Search Results

Search found 47380 results on 1896 pages for 'class generation'.

Page 52/1896 | < Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >

  • Best way to have common class shared by both C++ and Ruby?

    - by shuttle87
    I am currently working on a project where a team of us are designing a game, all of us are proficient in ruby and some (but not all) of us are proficient in c++. Initially we made the backend in ruby but we ported it to c++ for more speed. The c++ port of the backend has exactly the same features and algorithms as the original ruby code. However we still have a bunch of code in ruby that does useful things but we want it to now get the data from the c++ classes. Our first thought was that we could save some of the data structures in something like XML or redis and call that, but some of the developers don't like that idea. We don't need anything particularly complex data structures to be passed between the different parts of the code, just tuples, strings and ints. Is there any way of integrating the ruby code so that it can call the c++ stuff natively? Will we need to embed code? Will we have to make a ruby extension? If so are there any good resources/tutorials you could suggest? For example say we have this code in the c++ backend: class The_game{ private: bool printinfo; //print the player diagnostic info at the beginning if true int numplayers; std::vector<Player*> players; string current_action; int action_is_on; // the index of the player in the players array that the action is now on //more code here public: Table(std::vector<Player *> in_players, std::vector<Statistics *> player_stats ,const int in_numplayers); ~Table(); void play_game(); History actions_history; }; class History{ private: int action_sequence_number; std::vector<Action*> hand_actions; public: void print_history(); void add_action(Action* the_action_to_be_added); int get_action_sequence_number(){ return action_sequence_number;} bool history_actions_are_equal(); int last_action_size(int street,int number_of_actions_ago); History(); ~History(); }; Is there any way to natively call something in the actions_history via The_game object in ruby? (The objects in the original ruby code all had the same names and functionality) By this I mean: class MyRubyClass def method1(arg1) puts arg1 self.f() # ... but still available puts cpp_method.the_current_game.actions_history.get_action_sequence_number() end # Constructor: def initialize(arg) puts "In constructor with arg #{arg}" #get the c++ object here and call it cpp_method end end Is this possible? Any advice or suggestions are appreciated.

    Read the article

  • C# class code loaded in RAM ?

    - by Spi1988
    hi, I would like to know whether the actual code of a C# class gets loaded in RAM when you instantiate the class? So for example if I have 2 Classes CLASS A , CLASS B, where class A has 10000 lines of code but just 1 field, an int. And class B has 10 lines of code and also 1 field an int as well. If I instantiate Class A will it take more RAM than Class B due to its lines of code ? A supplementary question, If the lines of code are loaded in memory together with the class, will they be loaded for every instance of the class? or just once for all the instances? Thanks in advance.

    Read the article

  • Does invoking System.gc() in java suggest garbage collection of the tenured generation as well as th

    - by Markus Jevring
    When invoking System.gc() in java (via JMX), it will dutifully (attempt to) clean the young generation. This generally works very well. I have never seen it attempt to clean the tenured generation, though. This leads me to two questions: Can the tenured generation even be collected (i.e. is there actually garbage in this generation, or do all objects in the tenured generation actually still have live references to them)? If the tenured generation can be collected, can this be done via System.gc(), or is there another way to do it (unlikely), or will I simply have to wait until I run out of space in the tenured generation?

    Read the article

  • factory class, wrong number of arguments being passed to subclass constructor

    - by Hugh Bothwell
    I was looking at Python: Exception in the separated module works wrong which uses a multi-purpose GnuLibError class to 'stand in' for a variety of different errors. Each sub-error has its own ID number and error format string. I figured it would be better written as a hierarchy of Exception classes, and set out to do so: class GNULibError(Exception): sub_exceptions = 0 # patched with dict of subclasses once subclasses are created err_num = 0 err_format = None def __new__(cls, *args): print("new {}".format(cls)) # DEBUG if len(args) and args[0] in GNULibError.sub_exceptions: print(" factory -> {} {}".format(GNULibError.sub_exceptions[args[0]], args[1:])) # DEBUG return super(GNULibError, cls).__new__(GNULibError.sub_exceptions[args[0]], *(args[1:])) else: print(" plain {} {}".format(cls, args)) # DEBUG return super(GNULibError, cls).__new__(cls, *args) def __init__(self, *args): cls = type(self) print("init {} {}".format(cls, args)) # DEBUG self.args = args if cls.err_format is None: self.message = str(args) else: self.message = "[GNU Error {}] ".format(cls.err_num) + cls.err_format.format(*args) def __str__(self): return self.message def __repr__(self): return '{}{}'.format(type(self).__name__, self.args) class GNULibError_Directory(GNULibError): err_num = 1 err_format = "destination directory does not exist: {}" class GNULibError_Config(GNULibError): err_num = 2 err_format = "configure file does not exist: {}" class GNULibError_Module(GNULibError): err_num = 3 err_format = "selected module does not exist: {}" class GNULibError_Cache(GNULibError): err_num = 4 err_format = "{} is expected to contain gl_M4_BASE({})" class GNULibError_Sourcebase(GNULibError): err_num = 5 err_format = "missing sourcebase argument: {}" class GNULibError_Docbase(GNULibError): err_num = 6 err_format = "missing docbase argument: {}" class GNULibError_Testbase(GNULibError): err_num = 7 err_format = "missing testsbase argument: {}" class GNULibError_Libname(GNULibError): err_num = 8 err_format = "missing libname argument: {}" # patch master class with subclass reference # (TO DO: auto-detect all available subclasses instead of hardcoding them) GNULibError.sub_exceptions = { 1: GNULibError_Directory, 2: GNULibError_Config, 3: GNULibError_Module, 4: GNULibError_Cache, 5: GNULibError_Sourcebase, 6: GNULibError_Docbase, 7: GNULibError_Testbase, 8: GNULibError_Libname } This starts out with GNULibError as a factory class - if you call it with an error number belonging to a recognized subclass, it returns an object belonging to that subclass, otherwise it returns itself as a default error type. Based on this code, the following should be exactly equivalent (but aren't): e = GNULibError(3, 'missing.lib') f = GNULibError_Module('missing.lib') print e # -> '[GNU Error 3] selected module does not exist: 3' print f # -> '[GNU Error 3] selected module does not exist: missing.lib' I added some strategic print statements, and the error seems to be in GNULibError.__new__: >>> e = GNULibError(3, 'missing.lib') new <class '__main__.GNULibError'> factory -> <class '__main__.GNULibError_Module'> ('missing.lib',) # good... init <class '__main__.GNULibError_Module'> (3, 'missing.lib') # NO! ^ why? I call the subclass constructor as subclass.__new__(*args[1:]) - this should drop the 3, the subclass type ID - and yet its __init__ is still getting the 3 anyway! How can I trim the argument list that gets passed to subclass.__init__?

    Read the article

  • An Xml Serializable PropertyBag Dictionary Class for .NET

    - by Rick Strahl
    I don't know about you but I frequently need property bags in my applications to store and possibly cache arbitrary data. Dictionary<T,V> works well for this although I always seem to be hunting for a more specific generic type that provides a string key based dictionary. There's string dictionary, but it only works with strings. There's Hashset<T> but it uses the actual values as keys. In most key value pair situations for me string is key value to work off. Dictionary<T,V> works well enough, but there are some issues with serialization of dictionaries in .NET. The .NET framework doesn't do well serializing IDictionary objects out of the box. The XmlSerializer doesn't support serialization of IDictionary via it's default serialization, and while the DataContractSerializer does support IDictionary serialization it produces some pretty atrocious XML. What doesn't work? First off Dictionary serialization with the Xml Serializer doesn't work so the following fails: [TestMethod] public void DictionaryXmlSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXml(bag)); } public string ToXml(object obj) { if (obj == null) return null; StringWriter sw = new StringWriter(); XmlSerializer ser = new XmlSerializer(obj.GetType()); ser.Serialize(sw, obj); return sw.ToString(); } The error you get with this is: System.NotSupportedException: The type System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]] is not supported because it implements IDictionary. Got it! BTW, the same is true with binary serialization. Running the same code above against the DataContractSerializer does work: [TestMethod] public void DictionaryDataContextSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXmlDcs(bag)); } public string ToXmlDcs(object value, bool throwExceptions = false) { var ser = new DataContractSerializer(value.GetType(), null, int.MaxValue, true, false, null); MemoryStream ms = new MemoryStream(); ser.WriteObject(ms, value); return Encoding.UTF8.GetString(ms.ToArray(), 0, (int)ms.Length); } This DOES work but produces some pretty heinous XML (formatted with line breaks and indentation here): <ArrayOfKeyValueOfstringanyType xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <KeyValueOfstringanyType> <Key>key</Key> <Value i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">Value</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key2</Key> <Value i:type="a:decimal" xmlns:a="http://www.w3.org/2001/XMLSchema">100.10</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key3</Key> <Value i:type="a:guid" xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/">2cd46d2a-a636-4af4-979b-e834d39b6d37</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key4</Key> <Value i:type="a:dateTime" xmlns:a="http://www.w3.org/2001/XMLSchema">2011-09-19T17:17:05.4406999-07:00</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key5</Key> <Value i:type="a:boolean" xmlns:a="http://www.w3.org/2001/XMLSchema">true</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key7</Key> <Value i:type="a:base64Binary" xmlns:a="http://www.w3.org/2001/XMLSchema">Ki1C</Value> </KeyValueOfstringanyType> </ArrayOfKeyValueOfstringanyType> Ouch! That seriously hurts the eye! :-) Worse though it's extremely verbose with all those repetitive namespace declarations. It's good to know that it works in a pinch, but for a human readable/editable solution or something lightweight to store in a database it's not quite ideal. Why should I care? As a little background, in one of my applications I have a need for a flexible property bag that is used on a free form database field on an otherwise static entity. Basically what I have is a standard database record to which arbitrary properties can be added in an XML based string field. I intend to expose those arbitrary properties as a collection from field data stored in XML. The concept is pretty simple: When loading write the data to the collection, when the data is saved serialize the data into an XML string and store it into the database. When reading the data pick up the XML and if the collection on the entity is accessed automatically deserialize the XML into the Dictionary. (I'll talk more about this in another post). While the DataContext Serializer would work, it's verbosity is problematic both for size of the generated XML strings and the fact that users can manually edit this XML based property data in an advanced mode. A clean(er) layout certainly would be preferable and more user friendly. Custom XMLSerialization with a PropertyBag Class So… after a bunch of experimentation with different serialization formats I decided to create a custom PropertyBag class that provides for a serializable Dictionary. It's basically a custom Dictionary<TType,TValue> implementation with the keys always set as string keys. The result are PropertyBag<TValue> and PropertyBag (which defaults to the object type for values). The PropertyBag<TType> and PropertyBag classes provide these features: Subclassed from Dictionary<T,V> Implements IXmlSerializable with a cleanish XML format ToXml() and FromXml() methods to export and import to and from XML strings Static CreateFromXml() method to create an instance It's simple enough as it's merely a Dictionary<string,object> subclass but that supports serialization to a - what I think at least - cleaner XML format. The class is super simple to use: [TestMethod] public void PropertyBagTwoWayObjectSerializationTest() { var bag = new PropertyBag(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42,45,66 } ); bag.Add("Key8", null); bag.Add("Key9", new ComplexObject() { Name = "Rick", Entered = DateTime.Now, Count = 10 }); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag["key"] as string == "Value"); Assert.IsInstanceOfType( bag["Key3"], typeof(Guid)); Assert.IsNull(bag["Key8"]); //Assert.IsNull(bag["Key10"]); Assert.IsInstanceOfType(bag["Key9"], typeof(ComplexObject)); } This uses the PropertyBag class which uses a PropertyBag<string,object> - which means it returns untyped values of type object. I suspect for me this will be the most common scenario as I'd want to store arbitrary values in the PropertyBag rather than one specific type. The same code with a strongly typed PropertyBag<decimal> looks like this: [TestMethod] public void PropertyBagTwoWayValueTypeSerializationTest() { var bag = new PropertyBag<decimal>(); bag.Add("key", 10M); bag.Add("Key1", 100.10M); bag.Add("Key2", 200.10M); bag.Add("Key3", 300.10M); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag.Get("Key1") == 100.10M); Assert.IsTrue(bag.Get("Key3") == 300.10M); } and produces typed results of type decimal. The types can be either value or reference types the combination of which actually proved to be a little more tricky than anticipated due to null and specific string value checks required - getting the generic typing right required use of default(T) and Convert.ChangeType() to trick the compiler into playing nice. Of course the whole raison d'etre for this class is the XML serialization. You can see in the code above that we're doing a .ToXml() and .FromXml() to serialize to and from string. The XML produced for the first example looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value>Value</value> </item> <item> <key>Key2</key> <value type="decimal">100.10</value> </item> <item> <key>Key3</key> <value type="___System.Guid"> <guid>f7a92032-0c6d-4e9d-9950-b15ff7cd207d</guid> </value> </item> <item> <key>Key4</key> <value type="datetime">2011-09-26T17:45:58.5789578-10:00</value> </item> <item> <key>Key5</key> <value type="boolean">true</value> </item> <item> <key>Key7</key> <value type="base64Binary">Ki1C</value> </item> <item> <key>Key8</key> <value type="nil" /> </item> <item> <key>Key9</key> <value type="___Westwind.Tools.Tests.PropertyBagTest+ComplexObject"> <ComplexObject> <Name>Rick</Name> <Entered>2011-09-26T17:45:58.5789578-10:00</Entered> <Count>10</Count> </ComplexObject> </value> </item> </properties>   The format is a bit cleaner than the DataContractSerializer. Each item is serialized into <key> <value> pairs. If the value is a string no type information is written. Since string tends to be the most common type this saves space and serialization processing. All other types are attributed. Simple types are mapped to XML types so things like decimal, datetime, boolean and base64Binary are encoded using their Xml type values. All other types are embedded with a hokey format that describes the .NET type preceded by a three underscores and then are encoded using the XmlSerializer. You can see this best above in the ComplexObject encoding. For custom types this isn't pretty either, but it's more concise than the DCS and it works as long as you're serializing back and forth between .NET clients at least. The XML generated from the second example that uses PropertyBag<decimal> looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value type="decimal">10</value> </item> <item> <key>Key1</key> <value type="decimal">100.10</value> </item> <item> <key>Key2</key> <value type="decimal">200.10</value> </item> <item> <key>Key3</key> <value type="decimal">300.10</value> </item> </properties>   How does it work As I mentioned there's nothing fancy about this solution - it's little more than a subclass of Dictionary<T,V> that implements custom Xml Serialization and a couple of helper methods that facilitate getting the XML in and out of the class more easily. But it's proven very handy for a number of projects for me where dynamic data storage is required. Here's the code: /// <summary> /// Creates a serializable string/object dictionary that is XML serializable /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> [XmlRoot("properties")] public class PropertyBag : PropertyBag<object> { /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml">Serialize</param> /// <returns></returns> public static PropertyBag CreateFromXml(string xml) { var bag = new PropertyBag(); bag.FromXml(xml); return bag; } } /// <summary> /// Creates a serializable string for generic types that is XML serializable. /// /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> /// <typeparam name="TValue">Must be a reference type. For value types use type object</typeparam> [XmlRoot("properties")] public class PropertyBag<TValue> : Dictionary<string, TValue>, IXmlSerializable { /// <summary> /// Not implemented - this means no schema information is passed /// so this won't work with ASMX/WCF services. /// </summary> /// <returns></returns> public System.Xml.Schema.XmlSchema GetSchema() { return null; } /// <summary> /// Serializes the dictionary to XML. Keys are /// serialized to element names and values as /// element values. An xml type attribute is embedded /// for each serialized element - a .NET type /// element is embedded for each complex type and /// prefixed with three underscores. /// </summary> /// <param name="writer"></param> public void WriteXml(System.Xml.XmlWriter writer) { foreach (string key in this.Keys) { TValue value = this[key]; Type type = null; if (value != null) type = value.GetType(); writer.WriteStartElement("item"); writer.WriteStartElement("key"); writer.WriteString(key as string); writer.WriteEndElement(); writer.WriteStartElement("value"); string xmlType = XmlUtils.MapTypeToXmlType(type); bool isCustom = false; // Type information attribute if not string if (value == null) { writer.WriteAttributeString("type", "nil"); } else if (!string.IsNullOrEmpty(xmlType)) { if (xmlType != "string") { writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } } else { isCustom = true; xmlType = "___" + value.GetType().FullName; writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } // Actual deserialization if (!isCustom) { if (value != null) writer.WriteValue(value); } else { XmlSerializer ser = new XmlSerializer(value.GetType()); ser.Serialize(writer, value); } writer.WriteEndElement(); // value writer.WriteEndElement(); // item } } /// <summary> /// Reads the custom serialized format /// </summary> /// <param name="reader"></param> public void ReadXml(System.Xml.XmlReader reader) { this.Clear(); while (reader.Read()) { if (reader.NodeType == XmlNodeType.Element && reader.Name == "key") { string xmlType = null; string name = reader.ReadElementContentAsString(); // item element reader.ReadToNextSibling("value"); if (reader.MoveToNextAttribute()) xmlType = reader.Value; reader.MoveToContent(); TValue value; if (xmlType == "nil") value = default(TValue); // null else if (string.IsNullOrEmpty(xmlType)) { // value is a string or object and we can assign TValue to value string strval = reader.ReadElementContentAsString(); value = (TValue) Convert.ChangeType(strval, typeof(TValue)); } else if (xmlType.StartsWith("___")) { while (reader.Read() && reader.NodeType != XmlNodeType.Element) { } Type type = ReflectionUtils.GetTypeFromName(xmlType.Substring(3)); //value = reader.ReadElementContentAs(type,null); XmlSerializer ser = new XmlSerializer(type); value = (TValue)ser.Deserialize(reader); } else value = (TValue)reader.ReadElementContentAs(XmlUtils.MapXmlTypeToType(xmlType), null); this.Add(name, value); } } } /// <summary> /// Serializes this dictionary to an XML string /// </summary> /// <returns>XML String or Null if it fails</returns> public string ToXml() { string xml = null; SerializationUtils.SerializeObject(this, out xml); return xml; } /// <summary> /// Deserializes from an XML string /// </summary> /// <param name="xml"></param> /// <returns>true or false</returns> public bool FromXml(string xml) { this.Clear(); // if xml string is empty we return an empty dictionary if (string.IsNullOrEmpty(xml)) return true; var result = SerializationUtils.DeSerializeObject(xml, this.GetType()) as PropertyBag<TValue>; if (result != null) { foreach (var item in result) { this.Add(item.Key, item.Value); } } else // null is a failure return false; return true; } /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml"></param> /// <returns></returns> public static PropertyBag<TValue> CreateFromXml(string xml) { var bag = new PropertyBag<TValue>(); bag.FromXml(xml); return bag; } } } The code uses a couple of small helper classes SerializationUtils and XmlUtils for mapping Xml types to and from .NET, both of which are from the WestWind,Utilities project (which is the same project where PropertyBag lives) from the West Wind Web Toolkit. The code implements ReadXml and WriteXml for the IXmlSerializable implementation using old school XmlReaders and XmlWriters (because it's pretty simple stuff - no need for XLinq here). Then there are two helper methods .ToXml() and .FromXml() that basically allow your code to easily convert between XML and a PropertyBag object. In my code that's what I use to actually to persist to and from the entity XML property during .Load() and .Save() operations. It's sweet to be able to have a string key dictionary and then be able to turn around with 1 line of code to persist the whole thing to XML and back. Hopefully some of you will find this class as useful as I've found it. It's a simple solution to a common requirement in my applications and I've used the hell out of it in the  short time since I created it. Resources You can find the complete code for the two classes plus the helpers in the Subversion repository for Westwind.Utilities. You can grab the source files from there or download the whole project. You can also grab the full Westwind.Utilities assembly from NuGet and add it to your project if that's easier for you. PropertyBag Source Code SerializationUtils and XmlUtils Westwind.Utilities Assembly on NuGet (add from Visual Studio) © Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Cryptographic Validation Explained

    - by MarkPearl
    We have been using LogicNP’s CryptoLicensing for some of our software and I was battling to understand how exactly the whole process worked. I was sent the following document which really helped explain it – so if you ever use the same tool it is well worth a read. Licensing Basics LogicNP CryptoLicensing For .Net is the most advanced and state-of-the art licensing and copy protection system you can use for your software. LogicNP CryptoLicensing System uses the latest cryptographic technology to generate and validate licenses. The cryptographic algorithm used is the RSA algorithm which consists of a pair of keys called as the generation key and the validation key. Data encrypted using the generation key can only be decrypted using the corresponding validation key. How does cryptographic validation work? When a new license project is created, a unique validation-generation key pair is created for the project. When LogicNP CryptoLicensing For .Net generates licenses, it encrypts the license settings using the generation key. The validation key can be safely distributed with your software and is used during validation. During license validation, LogicNP CryptoLicensing For .Net attempts to decrypt the encrypted license code using the validation key. If the decryption is successful, this means that the data was encrypted using the generation key, since only the corresponding validation key can decrypt data encrypted with the generation key. This further means that not only is the license valid but that it was generated by you and only you since nobody else has access to the generation key. Generation Key This key is used by CryptoLicensing Generator to generate encrypted license codes. This key is stored in the license project file, so the license project file must be kept secure and confidential and must be accorded the same care as any other critical asset such as source code. Validation Key This key is used for validating generated license codes. It is the same key displayed in the 'Get Validation Key And Code' dialog (Ctrl+K) and is used by your software when validating license codes (using LogicNP.CryptoLicensing.dll). Unlike the generation key, it is not necessary to keep this key secure and confidential. Note that the generation key pair is stored in the project file created by LogicNP CryptoLicensing For .Net, so it is very important to backup this file and to keep it secure. Once the file is lost, it is not possible to retrieve the key pair. FAQ Do I use the same validation key to validate all license codes? Yes, the validation key (and generation key) for the project remains the same; you use the same key to validate all license codes generated using the project. You can retrieve the validation key using the "Project" menu --> "Get Validation Key & Code" menu item. Can license codes generated using generation key from one project be validated using validation key of another project? No! Q. Is every generated license code unique? A. Yes, every license code generated by CryptoLicensing is guaranteed to be unique, even if you generate thousands of codes at a time. Q. What makes CryptoLicensing so secure? A. CryptoLicensing uses the latest cryptographic technology to generate and validate licenses. The cryptographic algorithm used is the RSA asymmetric key algorithm which can use upto 3072-bit keys. Given current computing power, it takes years to break a 3072-bit key. Q. Is is possible for a hacker to develop a keygen for my software? A. Impossible. The cryptographic algorithm used by CryptoLicensing consists of a pair of keys called as the generation key and the validation key. Data encrypted with one key can only be decrypted by the other key and vice versa. Licenses are generated using the generation key and validated using the validation key. Without the generation key, it is impossible to generate valid licenses. Q. What is the difference between validation key and generation key? Generation Key This key is used by CryptoLicensing Generator to generate encrypted license codes. This key is stored in the license project file, so the license project file must be kept secure and confidential and must be accorded the same care as any other critical asset such as source code. Validation Key This key is used for validating generated license codes. It is the same key displayed in the 'Get Validation Key And Code' dialog (Ctrl+K) and is used by your software when validating license codes (using LogicNP.CryptoLicensing.dll). Unlike the generation key, it is not necessary to keep this key secure and confidential. Q. Do I have to include the license project file (.licproj) with my software? A. No!!! This goes against the very essence of the security of the asymmetric cryptographic scheme because the project file contains both the validation and generation key. With your software, you only need to include the validation key which will be used to validate licenses generated by CryptoLicensing using the generation key. The license project file should be treated as any other valuable and confidential asset such as your source code. Q. Does the license service need the license project file? A. Yes. The license project file is needed whenever new licenses are generated (via the UI, via the API or via the license service). As just one example, the license service generates new machine-locked licenses when activated licenses are presented to it for activation, therefore the license service needs the license project file. Q. Is it possible to embed my own data in the generated licenses? A. Yes. You can embed any amount of additional data in the licenses. This data will have the same amount of security as the license code itself and will be tamper-proof. The embedded user data can be retrieved from your software. Q. What additional steps can I take to ensure that my software does not get cracked? A. There are many methods and techniques which can make it extremely difficult for a hacker to crack your software. See Writing Effective License Checking Code And Designing Effective Licenses for more information. Q. Why is the license service not working? A. The most common cause is not setting the CryptoLicense.LicenseServiceURL property before trying to validate a license. Make sure that this property is set to the correct URL where your license service is hosted. The most common cause after this is that the license project file on the web server where your license service is hosted is not the latest. This happens if you make changes to the license project (for example, set the 'Enable With Serials' setting for a profile), but don't upload the updated project file to your web server. Q. Why are my serials not working? Serial codes require the user of a license service. See Using Serial Codes for more details. Also see the earlier question 'Why is the license service not working?' Q. Is the same validation key used to validate license codes generated from different profiles. A. Yes. Profiles are just pre specified license settings for quickly generating licenses having those settings. The actual license code is still generated using the license project's cryptographic generation key and thus, can be validated using the project's validation key. Q. Why are changes made to a profile not getting saved? A. Simply changing license settings via UI and saving the license project does not save those license settings to the active profile. You must first save the license settings to a profile using the Save/Save As command from the Profiles menu (see above). Q. Why is validation of activated licenses failing from CryptoLicensing Generator, but works from my software? A. Make sure that you have specified the URL of the license service using the Project Properties Dialog. Also see the earlier question 'Why is the license service not working?' Q. How can I extend the trial period of my customer? A. To extend the evaluation period of the customer, simply send him a new license code specifying the desired evaluation limits. Evaluation information such as the current used days, executions, etc are stored in garbled form in a registry location which is derived from the license code. Therefore, when a new license code is used, the old evaluation information will not be used and a new evaluation period will be started.

    Read the article

  • Google Python Class Day 2 Part 1

    Google Python Class Day 2 Part 1 Google Python Class Day 2 Part 1: Regular Expressions. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 18 0 ratings Time: 42:00 More in Science & Technology

    Read the article

  • Google Python Class Day 1 Part 3

    Google Python Class Day 1 Part 3 Google Python Class Day 1 Part 3: Dicts and Files. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 7 0 ratings Time: 28:59 More in Science & Technology

    Read the article

  • Google Python Class Day 2 Part 2

    Google Python Class Day 2 Part 2 Google Python Class Day 2 Part 2: Utilities: OS and Commands. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 11 1 ratings Time: 20:20 More in Science & Technology

    Read the article

  • Google Python Class Day 1 Part 1

    Google Python Class Day 1 Part 1 Google Python Class Day 1 Part 1: Introduction and Strings. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 137 1 ratings Time: 51:37 More in Science & Technology

    Read the article

  • Google Python Class Day 1 Part 2

    Google Python Class Day 1 Part 2 Google Python Class Day 1 Part 2: Lists, Sorting, and Tuples. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 13 0 ratings Time: 35:12 More in Science & Technology

    Read the article

  • Importance of a 1st Class Degree

    - by Nipuna Silva
    I'm currently at the 3rd year following a degree in Software Engineering. I'm thinking of moving into a research field in the future (programming language design, AI etc.) My problems are, What is the advantage/importance of carrying a 1st Class Degree (Honors for Americans) in to the industry rather than with just simple pass. Is it really important to have a 1st Class? Is it the practical knowledge i have to give priority or the theoretical knowledge, or both?

    Read the article

  • Google Python Class Day 2 Part 3

    Google Python Class Day 2 Part 3 Google Python Class Day 2 Part 3: Utilities: urls and HTTP, Exceptions. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 29 1 ratings Time: 25:51 More in Science & Technology

    Read the article

  • Google Python Class Day 2 Part 4

    Google Python Class Day 2 Part 4 Google Python Class Day 1 Part 1: Closing Thoughts. By Nick Parlante. Support materials and exercises: code.google.com From: GoogleDevelopers Views: 129 1 ratings Time: 11:16 More in Science & Technology

    Read the article

  • SortedSet Collection Class in .NET 4.0

    This article explains SortedSet Collection class added in Base Class Libraries (BCL) of .NET 4.0...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Circular class dependency

    - by shad0w
    Is it bad design to have 2 classes which need each other? I'm writing a small game in which I have a GameEngine class which has got a few GameState objects. To access several rendering methods, these GameState objects also need to know the GameEngine class - so it's a circular dependency. Would you call this bad design? I am just asking, because I am not quite sure and at this time I am still able to refactor these things.

    Read the article

  • 3 Benefits of Multiple C Class Hosting

    Multiple C Class hosting has become an essential tool for marketers striving to have their websites rank highly in the search engines. The ability to interlink websites while having search engines actually count rather than discount the links is invaluable. What are the benefits of Multiple C Class hosting? Read on to find out.

    Read the article

  • which style of member-access is preferable

    - by itwasntpete
    the purpose of oop using classes is to encapsulate members from the outer space. i always read that accessing members should be done by methods. for example: template<typename T> class foo_1 { T state_; public: // following below }; the most common doing that by my professor was to have a get and set method. // variant 1 T const& getState() { return state_; } void setState(T const& v) { state_ = v; } or like this: // variant 2 // in my opinion it is easier to read T const& state() { return state_; } void state(T const& v) { state_ = v; } assume the state_ is a variable, which is checked periodically and there is no need to ensure the value (state) is consistent. Is there any disadvantage of accessing the state by reference? for example: // variant 3 // do it by reference T& state() { return state_; } or even directly, if I declare the variable as public. template<typename T> class foo { public: // variant 4 T state; }; In variant 4 I could even ensure consistence by using c++11 atomic. So my question is, which one should I prefer?, Is there any coding standard which would decline one of these pattern? for some code see here

    Read the article

  • Why am I seeing so many instantiable classes without state?

    - by futlib
    I'm seeing a lot of instantiable classes in the C++ and Java world that don't have any state. I really can't figure out why people do that, they could just use a namespace with free functions in C++, or a class with a private constructor and only static methods in Java. The only benefit I can think of is that you don't have to change most of your code if you later decide that you want a different implementation in certain situations. But isn't that a case of premature design? It could be turned into a class later, when/if it becomes appropriate. Am I getting this wrong? Is it not OOP if I don't put everything into objects (i.e. instantiated classes)? Then why are there so many utility namespaces and classes in the standard libraries of C++ and Java? Update: I've certainly seen a lot examples of this in my previous jobs, but I'm struggling to find open source examples, so maybe it's not that common after all. Still, I'm wondering why people do it, and how common it is.

    Read the article

  • Passing variables, creating instances, self, The mechanics and usage of classes: need explenation

    - by Baf
    I've been sitting over this the whole day and Im a little tired already so please excuse me being brief. Im new to python. I just rewrrote a working program, into a bunch of functions in a class and everzthings messed up. I dont know if its me but Im very surprised i couldn t find a beginners tutorial on how to handle classes on the web so I have a few questions. First of all, in the init section of the class i have declared a bunch of variables with self.variable=something. Is it correct that i should be able to access/modify these variables in every function of the class by using self.variable in that function? In other words by declaring self.variable i have made these variables, global variables in the scope of the class right? If not how do i handle self. ? Secondly how do i correctly pass arguments to the class? some example code would be cool. thirdly how do i call a function of the class outside of the class scope? some example code would be cool. fouthly how do I create an Instance of the class INITIALCLASS in another class OTHERCLASS, passing variables from OTHERCLASS to INITIALCLASS? some example code would be cool. I Want to call a function from OTHERCLASS with arguments from INITIALCLASS. What Ive done so far is. class OTHERCLASS(): def __init__(self,variable1,variable2,variable3): self.variable1=variable1 self.variable2=variable2 self.variable3=variable3 def someotherfunction(self): something=somecode(using self.variable3) self.variable2.append(something) print self.variable2 def somemorefunctions(self): self.variable2.append(variable1) class INITIALCLASS(): def __init__(self): self.variable1=value1 self.variable2=[] self.variable3='' self.DoIt=OTHERCLASS(variable1,variable2,variable3) def somefunction(self): variable3=Somecode #tried this self.DoIt.someotherfunctions() #and this DoIt.someotherfunctions() I clearly havent understood how to pass variables to classes or how to handle self, when to use it and when not, I probably also havent understood how to properly create an isntance of a class. In general i havent udnerstood the mechanics of classes So please help me and explain it to me like i have no Idea( which i dont it seems). Or point me to a thorough video, or readable tutorial. All i find on the web is super simple examples, that didnt help me much. Or just very short definitions of classes and class methods instances etc. I can send you my original code if you guys want, but its quite long. Thanks for the Help Much appreciated!

    Read the article

< Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >