drop outs in CPU usage in my application server, characterized by the CPUs suddenly going from close to 90% CPU busy to almost completely CPU idle for a few seconds. Here is an example of a drop out as shown by a snippet of vmstat data taken while the application server is under a heavy workload. # vmstat 1  kthr      memory            page            disk          faults      cpu  r b w   swap  free  re  mf pi po fr de sr s3 s4 s5 s6   in   sy   cs us sy id  1 0 0 130160176 116381952 0 16 0 0 0 0  0  0  0  0  0 207377 117715 203884 70 21 9  12 0 0 130160160 116381936 0 25 0 0 0 0 0  0  0  0  0 200413 117162 197250 70 20 9  11 0 0 130160176 116381920 0 16 0 0 0 0 0  0  1  0  0 203150 119365 200249 72 21 7  8 0 0 130160176 116377808 0 19 0 0 0 0  0  0  0  0  0 169826 96144 165194 56 17 27  0 0 0 130160176 116377800 0 16 0 0 0 0  0  0  0  0  1 10245 9376 9164 2  1 97  0 0 0 130160176 116377792 0 16 0 0 0 0  0  0  0  0  2 15742 12401 14784 4 1 95  0 0 0 130160176 116377776 2 16 0 0 0 0  0  0  1  0  0 19972 17703 19612 6 2 92  14 0 0 130160176 116377696 0 16 0 0 0 0 0  0  0  0  0 202794 116793 199807 71 21 8  9 0 0 130160160 116373584 0 30 0 0 0 0  0  0 18  0  0 203123 117857 198825 69 20 11 This behavior occurred consistently while the application server was processing synthetic transactions: HTTP requests from JMeter running on an external machine. I explored many theories trying to explain the drop outs, including: Unexpected JMeter behavior Network contention Java Garbage Collection Application Server thread pool problems Connection pool problems Database transaction processing Database I/O contention Graphing the CPU %idle led to a breakthrough: Several of the drop outs were 30 seconds apart. With that insight, I went digging through the data again and looking for other outliers that were 30 seconds apart. In the database server statistics, I found spikes in the iostat "asvc_t" (average response time of disk transactions, in milliseconds) for the disk drive that was being used for the database log files. Here is an example:                     extended device statistics     r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 2053.6    0.0 8234.3  0.0  0.2    0.0    0.1   0  24 c3t60080E5...F4F6d0s0     0.0 2162.2    0.0 8652.8  0.0  0.3    0.0    0.1   0  28 c3t60080E5...F4F6d0s0     0.0 1102.5    0.0 10012.8  0.0  4.5    0.0    4.1   0  69 c3t60080E5...F4F6d0s0     0.0   74.0    0.0 7920.6  0.0 10.0    0.0  135.1   0 100 c3t60080E5...F4F6d0s0     0.0  568.7    0.0 6674.0  0.0  6.4    0.0   11.2   0  90 c3t60080E5...F4F6d0s0     0.0 1358.0    0.0 5456.0  0.0  0.6    0.0    0.4   0  55 c3t60080E5...F4F6d0s0     0.0 1314.3    0.0 5285.2  0.0  0.7    0.0    0.5   0  70 c3t60080E5...F4F6d0s0 Here is a little more information about my database configuration: The database and application server were running on two different SPARC servers. Storage for the database was on a storage array connected via 8 gigabit Fibre Channel Data storage and log file were on different physical disk drives Reliable low latency I/O is provided by battery backed NVRAM Highly available: Two Fibre Channel links accessed via MPxIO Two Mirrored cache controllers The log file physical disks were mirrored in the storage device Database log files on a ZFS Filesystem with cutting-edge technologies, such as copy-on-write and end-to-end checksumming Why would I be getting service time spikes in my high-end storage? First, I wanted to verify that the database log disk service time spikes aligned with the application server CPU drop outs, and they did: At first, I guessed that the disk service time spikes might be related to flushing the write through cache on the storage device, but I was unable to validate that theory. After searching the WWW for a while, I decided to try using a separate log device: # zpool add ZFS-db-41 log c3t60080E500017D55C000015C150A9F8A7d0 The ZFS log device is configured in a similar manner as described above: two physical disks mirrored in the storage array. This change to the database storage configuration eliminated the application server CPU drop outs: Here is the zpool configuration: # zpool status ZFS-db-41   pool: ZFS-db-41  state: ONLINE  scan: none requested config:         NAME                                     STATE         ZFS-db-41                                ONLINE           c3t60080E5...F4F6d0  ONLINE         logs           c3t60080E5...F8A7d0  ONLINE Now, the I/O spikes look like this:                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1053.5    0.0 4234.1  0.0  0.8    0.0    0.7   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1131.8    0.0 4555.3  0.0  0.8    0.0    0.7   0  76 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1167.6    0.0 4682.2  0.0  0.7    0.0    0.6   0  74 c3t60080E5...F8A7d0s0     0.0  162.2    0.0 19153.9  0.0  0.7    0.0    4.2   0  12 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1247.2    0.0 4992.6  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0     0.0   41.0    0.0   70.0  0.0  0.1    0.0    1.6   0   2 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1241.3    0.0 4989.3  0.0  0.8    0.0    0.6   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1193.2    0.0 4772.9  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0 We can see the steady flow of 4k writes to the ZIL device from O_SYNC database log file writes. The spikes are from flushing the transaction group. Like almost all problems that I run into, once I thoroughly understand the problem, I find that other people have documented similar experiences. Thanks to all of you who have documented alternative approaches. Saved for another day: now that the problem is obvious, I should try "zfs:zfs_immediate_write_sz" as recommended in the ZFS Evil Tuning Guide. References: The ZFS Intent Log Solaris ZFS, Synchronous Writes and the ZIL Explained ZFS Evil Tuning Guide: Cache Flushes ZFS Evil Tuning Guide: Tuning ZFS for Database Performance

    Read the article

  • JDK bug migration milestone: JIRA now the system of record

    - by darcy
    I'm pleased to announce the OpenJDK bug database migration project has reached a significant milestone: the JDK has switched from the legacy Sun "bugtraq" system to a new internal JIRA instance as the system of record for our bug tracking. This completes the initial phase of the previously described plan of getting OpenJDK onto an externally visible and writable bug tracker. The identities contained in the current system include recognized OpenJDK contributors. The bug migration effort to date has been sizable in multiple dimensions. There are around 140,000 distinct issues imported into the JDK project of the JIRA instance, nearly 165,000 if backport issues to track multiple-release information are included. Separately, the Code Tools OpenJDK project has its own JIRA project populated with several thousands existing bugs. Once the OpenJDK JIRA instance is externalized, approved OpenJDK projects will be able to request the creation of a JIRA project for issue tracking. There are many differences in the schema used to model bugs between the legacy bug system and the schema for the new JIRA projects. We've favored simplifications to the existing system where possible and, after much discussion, we've settled on five main states for the OpenJDK JIRA projects: New Open In progress Resolved Closed The Open and In-progress states can have a substate Understanding field set to track whether the issues has its "Cause Known" or "Fix understood". In the closed state, a Verification field can indicate whether a fix has been verified, unverified, or if the fix has failed. At the moment, there will be very little externally visible difference between JIRA for OpenJDK and the legacy system it replaces. One difference is that bug numbers for newly filed issues in the JIRA JDK project will be 8000000 and above. If you are working with JDK Hg repositories, update any local copies of jcheck to the latest version which recognizes this expanded bug range. (The bug numbers of existing issues have been preserved on the import into JIRA). Relatively soon, we plan for the pages published on bugs.sun.com to be generated from information in JIRA rather than in the legacy system. When this occurs, there will be some differences in the page display and the terminology used will be revised to reflect JIRA usage, such as referring to the "component/subcomponent" of an issue rather than its "category". The exact timing of this transition will be announced when it is known. We don't currently have a firm timeline for externalization of the JIRA system. Updates will be provided as they become available. However, that is unlikely to happen before JavaOne next week!

    Read the article

  • Kostenlose MySQL Seminare im Mai

    - by A&C Redaktion
    Im Mai führen wir für Sie zahlreiche MySQL Seminare mit unterschiedlichen Themenschwerpunkten durch. Vom „Skalierbarkeitstag“ über einen praxisorienterten MySQL Enterprise Workshop bis hin zum Überblick über die Hochverfügbarkeitslösungen für MySQL mit Anwendungsbeispiel aus der Praxis. Wir würden uns sehr freuen, Sie bei einem dieser Seminare begrüßen zu dürfen. Die einzelnen Termine und Anmeldungslinks finden Sie hier. Wir freuen uns auf Ihre Teilnahme!

    Read the article

  • When to use each user research method

    - by user12277104
    There are a lot of user research methods out there, but sometimes we get stuck in a rut, conducting all formative usability testing before coding, or running surveys to gather satisfaction data. I'll be the first to admit that it happens to me, but to get out of a rut, it just takes a minute to look at where I am in the design & development cycle, what kind(s) of data I need, and what methods are available to me. We need reminders, or refreshers, every once in a while. One tool I've found useful is a graphic organizer that I created many years ago. It's been through several revisions, as I've adapted it to the product cycles of the places I've worked, changed my mind about how to categorize it, and added methods that I've used or created over time. I shared a version of this table at the 2012 International UPA conference, and I was contacted by someone yesterday who wanted to use it in a university course on user-center design. I was flattered at the the thought, but embarrassed, because I was sure it needed updating -- that was a year ago, after all. But I opened it today, and really, there's not much I'd change -- sure, I could add some nuance regarding what types of formative testing, such as modality (remote, unmoderated remote, or in-person) or flavor of testing (RITE, RITE-Krug, comparative, performance), but I think it's pretty much ok as is. Click on the image below, to get the full-size PDF. And whether it's entirely "right" or "wrong" isn't the whole value of looking at these methods across the product lifecycle. The real value lies in the reminder that I have options. And what those options are change as the field changes, so while I don't expect this graphic to have an eternal shelf life, it's still ok a year after I last updated it. That said, if you find something missing or out of place, let me know :) 

    Read the article

  • Smarty: Tags Matching and Unpaired Tags Errors

    - by Martin Fousek
    Hello, today we would like to show you other improvements we have prepared in PHP Smarty Framework. Let's talk about highlighting of matching tags and error reporting of unpaired ones. Tags Matching Some of your enhancements talked  about paired tags matching to be able to see matching tags at first glance.We have good news for you that this feature you can try out already in our latest PHP Development builds and of course later in NetBeans 7.3. Unpaired Tags Errors To make easier detecting of template syntax issues, we provide basic tags pairing. If you forgot to begin some paired Smarty tag or you end it unexpectedly you should get error hint which complains about your issue. That's all for today. As always, please test it and report all the issues or enhancements you find in NetBeans BugZilla (component php, subcomponent Smarty).

    Read the article

  • NetBeans 7.2 RC1 is published

    - by Ondrej Brejla
    NetBeans 7.2 RC1 was today published. You can download it here. You could read about the PHP features added to the NetBeans 7.2 release here on the blog, but the main features added or improved are: Support for PHP 5.4 PHP editing: Fix Uses action, annotations support, editing of Neon and Apache Config files and more Support for Symfony2, Doctrine2 and ApiGen frameworks FTP remote synchronization Support for running PHP projects on Hudson For more information, just look at New and Noteworthy page for NetBeans 7.2. And as obvious you can help us to test the build. Just try it and if you find an issue / error, please report it. Thanks for your help.

    Read the article

  • RPi and Java Embedded GPIO: Hooking Up Your Wires for Java

    - by hinkmond
    So, you bought your blue jumper wires, your LEDs, your resistors, your breadboard, and your fill of Fry's for the day. How do you hook this cool stuff up to write Java code to blink them LEDs? I'll step you through it. First look at that pinout diagram of the GPIO header that's on your RPi. Find the pins in the corner of your RPi board and make sure to orient it the right way. The upper left corner pin should have the characters "P1" next to it on the board. That pin next to "P1" is your Pin #1 (in the diagram). Then, you can start counting left, right, next row, left, right, next row, left, right, and so on: Pins # 1, 2, next row, 3, 4, next row, 5, 6, and so on. Take one blue jumper wire and connect to Pin # 3 (GPIO0). Connect the other end to a resistor and then the other end of the resistor into the breadboard. Each row of grouped-together holes on a breadboard are connected, so plug in the short-end of a common cathode LED (long-end of a common anode LED) into a hole that is in the same grouping as where the resistor is plugged in. Then, connect the other end of the LED back to Pin # 6 (GND) on the RPi GPIO header. Now you have your first LED connected ready for you to write some Java code to turn it on and off. (As, extra credit you can connect 7 other LEDs the same way to with one lead to Pins # 5, 7, 11, 13, 15, 19 & 21). Whew! That wasn't so bad, was it? Next blog post on this thread will have some Java source code for you to try... Hinkmond

    Read the article

  • Why are embedded device apps still written in C/C++? Why not Java programming language?

    - by hinkmond
    At the recent Black Hat 2014 conference in Sin City, the Black Hatters were focusing on Embedded Devices and IoT. You know? Make your networked-toaster burn your bread 10,000 miles away, over the Web for grins and giggles. Well, apparently the Black Hatters say it can be done pretty easily these days, which is scary. See: Securing Embedded Devices & IoT Here's a quote: All these devices are still written in C and C++. The challenges associated with developing securely in these languages have been fought for nearly two decades. "You often hear people say, 'Well, why don't we just get rid of the C and C++ language if it's so problematic. Why don't we just write everything in C# or Java, or something that is a little safer to develop in?'," DeMott says. Gah! Why are all these IoT devices still using C/C++? Of course they should be using Java SE Embedded technology! It's a natural fit to use for better security on embedded devices. Or, I guess, developers really don't mind if their networked-toasters do char their breakfast. If it can be burned, it will be... That's what I say. Unless they use Java. Hinkmond

    Read the article

  • Inline template efficiency

    - by Darryl Gove
    I like inline templates, and use them quite extensively. Whenever I write code with them I'm always careful to check the disassembly to see that the resulting output is efficient. Here's a potential cause of inefficiency. Suppose we want to use the mis-named Leading Zero Detect (LZD) instruction on T4 (this instruction does a count of the number of leading zero bits in an integer register - so it should really be called leading zero count). So we put together an inline template called lzd.il looking like: .inline lzd lzd %o0,%o0 .end And we throw together some code that uses it: int lzd(int); int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } We compile the code with some amount of optimisation, and look at the resulting code: $ cc -O -xtarget=T4 -S lzd.c lzd.il $ more lzd.s .L77000018: /* 0x001c 11 */ lzd %o0,%o0 /* 0x0020 9 */ ld [%i1],%i3 /* 0x0024 11 */ st %o0,[%i2] /* 0x0028 9 */ add %i3,1,%i0 /* 0x002c */ cmp %i0,999 /* 0x0030 */ ble,pt %icc,.L77000018 /* 0x0034 */ st %i0,[%i1] What is surprising is that we're seeing a number of loads and stores in the code. Everything could be held in registers, so why is this happening? The problem is that the code is only inlined at the code generation stage - when the actual instructions are generated. Earlier compiler phases see a function call. The called functions can do all kinds of nastiness to global variables (like 'a' in this code) so we need to load them from memory after the function call, and store them to memory before the function call. Fortunately we can use a #pragma directive to tell the compiler that the routine lzd() has no side effects - meaning that it does not read or write to memory. The directive to do that is #pragma no_side_effect(<routine name), and it needs to be placed after the declaration of the function. The new code looks like: int lzd(int); #pragma no_side_effect(lzd) int a; int c=0; int main() { for(a=0; a<1000; a++) { c=lzd(c); } return 0; } Now the loop looks much neater: /* 0x0014 10 */ add %i1,1,%i1 ! 11 ! { ! 12 ! c=lzd(c); /* 0x0018 12 */ lzd %o0,%o0 /* 0x001c 10 */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000018 /* 0x0024 */ nop

    Read the article

  • Community Forum at Openworld - Presentations available

    - by Javier Puerta
    On October 1st we held a new session of the Exadata & Manageability Partner Community in San Francisco. Thanks to all of you who participated in the event and very especially to the partner speakers who share their experiences with the rest of the community: Francisco Bermúdez (Capgemini Spain), Dmitry Krasilov (Nvision, Russia) and Miguel Alves (WeDo Technologies, Portugal)The slide decks used in the presentations are now available for download at the Manageability Partner Community Collaborative Workspace (for community members only - if you get an error message, please register for the Community first).In a few weeks we will be announcing the location for the next Community event in the spring timeframe.

    Read the article

  • JPRT: A Build & Test System

    - by kto
    DRAFT A while back I did a little blogging on a system called JPRT, the hardware used and a summary on my java.net weblog. This is an update on the JPRT system. JPRT ("JDK Putback Reliablity Testing", but ignore what the letters stand for, I change what they mean every day, just to annoy people :\^) is a build and test system for the JDK, or any source base that has been configured for JPRT. As I mentioned in the above blog, JPRT is a major modification to a system called PRT that the HotSpot VM development team has been using for many years, very successfully I might add. Keeping the source base always buildable and reliable is the first step in the 12 steps of dealing with your product quality... or was the 12 steps from Alcoholics Anonymous... oh well, anyway, it's the first of many steps. ;\^) Internally when we make changes to any part of the JDK, there are certain procedures we are required to perform prior to any putback or commit of the changes. The procedures often vary from team to team, depending on many factors, such as whether native code is changed, or if the change could impact other areas of the JDK. But a common requirement is a verification that the source base with the changes (and merged with the very latest source base) will build on many of not all 8 platforms, and a full 'from scratch' build, not an incremental build, which can hide full build problems. The testing needed varies, depending on what has been changed. Anyone that was worked on a project where multiple engineers or groups are submitting changes to a shared source base knows how disruptive a 'bad commit' can be on everyone. How many times have you heard: "So And So made a bunch of changes and now I can't build!". But multiply the number of platforms by 8, and make all the platforms old and antiquated OS versions with bizarre system setup requirements and you have a pretty complicated situation (see http://download.java.net/jdk6/docs/build/README-builds.html). We don't tolerate bad commits, but our enforcement is somewhat lacking, usually it's an 'after the fact' correction. Luckily the Source Code Management system we use (another antique called TeamWare) allows for a tree of repositories and 'bad commits' are usually isolated to a small team. Punishment to date has been pretty drastic, the Queen of Hearts in 'Alice in Wonderland' said 'Off With Their Heads', well trust me, you don't want to be the engineer doing a 'bad commit' to the JDK. With JPRT, hopefully this will become a thing of the past, not that we have had many 'bad commits' to the master source base, in general the teams doing the integrations know how important their jobs are and they rarely make 'bad commits'. So for these JDK integrators, maybe what JPRT does is keep them from chewing their finger nails at night. ;\^) Over the years each of the teams have accumulated sets of machines they use for building, or they use some of the shared machines available to all of us. But the hunt for build machines is just part of the job, or has been. And although the issues with consistency of the build machines hasn't been a horrible problem, often you never know if the Solaris build machine you are using has all the right patches, or if the Linux machine has the right service pack, or if the Windows machine has it's latest updates. Hopefully the JPRT system can solve this problem. When we ship the binary JDK bits, it is SO very important that the build machines are correct, and we know how difficult it is to get them setup. Sure, if you need to debug a JDK problem that only shows up on Windows XP or Solaris 9, you'll still need to hunt down a machine, but not as a regular everyday occurance. I'm a big fan of a regular nightly build and test system, constantly verifying that a source base builds and tests out. There are many examples of automated build/tests, some that trigger on any change to the source base, some that just run every night. Some provide a protection gateway to the 'golden' source base which only gets changes that the nightly process has verified are good. The JPRT (and PRT) system is meant to guard the source base before anything is sent to it, guarding all source bases from the evil developer, well maybe 'evil' isn't the right word, I haven't met many 'evil' developers, more like 'error prone' developers. ;\^) Humm, come to think about it, I may be one from time to time. :\^{ But the point is that by spreading the build up over a set of machines, and getting the turnaround down to under an hour, it becomes realistic to completely build on all platforms and test it, on every putback. We have the technology, we can build and rebuild and rebuild, and it will be better than it was before, ha ha... Anybody remember the Six Million Dollar Man? Man, I gotta get out more often.. Anyway, now the nightly build and test can become a 'fetch the latest JPRT build bits' and start extensive testing (the testing not done by JPRT, or the platforms not tested by JPRT). Is it Open Source? No, not yet. Would you like to be? Let me know. Or is it more important that you have the ability to use such a system for JDK changes? So enough blabbering on about this JPRT system, tell me what you think. And let me know if you want to hear more about it or not. Stay tuned for the next episode, same Bloody Bat time, same Bloody Bat channel. ;\^) -kto

    Read the article

  • The Benefits of Upgrading to PeopleSoft 9.0

    Doris Wong, Vice President and General Manager of PeopleSoft Enterprise speaks with Fred about how PeopleSoft 9.0 fits into Applications Unlimited, what the key enhancements are in release 9.0 and why PeopleSoft customers should consider upgrading to this new release.

    Read the article

  • APEX-Berichte automatisch aktualisieren

    - by carstenczarski
    Einen Bericht auf einer Anwendungsseite in regelmäßigen Abständen zu aktualisieren, ist recht einfach: Seit APEX 4.0 muss man noch nicht einmal JavaScript-Code dafür programmieren; mit einem einfach zu nutzenden Plugin des APEX-Entwicklerteams setzt man das in kürzester Zeit um. In diesem Tipp gehen wir noch etwas weiter: Für eine Tabelle, die eine Spalte mit dem Zeitpunkt der letzten Änderung enthält, wollen wir die zuletzt geänderten Werte hervorheben, so dass man sie leichter erkennen kann.

    Read the article

  • Have You Checked Our BI Publisher Channel at Youtube ?

    - by kanichiro.nishida
    These days, more and more people watching video online rather than reading. Steve Jobs once said people don’t read anymore. Well, I love books and still read a lot either on books, magazine, iPad, MacbookPro, or whatever the medium shows me letters! But I have to admit, sometimes it’s much easier to understand especially something like How-To by just watching video clips than reading it. And this is why we started our BI Publisher Channel at Youtube last summer. Since then we have uploaded over 10 video clips so far and and now we’re gearing up to add more and more clips. Now, we’re in a middle of finishing up our work for the next 11G 1st patchset release, which should be coming soon and will have a lot of great new features that I can’t wait to talk to you guys about. And of course we’re preparing introduction and How-Top clips. So please subscribe the BI Publisher channel now if you haven’t done yet and stay tuned for the new clips! http://www.youtube.com/user/bipublisher Also, we’d love to hear your comments for each clip, so please don’t forget leaving your comments there after you watch!

    Read the article

  • It could be worse....

    - by Darryl Gove
    As "guest" pointed out, in my file I/O test I didn't open the file with O_SYNC, so in fact the time was spent in OS code rather than in disk I/O. It's a straightforward change to add O_SYNC to the open() call, but it's also useful to reduce the iteration count - since the cost per write is much higher: ... #define SIZE 1024 void test_write() { starttime(); int file = open("./test.dat",O_WRONLY|O_CREAT|O_SYNC,S_IWGRP|S_IWOTH|S_IWUSR); ... Running this gave the following results: Time per iteration 0.000065606310 MB/s Time per iteration 2.709711563906 MB/s Time per iteration 0.178590114758 MB/s Yup, disk I/O is way slower than the original I/O calls. However, it's not a very fair comparison since disks get written in large blocks of data and we're deliberately sending a single byte. A fairer result would be to look at the I/O operations per second; which is about 65 - pretty much what I'd expect for this system. It's also interesting to examine at the profiles for the two cases. When the write() was trapping into the OS the profile indicated that all the time was being spent in system. When the data was being written to disk, the time got attributed to sleep. This gives us an indication how to interpret profiles from apps doing I/O. It's the sleep time that indicates disk activity.

    Read the article

  • YouTube: CoffeeScript Rocks (in NetBeans IDE)

    - by Geertjan
    CoffeeScript is a handy preprocessor for JavaScript, as shown in a quick demo below on YouTube, using the CoffeeScript plugin for NetBeans IDE. Right now, the NetBeans Plugin Portal doesn't have a CoffeeScript plugin for NetBeans IDE 7.4, but not to worry, the NetBeans IDE 7.3 plugin works just fine. http://plugins.netbeans.org/plugin/39007/coffeescript-netbeans Here's a small YouTube clip I made today showing how it all works: Also read this very handy and detailed NetBeans tutorial, on which I based the demo above: https://netbeans.org/kb/docs/web/js-toolkits-jquery.html Related info: http://www.youtube.com/watch?v=QgqVh_KpVKY http://www.ibm.com/developerworks/library/wa-coffee1/ http://blog.sethladd.com/2012/01/vanilla-dart-ftw.html http://api.jquery.com/fadeOut/

    Read the article

  • PostgreSQL, Ubuntu, NetBeans IDE (Part 1)

    - by Geertjan
    While setting up PostgreSQL from scratch, with the aim to use it in NetBeans IDE, I found the following resources helpful: http://railskey.wordpress.com/2012/05/19/postgresql-installation-in-ubuntu-12-04/ http://ohdevon.wordpress.com/2011/09/17/postgresql-to-netbeans-1/ http://ohdevon.wordpress.com/2011/09/19/postgresql-to-netbeans-2/ For quite a while I had problems relating to  "/var/run/postgresql/.s.PGSQL.5432", which had something to do with "postmaster.pid", which I somehow solved via a link I can't find anymore, and which may not have been a problem to begin with. A key moment was this one, which was useful for setting the password of a new user I'd created: http://stackoverflow.com/questions/7695962/postgresql-password-authentication-failed-for-user-postgres This was useful for setting up a table in my database, which I did by pasting in the below into NetBeans after I made the connection there: http://use-the-index-luke.com/sql/example-schema/postgresql/where-clause Now I have a database set up with all permissions everywhere (which turned out to be the hard part) correct: The next step will be to create a NetBeans Platform application based on this database. I'm assuming it shouldn't be any different to what's described in the NetBeans Platform CRUD Tutorial.

    Read the article

  • EPM 11.1.2.1 - Smartview client and HFM office provider

    - by user809526
    If your connection to the smartview provider is very slow, because the login part takes a long time (user directory slowness, ...), consider adding on the desktop side a Windows parameter: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\InternetSettings\ ReceiveTimeout 300000 to avoid being prompted over and over again for username/password This is an addition to the support doc id: "Smart View 11.1.2.1 Keeps Prompting For Username And Password For Financial Management Provider [ID 1353294.1]"

    Read the article

  • Join us for 2 JCP sessions today + beer

    - by heathervc
    Remember to join the 2 JCP sessions at JavaOne this afternoon in the Hilton.  First up the JCP.Next panel with JCP EC Members, followed by the 101 Ways to Participate BOF.  Stop in to learn what's new and how you can make the future Java and enjoy a beer or 2.  We will also be in the OTN Java Demogrounds in the Hilton Grand Ballroom from 4:00 - 4:30 PM.  Hope to see you there. JCP.Next: Reinvigorating Java Standards Session ID: BOF6272 Location: Hilton San Francisco - Plaza A/B Date and Time: 10/1/12, 4:30 PM - 5:15 PM 101 Ways to Improve Java: Why Developer Participation Matters Session ID: BOF6283 Location: Hilton San Francisco - Continental Ballroom 4 Date and Time: 10/1/12, 5:30 PM - 6:15 PM

    Read the article

  • Updates to the Demantra Partial Schema Exporter Tool, Patch 13930627, are Available.

    - by user702295
    Hello!  Updates to the Demantra Partial Schema Exporter Tool, Patch 13930627, are Available. This is an updated re-release of the generic Partial Schema Exporter Tool.  The generic patch is for 7.3.1.x and 12.2.x. TABLE_REORG was introduced in 7.3.1.3 12.2.0.  Therefore for 7.3.1.x the schema must be at 7.3.1.3 or above. This is build 3 of the patch. It contains fixes for the following bugs - BUG 17495971 - DEMANTRA 12.2 - CUMULATIVE HISTORY NOT CORRECT   It now only uses DATA_PUMP COMPRESSION only on Enterprise Edition for 11g and and up. - Bug 17452153 - 1OFF:16086475:TRYING TO FILTER DROP DOWN IN A METHOD CALL USING MORE THAN 1 ATTR   It now builds GL level filters with and without the GL id column where applicable. These bugs are also fixed in 7.3.1.6 and 12.2.3.

    Read the article

  • Un-used Indexes on MDP_MATRIX Consuming Resources

    - by user702295
    Disable un-used Indexes: As much as it is recommended to create relevant indexes, it is advised not to have too many indexes on the mdp_matrix table.  Too many indexes will cause long waits on the table as indexes needs to get updated every time the table is updated.  There are many seeded indexes on mdp_matrix, every out of the box data model level has an index on the matrix table.  If a level is unused in the specific data model of the implementation, it is advisable to disable that index.  If the customer is not sure if and how indexes are utilized, the DBA can monitor all indexes.  After a few cycles of operation, the DBA should go over that list and see which indexes have not been used.  Consider disabling them. There are scripts on the net to monitor indexes or use the monitoring usage clause in the alter index statement.

    Read the article

< Previous Page | 509 510 511 512 513 514 515 516 517 518 519 520  | Next Page >