Search Results

Search found 4490 results on 180 pages for 'binary trees'.

Page 52/180 | < Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >

  • Early Z culling - Ogre

    - by teodron
    This question is concerned with how one can enable this "pixel filter" to work within an Ogre based app. Simply put, one can write two passes, the first without writing any colour values to the frame buffer lighting off colour_write off shading flat The second pass is the one that employs heavy pixel shader computations, hence it would be really nice to get rid of those hidden surface patches and not process them pixel-wise. This approach works, except for one thing: objects with alpha, such as billboard trees suffer in a peculiar way - from one side, they seem to capture the sky/background within their alpha region and ignore other trees/houses behind them, while viewed from the other side, they exhibit the desired behavior. To tackle the issue, I thought I could write a custom vertex shader in the first pass and offset the projected Z component of the vertex a little further away from its actual position, so that in the second pass there is a need to recompute correctly the pixels of the objects closest to the camera. This doesn't work at all, all surfaces are processed in the pixel shader and there is no performance gain. So, if anyone has done a similar trick with Ogre and alpha objects, kindly please help.

    Read the article

  • Coarse Collision Detection in highly dynamic environment

    - by Millianz
    I'm currently working a 3D space game with A LOT of dynamic objects that are all moving (there is pretty much no static environment). I have the collision detection and resolution working just fine, but I am now trying to optimize the collision detection (which is currently O(N^2) -- linear search). I thought about multiple options, a bounding volume hierarchy, a Binary Spatial Partitioning tree, an Octree or a Grid. I however need some help with deciding what's best for my situation. A grid seems unfeasible simply due to the space requirements and cache coherence problems. Since everything is so dynamic however, it seems to be that trees aren't ideal either, since they would have to be completely rebuilt every frame. I must admit I never implemented a physics engine that required spatial partitioning, do I indeed need to rebuild the tree every frame (assuming that everything is constantly moving) or can I update the trees after integrating? Advice is much appreciated - to give some more background: You're flying a space ship in an asteroid field, and there are lots and lots of asteroids and some enemy ships, all of which shoot bullets. EDIT: I came across the "Sweep an Prune" algorithm, which seems like the right thing for my purposes. It appears like the right mixture of fast building of the data structures involved and detailed enough partitioning. This is the best resource I can find: http://www.codercorner.com/SAP.pdf If anyone has any suggestions whether or not I'm going in the right direction, please let me know.

    Read the article

  • Algorithm to infer tag hierarchy

    - by Tom
    I'm looking for an algorithm to infer a hierarchy from a set of tagged items. E.g. if the following items have the tags: 1 a 2 a,b 3 a,c 4 a,c,e 5 a,b 6 a,c 7 d 8 d,f Then I can construct an undirected graph (or graphs) by tallying the node weights and edge weights: node weights edge weights a 6 a-b 2 b 2 a-c 3 c 3 c-e 1 d 2 a-e 1 <-- this edge is parallel to a-c and c-e and not wanted e 1 d-f 1 f 1 The first problem is how to drop any redundant edges to get to the simplified graph? Note that it's only appropriate to remove that redundant a-e edge in this case because something is tagged as a-c-e, if that wasn't the case and the tag was a-e, that edge would have to remain. I suspect that means the removal of edges can only happen during the construction of the graph, not after everything has been tallied up. What I'd then like to do is identify the direction of the edges to create a directed graph (or graphs) and pick out root nodes to hopefully create a tree (or trees): trees a d // \\ | b c f \ e It seems like it could be a string algorithm - longest common subsequences/prefixes - or a tree/graph algorithm, but I am a little stuck since I don't know the correct terminology to search for it.

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Generated 3d tree meshes

    - by Jari Komppa
    I did not find a question on these lines yet, correct me if I'm wrong. Trees (and fauna in general) are common in games. Due to their nature, they are a good candidate for procedural generation. There's SpeedTree, of course, if you can afford it; as far as I can tell, it doesn't provide the possibility of generating your tree meshes at runtime. Then there's SnappyTree, an online webgl based tree generator based on the proctree.js which is some ~500 lines of javascript. One could use either of above (or some other tree generator I haven't stumbled upon) to create a few dozen tree meshes beforehand - or model them from scratch in a 3d modeller - and then randomly mirror/scale them for a few more variants.. But I'd rather have a free, linkable tree mesh generator. Possible solutions: Port proctree.js to c++ and deal with the open source license (doesn't seem to be gpl, so could be doable; the author may also be willing to co-operate to make the license even more free). Roll my own based on L-systems. Don't bother, just use offline generated trees. Use some other method I haven't found yet.

    Read the article

  • Why create a Huffman tree per character instead of a Node?

    - by Omega
    For a school assignment we're supposed to make a Java implementation of a compressor/decompresser using Huffman's algorithm. I've been reading a bit about it, specially this C++ tutorial: http://www.cprogramming.com/tutorial/computersciencetheory/huffman.html In my program, I've been thinking about having Nodes that have the following properties: Total Frequency Character (if a leaf) Right child (if any) Left child (if any) Parent (if any) So when building the Huffman tree, it is just a matter of linking a node to others, etc. However, I'm a bit confused with the following quote (emphasis mine): First, every letter starts off as part of its own tree and the trees are ordered by the frequency of the letters in the original string. Then the two least-frequently used letters are combined into a single tree, and the frequency of that tree is set to be the combined frequency of the two trees that it links together. My question: why should I create a tree per letter, instead of just a node per letter and then do the linking later? I have not begun coding, I'm just studying the algorithm first, so I guess I'm missing an important detail. What is it?

    Read the article

  • Boolean checks with a single quadtree, or multiple quadtrees?

    - by Djentleman
    I'm currently developing a 2D sidescrolling shooter game for PC (think metroidvania but with a lot more happening at once). Using XNA. I'm utilising quadtrees for my spatial partitioning system. All objects will be encompassed by standard bounding geometry (box or sphere) with possible pixel-perfect collision detection implemented after geometry collision (depends on how optimised I can get it). These are my collision scenarios, with < representing object overlap (multiplayer co-op is the reason for the player<player scenario): Collision scenarios (true = collision occurs): Player <> Player = false Enemy <> Enemy = false Player <> Enemy = true PlayerBullet <> Enemy = true PlayerBullet <> Player = false PlayerBullet <> EnemyBullet = true PlayerBullet <> PlayerBullet = false EnemyBullet <> Player = true EnemyBullet <> Enemy = false EnemyBullet <> EnemyBullet = false Player <> Environment = true Enemy <> Environment = true PlayerBullet <> Environment = true EnemyBullet <> Environment = true Going off this information and the fact that were will likely be several hundred objects rendering on-screen at any given time, my question is as follows: Which method is likely to be the most efficient/optimised and why: Using a single quadtree with boolean checks for collision between the different types of objects. Using three quadtrees at once (player, enemy, environment), only testing the player and enemy trees against each other while testing both the player and enemy trees against the environment tree.

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

  • How does the new google maps make buildings and cityscapes 3D?

    - by Aerovistae
    Anyone who's seen the new Google maps has no doubt taken note of the incredible amount of three-dimensional detail in select American cities such as Boston, New York, Chicago, and San Francisco. They've even modeled the trees, bridges and some of the boats in the harbor! Minor architectural details are present. It's crazy. Looking at it up close, I've found there's a rectangular area around each of those cities, and anything within them is 3Dified, but it cuts off hard and fast at the edge, even if it's in the middle of a building. The edge of the rectangle is where the 3D stops. This leads me to think it's being done algorithmically (which would make sense, given the scale of the project, how many trees and buildings and details there are), and yet I can't imagine how that's possible. How could an algorithm model all these things without extensive data on their shapes and contours? How could it model the individual wires of a bridge, or the statues in a park? It must be done by hand, and yet how could it be for so much detail! Does anyone have any insight on this?

    Read the article

  • Why does Gnumake from parent directory behave differently?

    - by WilliamKF
    I am stumped as to why when I do a gnumake from the parent directory it behaves incorrectly, whereas, if I cd to the subdirectory and do gnumake it works correctly. In the parent makefile, I have a rule like this: .PHONY: zlib-1.2.5 zlib-1.2.5: @ echo Issuing $(MAKE) in $@ ... pushd zlib-1.2.5; make; popd Which gives different result than doing the same from the toplevel pushd zlib-1.2.5; make; popd There is a something from the parent makefile that is making its way into the subdirectory makefile and causing it to behave incorrectly, but I don't know how to find it. The symptom I see is that the subdirectory config generated makefile rule for zlib misses the dependencies and I get this result going straight to the ar without generating the .o(s) first: cd ~/src; make zlib-1.2.5 CPPFLAGS_AUTO = < > Issuing make in zlib-1.2.5 ... pushd zlib-1.2.5; make; popd ~/src/zlib-1.2.5 ~/src make[1]: Entering directory `/disk2/user/src/zlib-1.2.5' ar rc libz.a adler32.o compress.o crc32.o deflate.o gzclose.o gzlib.o gzread.o gzwrite.o infback.o inffast.o inflate.o inftrees.o trees.o uncompr.o zutil.o ar: adler32.o: No such file or directory make[1]: *** [libz.a] Error 1 gcc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -o libz.so.1.2.5 adler32.lo compress.lo crc32.lo deflate.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo uncompr.lo zutil.lo -lc -L. libz.a gcc: adler32.lo: No such file or directory gcc: compress.lo: No such file or directory gcc: crc32.lo: No such file or directory gcc: deflate.lo: No such file or directory [...] make[1]: *** [libz.so.1.2.5] Error 1 make[1]: Target `all' not remade because of errors. make[1]: Leaving directory `/disk2/user/src/zlib-1.2.5' ~/src Versus from the zlib directory where it works correctly: cd ~/src/zlib-1.2.5; make gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o example.o example.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o adler32.o adler32.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o compress.o compress.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o crc32.o crc32.c [...] gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o zutil.o zutil.c ar rc libz.a adler32.o compress.o crc32.o deflate.o gzclose.o gzlib.o gzread.o gzwrite.o infback.o inffast.o inflate.o inftrees.o trees.o uncompr.o zutil.o (ranlib libz.a || true) >/dev/null 2>&1 gcc -O3 -D_LARGEFILE64_SOURCE=1 -o example example.o -L. libz.a gcc -O3 -D_LARGEFILE64_SOURCE=1 -c -o minigzip.o minigzip.c gcc -O3 -D_LARGEFILE64_SOURCE=1 -o minigzip minigzip.o -L. libz.a mkdir objs 2>/dev/null || test -d objs gcc -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -DPIC -c -o objs/adler32.o adler32.c mv objs/adler32.o adler32.lo mkdir objs 2>/dev/null || test -d objs gcc -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -DPIC -c -o objs/compress.o compress.c mv objs/compress.o compress.lo [...] mkdir objs 2>/dev/null || test -d objs gcc -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -DPIC -c -o objs/zutil.o zutil.c mv objs/zutil.o zutil.lo gcc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map -O3 -fPIC -D_LARGEFILE64_SOURCE=1 -o libz.so.1.2.5 adler32.lo compress.lo crc32.lo deflate.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo uncompr.lo zutil.lo -lc -L. libz.a rm -f libz.so libz.so.1 ln -s libz.so.1.2.5 libz.so ln -s libz.so.1.2.5 libz.so.1 rmdir objs gcc -O3 -D_LARGEFILE64_SOURCE=1 -o examplesh example.o -L. libz.so.1.2.5 gcc -O3 -D_LARGEFILE64_SOURCE=1 -o minigzipsh minigzip.o -L. libz.so.1.2.5 gcc -O3 -D_LARGEFILE64_SOURCE=1 -o example64 example64.o -L. libz.a gcc -O3 -D_LARGEFILE64_SOURCE=1 -o minigzip64 minigzip64.o -L. libz.a

    Read the article

  • Why does my performance slow to a crawl I move methods into a base class?

    - by Juliet
    I'm writing different implementations of immutable binary trees in C#, and I wanted my trees to inherit some common methods from a base class. However, I find. I have lots of binary tree data structures to implement, and I wanted move some common methods into in a base binary tree class. Unfortunately, classes which derive from the base class are abysmally slow. Non-derived classes perform adequately. Here are two nearly identical implementations of an AVL tree to demonstrate: AvlTree: http://pastebin.com/V4WWUAyT DerivedAvlTree: http://pastebin.com/PussQDmN The two trees have the exact same code, but I've moved the DerivedAvlTree.Insert method in base class. Here's a test app: using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using Juliet.Collections.Immutable; namespace ConsoleApplication1 { class Program { const int VALUE_COUNT = 5000; static void Main(string[] args) { var avlTreeTimes = TimeIt(TestAvlTree); var derivedAvlTreeTimes = TimeIt(TestDerivedAvlTree); Console.WriteLine("avlTreeTimes: {0}, derivedAvlTreeTimes: {1}", avlTreeTimes, derivedAvlTreeTimes); } static double TimeIt(Func<int, int> f) { var seeds = new int[] { 314159265, 271828183, 231406926, 141421356, 161803399, 266514414, 15485867, 122949829, 198491329, 42 }; var times = new List<double>(); foreach (int seed in seeds) { var sw = Stopwatch.StartNew(); f(seed); sw.Stop(); times.Add(sw.Elapsed.TotalMilliseconds); } // throwing away top and bottom results times.Sort(); times.RemoveAt(0); times.RemoveAt(times.Count - 1); return times.Average(); } static int TestAvlTree(int seed) { var rnd = new System.Random(seed); var avlTree = AvlTree<double>.Create((x, y) => x.CompareTo(y)); for (int i = 0; i < VALUE_COUNT; i++) { avlTree = avlTree.Insert(rnd.NextDouble()); } return avlTree.Count; } static int TestDerivedAvlTree(int seed) { var rnd = new System.Random(seed); var avlTree2 = DerivedAvlTree<double>.Create((x, y) => x.CompareTo(y)); for (int i = 0; i < VALUE_COUNT; i++) { avlTree2 = avlTree2.Insert(rnd.NextDouble()); } return avlTree2.Count; } } } AvlTree: inserts 5000 items in 121 ms DerivedAvlTree: inserts 5000 items in 2182 ms My profiler indicates that the program spends an inordinate amount of time in BaseBinaryTree.Insert. Anyone whose interested can see the EQATEC log file I've created with the code above (you'll need EQATEC profiler to make sense of file). I really want to use a common base class for all of my binary trees, but I can't do that if performance will suffer. What causes my DerivedAvlTree to perform so badly, and what can I do to fix it?

    Read the article

  • Time complexity for Search and Insert operation in sorted and unsorted arrays that includes duplicat

    - by iecut
    1-)For sorted array I have used Binary Search. We know that the worst case complexity for SEARCH operation in sorted array is O(lg N), if we use Binary Search, where N are the number of items in an array. What is the worst case complexity for the search operation in the array that includes duplicate values, using binary search?? Will it be the be the same O(lg N)?? Please correct me if I am wrong!! Also what is the worst case for INSERT operation in sorted array using binary search?? My guess is O(N).... is that right?? 2-) For unsorted array I have used Linear search. Now we have an unsorted array that also accepts duplicate element/values. What are the best worst case complexity for both SEARCH and INSERT operation. I think that we can use linear search that will give us O(N) worst case time for both search and delete operations. Can we do better than this for unsorted array and does the complexity changes if we accepts duplicates in the array.

    Read the article

  • Context menu event handling error - CS1061

    - by MrTemp
    I am still new to c# and wpf This program is a clock with different view and I would like to use the context menu to change between view, but the error says that there is no definition or extension method for the events. Right now I have the event I'm working on popping up a MessageBox just so I know it has run, but I cannot get it to compile. public partial class MainWindow : NavigationWindow { public MainWindow() { //InitializeComponent(); } public void AnalogMenu_Click(object sender, RoutedEventArgs e) { /*AnalogClock analog = new AnalogClock(); this.NavigationService.Navigate(analog);*/ } public void DigitalMenu_Click(object sender, RoutedEventArgs e) { MessageBox.Show("Digital Clicked"); /*DigitalClock digital = new DigitalClock(); this.NavigationService.Navigate(digital);*/ } public void BinaryMenu_Click(object sender, RoutedEventArgs e) { /*BinaryClock binary = new BinaryClock(); this.NavigationService.Navigate(binary);*/ } } and the xaml call if you want it <NavigationWindow.ContextMenu> <ContextMenu Name="ClockMenu" > <MenuItem Name="ToAnalog" Header="To Analog" ToolTip="Changes to an analog clock"/> <MenuItem Name="ToDigital" Header="To Digital" ToolTip="Changes to a digital clock" Click="DigitalMenu_Click" /> <MenuItem Name="ToBinary" Header="To Binary" ToolTip="Changes to a binary clock"/> </ContextMenu> </NavigationWindow.ContextMenu>

    Read the article

  • Disassembling with python - no easy solution?

    - by Abc4599
    Hi, I'm trying to create a python script that will disassemble a binary (a Windows exe to be precise) and analyze its code. I need the ability to take a certain buffer, and extract some sort of struct containing information about the instructions in it. I've worked with libdisasm in C before, and I found it's interface quite intuitive and comfortable. The problem is, its Python interface is available only through SWIG, and I can't get it to compile properly under Windows. At the availability aspect, diStorm provides a nice out-of-the-box interface, but it provides only the Mnemonic of each instruction, and not a binary struct with enumerations defining instruction type and what not. This is quite uncomfortable for my purpose, and will require a lot of what I see as spent time wrapping the interface to make it fit my needs. I've also looked at BeaEngine, which does in fact provide the output I need, a struct with binary info concerning each instruction, but its interface is really odd and counter-intuitive, and it crashes pretty much instantly when provided with wrong arguments. The CTypes sort of ultimate-death-to-your-python crashes. So, I'd be happy to hear about other solutions, which are a little less time consuming than messing around with djgcc or mingw to make SWIGed libdisasm, or writing an OOP wrapper for diStorm. If anyone has some guidance as to how to compile SWIGed libdisasm, or better yet, a compiled binary (pyd or dll+py), I'd love to hear/have it. :) Thanks ahead.

    Read the article

  • DotNetOpenAuth occasionally throws a NotImplementedException

    - by Chris Moschini
    I have DotNetOpenAuth running on a background thread making calls to Google authorized with OAuth on a regular basis. About once a day, which is about one in 10,000 calls, I get the following Exception: An unhandled exception occurred and the process was terminated. Application ID: DefaultDomain Process ID: 3316 Exception: System.NotImplementedException Message: The method or operation is not implemented. StackTrace: at DotNetOpenAuth.Messaging.ProtocolException.GetObjectData(SerializationInfo info, StreamingContext context) in c:\Users\andarno\git\dotnetopenid\src\DotNetOpenAuth\Messaging\ProtocolException.cs:line 90 at System.Runtime.Serialization.Formatters.Binary.WriteObjectInfo.InitSerialize(Object obj, ISurrogateSelector surrogateSelector, StreamingContext context, SerObjectInfoInit serObjectInfoInit, IFormatterConverter converter, ObjectWriter objectWriter, SerializationBinder binder) at System.Runtime.Serialization.Formatters.Binary.WriteObjectInfo.Serialize(Object obj, ISurrogateSelector surrogateSelector, StreamingContext context, SerObjectInfoInit serObjectInfoInit, IFormatterConverter converter, ObjectWriter objectWriter, SerializationBinder binder) at System.Runtime.Serialization.Formatters.Binary.ObjectWriter.Serialize(Object graph, Header[] inHeaders, __BinaryWriter serWriter, Boolean fCheck) at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Serialize(Stream serializationStream, Object graph, Header[] headers, Boolean fCheck) at System.Runtime.Remoting.Channels.CrossAppDomainSerializer.SerializeObject(Object obj, MemoryStream stm) at System.AppDomain.Serialize(Object o) at System.AppDomain.MarshalObject(Object o) If it was thrown and caught once a day I'd be fine, but this is a big one - I'm getting this in the Application Error log on the server, and it's crashing the process entirely - the site goes down and restarts. Has anyone else run into this? Something I'm clearly doing wrong?

    Read the article

  • How to inherit from a non-prototype object

    - by Andres Jaan Tack
    The node-binary binary parser builds its object with the following pattern: exports.parse = function parse (buffer) { var self = {...} self.tap = function (cb) {...}; self.into = function (key, cb) {...}; ... return self; }; How do I inherit my own, enlightened parser from this? Is this pattern designed intentionally to make inheritance awkward? My only successful attempt thus far at inheriting all the methods of binary.parse(<something>) is to use _.extend as: var clever_parser = function(buffer) { if (this instanceof clever_parser) { this.parser = binary.parse(buffer); // I guess this is super.constructor(...) _.extend(this.parser, this); // Really? return this.parser; } else { return new clever_parser(buffer); } } This has failed my smell test, and that of others. Is there anything about this that makes in tangerous?

    Read the article

  • Flag bit computation and detection

    - by Majid
    Hi all, In some code I'm working on I should take care of ten independent parameters which can take one of two values (0 or 1). This creates 2^10 distinct conditions. Some of the conditions never occur and can be left out, but those which do occur are still A LOT and making a switch to handle all cases is insane. I want to use 10 if statements instead of a huge switch. For this I know I should use flag bits, or rather flag bytes as the language is javascript and its easier to work with a 10 byte string with to represent a 10-bit binary. Now, my problem is, I don't know how to implement this. I have seen this used in APIs where multiple-selectable options are exposed with numbers 1, 2, 4, 8, ... , n^(n-1) which are decimal equivalents of 1, 10, 100, 1000, etc. in binary. So if we make call like bar = foo(7), bar will be an object with whatever options the three rightmost flags enable. I can convert the decimal number into binary and in each if statement check to see if the corresponding digit is set or not. But I wonder, is there a way to determine the n-th digit of a decimal number is zero or one in binary form, without actually doing the conversion?

    Read the article

  • DBD::Oracle and utf8 issue

    - by goe
    Hi All, I have a problem where my perl code using the latest DBD::Oracle on perl v5.8.8 throws an exception on me when I try to insert characters like 'ñ'. Exception: DBD::Oracle::db do failed: ORA-01756: quoted string not properly terminated (DBD ERROR: OCIStmtPrepare) My $ENV{NLS_LANG} is set to 'AMERICAN_AMERICA.AL32UTF8' These are the DB params based on "SELECT * from NLS_DATABASE_PARAMETERS" 1 NLS_LANGUAGE AMERICAN 2 NLS_TERRITORY AMERICA 3 NLS_CURRENCY $ 4 NLS_ISO_CURRENCY AMERICA 5 NLS_NUMERIC_CHARACTERS ., 6 NLS_CHARACTERSET AL32UTF8 7 NLS_CALENDAR GREGORIAN 8 NLS_DATE_FORMAT DD-MON-RR 9 NLS_DATE_LANGUAGE AMERICAN 10 NLS_SORT BINARY 11 NLS_TIME_FORMAT HH.MI.SSXFF AM 12 NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM 13 NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR 14 NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR 15 NLS_DUAL_CURRENCY $ 16 NLS_COMP BINARY 17 NLS_LENGTH_SEMANTICS BYTE These are perl params based on "$db-ora_nls_parameters()" $VAR1 = { 'NLS_LANGUAGE' => 'AMERICAN', 'NLS_TIME_TZ_FORMAT' => 'HH.MI.SSXFF AM TZR', 'NLS_SORT' => 'BINARY', 'NLS_NUMERIC_CHARACTERS' => '.,', 'NLS_TIME_FORMAT' => 'HH.MI.SSXFF AM', 'NLS_ISO_CURRENCY' => 'AMERICA', 'NLS_COMP' => 'BINARY', 'NLS_CALENDAR' => 'GREGORIAN', 'NLS_DATE_FORMAT' => 'DD-MON-RR', 'NLS_DATE_LANGUAGE' => 'AMERICAN', 'NLS_TIMESTAMP_FORMAT' => 'DD-MON-RR HH.MI.SSXFF AM', 'NLS_TERRITORY' => 'AMERICA', 'NLS_LENGTH_SEMANTICS' => 'BYTE', 'NLS_NCHAR_CHARACTERSET' => 'AL16UTF16', 'NLS_DUAL_CURRENCY' => '$', 'NLS_TIMESTAMP_TZ_FORMAT' => 'DD-MON-RR HH.MI.SSXFF AM TZR', 'NLS_NCHAR_CONV_EXCP' => 'FALSE', 'NLS_CHARACTERSET' => 'AL32UTF8', 'NLS_CURRENCY' => '$' }; Here are some other strange facts: If I set NLS_LANG to ‘'AMERICAN_AMERICA.UTF8’ the insert executes fine with ‘ñ’ character. If I leave NLS_LANG as ‘'AMERICAN_AMERICA.AL32UTF8' but use ‘Ñ’ the insert will run fine as well.

    Read the article

  • How to convert Big Endian and how to flip the highest bit?

    - by Robert Frank
    I am using a TStream to read binary data (thanks to this post: http://stackoverflow.com/questions/2878180/how-to-use-a-tfilestream-to-read-2d-matrices-into-dynamic-array). My next problem is that the data is Big Endian. From my reading, the Swap() method is seemingly deprecated. How would I swap the types below? 16-bit two's complement binary integer 32-bit two's complement binary integer 64-bit two's complement binary integer IEEE single precision floating-point - Are IEEE affected by Big Endian? And, finally, since the data is unsigned, the creators of this dataset have stored the unsigned values as signed integers (excluding the IEEE). They instruct that one need only add an offset (2^15, 2^31, and 2^63) to recover the unsigned data. But, they note that flipping the most significant bit is the fastest way to do that. How does one efficiently flip the most significant bit of a 16, 32, or 64-bit integer? So, if the data on disk (16-bit) is "85 FB" - the desired result after reading the data and swapping and bit flipping would be 1531. Is there a way to accomplish the swapping and bit flipping with generics so it fits into the generic answer at the link above? Yes, kids, THIS is how scientific astronomical data is stored by NASA, ESO, and all professional astronomers. This FITS standard is considered by some to be one of the most successful standards ever created in its proliferation and flexibility!

    Read the article

  • no longer an issue

    - by MrTemp
    I am still new to c# and wpf This program is a clock with different view and I would like to use the context menu to change between view, but the error says that there is no definition or extension method for the events. Right now I have the event I'm working on popping up a MessageBox just so I know it has run, but I cannot get it to compile. public partial class MainWindow : NavigationWindow { public MainWindow() { //InitializeComponent(); } public void AnalogMenu_Click(object sender, RoutedEventArgs e) { /*AnalogClock analog = new AnalogClock(); this.NavigationService.Navigate(analog);*/ } public void DigitalMenu_Click(object sender, RoutedEventArgs e) { MessageBox.Show("Digital Clicked"); /*DigitalClock digital = new DigitalClock(); this.NavigationService.Navigate(digital);*/ } public void BinaryMenu_Click(object sender, RoutedEventArgs e) { /*BinaryClock binary = new BinaryClock(); this.NavigationService.Navigate(binary);*/ } } and the xaml call if you want it <NavigationWindow.ContextMenu> <ContextMenu Name="ClockMenu" > <MenuItem Name="ToAnalog" Header="To Analog" ToolTip="Changes to an analog clock"/> <MenuItem Name="ToDigital" Header="To Digital" ToolTip="Changes to a digital clock" Click="DigitalMenu_Click" /> <MenuItem Name="ToBinary" Header="To Binary" ToolTip="Changes to a binary clock"/> </ContextMenu> </NavigationWindow.ContextMenu>

    Read the article

  • How to use a TFileStream to read 2D matrices into dynamic array?

    - by Robert Frank
    I need to read a large (2000x2000) matrix of binary data from a file into a dynamic array with Delphi 2010. I don't know the dimensions until run-time. I've never read raw data like this, and don't know IEEE so I'm posting this to see if I'm on track. I plan to use a TFileStream to read one row at a time. I need to be able to read as many of these formats as possible: 16-bit two's complement binary integer 32-bit two's complement binary integer 64-bit two's complement binary integer IEEE single precision floating-point For 32-bit two's complement, I'm thinking something like the code below. Changing to Int64 and Int16 should be straight forward. How can I read the IEEE? Am I on the right track? Any suggestions on this code, or how to elegantly extend it for all 4 data types above? Since my post-processing will be the same after reading this data, I guess I'll have to copy the matrix into a common format when done. I have no problem just having four procedures (one for each data type) like the one below, but perhaps there's an elegant way to use RTTI or buffers and then move()'s so that the same code works for all 4 datatypes? Thanks! type TRowData = array of Int32; procedure ReadMatrix; var Matrix: array of TRowData; NumberOfRows: Cardinal; NumberOfCols: Cardinal; CurRow: Integer; begin NumberOfRows := 20; // not known until run time NumberOfCols := 100; // not known until run time SetLength(Matrix, NumberOfRows); for CurRow := 0 to NumberOfRows do begin SetLength(Matrix[CurRow], NumberOfCols); FileStream.ReadBuffer(Matrix[CurRow], NumberOfCols * SizeOf(Int32)) ); end; end;

    Read the article

  • Why is this class re-initialized every time?

    - by pinnacler
    I have 4 files and the code 'works' as expected. I try to clean everything up, place code into functions, etc... and everything looks fine... and it doesn't work. Can somebody please explain why MatLab is so quirky... or am I just stupid? Normally, I type terminator = simulation(100,20,0,0,0,1); terminator.animate(); and it should produce a map of trees with the terminator walking around in a forest. Everything rotates to his perspective. When I break it into functions... everything ceases to work. I really only changed a few lines of code, shown in comments. Code that works: classdef simulation properties landmarks robot end methods function obj = simulation(mapSize, trees, x,y,heading,velocity) obj.landmarks = landmarks(mapSize, trees); obj.robot = robot(x,y,heading,velocity); end function animate(obj) %Setup Plots fig=figure; xlabel('meters'), ylabel('meters') set(fig, 'name', 'Phil''s AWESOME 80''s Robot Simulator') xymax = obj.landmarks.mapSize*3; xymin = -(obj.landmarks.mapSize*3); l=scatter([0],[0],'bo'); axis([xymin xymax xymin xymax]); obj.landmarks.apparentPositions %Simulation Loop THIS WAS ORGANIZED for n = 1:720, %Calculate and Set Heading/Location obj.robot.headingChange = navigate(n); %Update Position obj.robot.heading = obj.robot.heading + obj.robot.headingChange; obj.landmarks.heading = obj.robot.heading; y = cosd(obj.robot.heading); x = sind(obj.robot.heading); obj.robot.x = obj.robot.x + (x*obj.robot.velocity); obj.robot.y = obj.robot.y + (y*obj.robot.velocity); obj.landmarks.x = obj.robot.x; obj.landmarks.y = obj.robot.y; %Animate set(l,'XData',obj.landmarks.apparentPositions(:,1),'YData',obj.landmarks.apparentPositions(:,2)); rectangle('Position',[-2,-2,4,4]); drawnow end end end end ----------- classdef landmarks properties fixedPositions %# positions in a fixed coordinate system. [ x, y ] mapSize = 10; %Map Size. Value is side of square x=0; y=0; heading=0; headingChange=0; end properties (Dependent) apparentPositions end methods function obj = landmarks(mapSize, numberOfTrees) obj.mapSize = mapSize; obj.fixedPositions = obj.mapSize * rand([numberOfTrees, 2]) .* sign(rand([numberOfTrees, 2]) - 0.5); end function apparent = get.apparentPositions(obj) %-STILL ROTATES AROUND ORIGINAL ORIGIN currentPosition = [obj.x ; obj.y]; apparent = bsxfun(@minus,(obj.fixedPositions)',currentPosition)'; apparent = ([cosd(obj.heading) -sind(obj.heading) ; sind(obj.heading) cosd(obj.heading)] * (apparent)')'; end end end ---------- classdef robot properties x y heading velocity headingChange end methods function obj = robot(x,y,heading,velocity) obj.x = x; obj.y = y; obj.heading = heading; obj.velocity = velocity; end end end ---------- function headingChange = navigate(n) %steeringChange = 5 * rand(1) * sign(rand(1) - 0.5); Most chaotic shit %Draw an S if n <270 headingChange=1; elseif n<540 headingChange=-1; elseif n<720 headingChange=1; else headingChange=1; end end Code that does not work... classdef simulation properties landmarks robot end methods function obj = simulation(mapSize, trees, x,y,heading,velocity) obj.landmarks = landmarks(mapSize, trees); obj.robot = robot(x,y,heading,velocity); end function animate(obj) %Setup Plots fig=figure; xlabel('meters'), ylabel('meters') set(fig, 'name', 'Phil''s AWESOME 80''s Robot Simulator') xymax = obj.landmarks.mapSize*3; xymin = -(obj.landmarks.mapSize*3); l=scatter([0],[0],'bo'); axis([xymin xymax xymin xymax]); obj.landmarks.apparentPositions %Simulation Loop for n = 1:720, %Calculate and Set Heading/Location %Update Position headingChange = navigate(n); obj.robot.updatePosition(headingChange); obj.landmarks.updatePerspective(obj.robot.heading, obj.robot.x, obj.robot.y); %Animate set(l,'XData',obj.landmarks.apparentPositions(:,1),'YData',obj.landmarks.apparentPositions(:,2)); rectangle('Position',[-2,-2,4,4]); drawnow end end end end ----------------- classdef landmarks properties fixedPositions; %# positions in a fixed coordinate system. [ x, y ] mapSize; %Map Size. Value is side of square x; y; heading; headingChange; end properties (Dependent) apparentPositions end methods function obj = createLandmarks(mapSize, numberOfTrees) obj.mapSize = mapSize; obj.fixedPositions = obj.mapSize * rand([numberOfTrees, 2]) .* sign(rand([numberOfTrees, 2]) - 0.5); end function apparent = get.apparentPositions(obj) %-STILL ROTATES AROUND ORIGINAL ORIGIN currentPosition = [obj.x ; obj.y]; apparent = bsxfun(@minus,(obj.fixedPositions)',currentPosition)'; apparent = ([cosd(obj.heading) -sind(obj.heading) ; sind(obj.heading) cosd(obj.heading)] * (apparent)')'; end function updatePerspective(obj,tempHeading,tempX,tempY) obj.heading = tempHeading; obj.x = tempX; obj.y = tempY; end end end ----------------- classdef robot properties x y heading velocity end methods function obj = robot(x,y,heading,velocity) obj.x = x; obj.y = y; obj.heading = heading; obj.velocity = velocity; end function updatePosition(obj,headingChange) obj.heading = obj.heading + headingChange; tempy = cosd(obj.heading); tempx = sind(obj.heading); obj.x = obj.x + (tempx*obj.velocity); obj.y = obj.y + (tempy*obj.velocity); end end end The navigate function is the same... I would appreciate any help as to why things aren't working. All I did was take the code from the first section from under comment: %Simulation Loop THIS WAS ORGANIZED and break it into 2 functions. One in robot and one in landmarks. Is a new instance created every time because it's constantly printing the same heading for this line int he robot class obj.heading = obj.heading + headingChange;

    Read the article

  • Problem with Apache webserver and MySQL after installing cPanel

    - by Santhosh S
    I have a Fedora machine with Apache webserver and MySQL installed with some data present in both the servers. I installed cPanel on this machine with a test license. After installing cPanel I am not able to start Apache Webserver and login to MySQL. I am getting the following error when I try to start the webserver Building global cache for cpanel...warn [Cpanel::AdvConfig::apache::modules] Unable to locate executable Apache binary warn [Cpanel::AdvConfig::apache::modules] Unable to locate executable Apache binary

    Read the article

  • Static build ffmpeg 0.8

    - by Riduidel
    Is there anywhere an available static build of ffmpeg with all encoder/decoders libs for Linux (not a source tarball, but a binary) ? Although this question seems trivial, I spent the last half hour looking for it, without any success. EDIT I'm looking for binary to be run on x86 Suse 10 systems. Notice I can't use local package manager as all update repositories have bene removed by admin (to avoid uncontrolled software update).

    Read the article

< Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >