Search Results

Search found 63641 results on 2546 pages for 'visual studio team system'.

Page 520/2546 | < Previous Page | 516 517 518 519 520 521 522 523 524 525 526 527  | Next Page >

  • As a team should we develop locally and merge into the dev server, or develop on the dev server?

    - by CogitoErgoSum
    Hey, Recently I was tasked with writing up formal procedures for a team based development enviroment. We have several projects with multiple modules each. Right now there are only two programmers, however there are plans to expand to 4-6 programmers. Each programmer will be working on the same project and possibly pages which may cause over writing or error issues. So far the ideal solution I have thought up is: Local development (WAMP/VM or some virtual server instance on their own machine). Once a developer has finished their developments, they check it into the CVS Repository and merge it wih other fixes etc. The CVS version is then deployed to the primary dev server for testing by the devs. The MySQL DAtabases are kept on the primary dev server and users may remotely connect to it. Any Schema / Data alterations are run through a DB Admin who will notify all devs of any DB Changes (Which should be rare). Does anyone see an issue with this or have a better solution?

    Read the article

  • Should we be giving the client's management team direct access to our git hub repository so that the

    - by SharePoint Newbie
    Hi, We are presently working for a client who is new to working with distributed teams. We have teams spread across India and the UK. Although we have decent project tracking tools (Mingle), would it be a good idea to the give the PM at the client access to our git hub repo. Would this be make it easier for them (see what the devs are working on and an insight into what the team has been developing). I agree that noot all commit messages would make sense to them but would this be a good way to boost their confidence in what we are doing? They already can check out our fortnightly releases on our QA and UA environments, but this still is behind dev by 5-6 days. Also, is there any reporting for git hub which makes it easier for PM types to make sense of it all? Thanks

    Read the article

  • Can we execute methods / code in XCcode just like in Visual Studio?

    - by balexandre
    Visual Studio is one of the best developer IDE of all times, and now was improved with multithreading debugging and much more. My question is regarding Xcode and the ability to execute code just like we do in Visual Studio. Let's assume an object in a view and I want to run, let's say: [pickerView setHidden:YES]; in a breakpoint just to see if in that break point I could actually hide the object. I can't find any place for this in the XCode Debugger Am I missing something or I can't execute code that is not in the files already? like in Visual Studio Watch List or Immediate Window

    Read the article

  • Can we execute methods / code in XCode just like in Visual Studio?

    - by balexandre
    Visual Studio is one of the best developer IDE of all times, and now was improved with multithreading debugging and much more. My question is regarding XCode and the ability to execute code just like we do in Visual Studio. Let's assume an object in a view and I want to run, let's say: [pickerView setHidden:YES]; in a breakpoint just to see if in that break point I could actually hide the object. I can't find any place for this in the XCode Debugger Am I missing something or I can't execute code that is not in the files already? like in Visual Studio Watch List or Immediate Window

    Read the article

  • SimpleMembership, Membership Providers, Universal Providers and the new ASP.NET 4.5 Web Forms and ASP.NET MVC 4 templates

    - by Jon Galloway
    The ASP.NET MVC 4 Internet template adds some new, very useful features which are built on top of SimpleMembership. These changes add some great features, like a much simpler and extensible membership API and support for OAuth. However, the new account management features require SimpleMembership and won't work against existing ASP.NET Membership Providers. I'll start with a summary of top things you need to know, then dig into a lot more detail. Summary: SimpleMembership has been designed as a replacement for traditional the previous ASP.NET Role and Membership provider system SimpleMembership solves common problems people ran into with the Membership provider system and was designed for modern user / membership / storage needs SimpleMembership integrates with the previous membership system, but you can't use a MembershipProvider with SimpleMembership The new ASP.NET MVC 4 Internet application template AccountController requires SimpleMembership and is not compatible with previous MembershipProviders You can continue to use existing ASP.NET Role and Membership providers in ASP.NET 4.5 and ASP.NET MVC 4 - just not with the ASP.NET MVC 4 AccountController The existing ASP.NET Role and Membership provider system remains supported as is part of the ASP.NET core ASP.NET 4.5 Web Forms does not use SimpleMembership; it implements OAuth on top of ASP.NET Membership The ASP.NET Web Site Administration Tool (WSAT) is not compatible with SimpleMembership The following is the result of a few conversations with Erik Porter (PM for ASP.NET MVC) to make sure I had some the overall details straight, combined with a lot of time digging around in ILSpy and Visual Studio's assembly browsing tools. SimpleMembership: The future of membership for ASP.NET The ASP.NET Membership system was introduces with ASP.NET 2.0 back in 2005. It was designed to solve common site membership requirements at the time, which generally involved username / password based registration and profile storage in SQL Server. It was designed with a few extensibility mechanisms - notably a provider system (which allowed you override some specifics like backing storage) and the ability to store additional profile information (although the additional  profile information was packed into a single column which usually required access through the API). While it's sometimes frustrating to work with, it's held up for seven years - probably since it handles the main use case (username / password based membership in a SQL Server database) smoothly and can be adapted to most other needs (again, often frustrating, but it can work). The ASP.NET Web Pages and WebMatrix efforts allowed the team an opportunity to take a new look at a lot of things - e.g. the Razor syntax started with ASP.NET Web Pages, not ASP.NET MVC. The ASP.NET Web Pages team designed SimpleMembership to (wait for it) simplify the task of dealing with membership. As Matthew Osborn said in his post Using SimpleMembership With ASP.NET WebPages: With the introduction of ASP.NET WebPages and the WebMatrix stack our team has really be focusing on making things simpler for the developer. Based on a lot of customer feedback one of the areas that we wanted to improve was the built in security in ASP.NET. So with this release we took that time to create a new built in (and default for ASP.NET WebPages) security provider. I say provider because the new stuff is still built on the existing ASP.NET framework. So what do we call this new hotness that we have created? Well, none other than SimpleMembership. SimpleMembership is an umbrella term for both SimpleMembership and SimpleRoles. Part of simplifying membership involved fixing some common problems with ASP.NET Membership. Problems with ASP.NET Membership ASP.NET Membership was very obviously designed around a set of assumptions: Users and user information would most likely be stored in a full SQL Server database or in Active Directory User and profile information would be optimized around a set of common attributes (UserName, Password, IsApproved, CreationDate, Comment, Role membership...) and other user profile information would be accessed through a profile provider Some problems fall out of these assumptions. Requires Full SQL Server for default cases The default, and most fully featured providers ASP.NET Membership providers (SQL Membership Provider, SQL Role Provider, SQL Profile Provider) require full SQL Server. They depend on stored procedure support, and they rely on SQL Server cache dependencies, they depend on agents for clean up and maintenance. So the main SQL Server based providers don't work well on SQL Server CE, won't work out of the box on SQL Azure, etc. Note: Cory Fowler recently let me know about these Updated ASP.net scripts for use with Microsoft SQL Azure which do support membership, personalization, profile, and roles. But the fact that we need a support page with a set of separate SQL scripts underscores the underlying problem. Aha, you say! Jon's forgetting the Universal Providers, a.k.a. System.Web.Providers! Hold on a bit, we'll get to those... Custom Membership Providers have to work with a SQL-Server-centric API If you want to work with another database or other membership storage system, you need to to inherit from the provider base classes and override a bunch of methods which are tightly focused on storing a MembershipUser in a relational database. It can be done (and you can often find pretty good ones that have already been written), but it's a good amount of work and often leaves you with ugly code that has a bunch of System.NotImplementedException fun since there are a lot of methods that just don't apply. Designed around a specific view of users, roles and profiles The existing providers are focused on traditional membership - a user has a username and a password, some specific roles on the site (e.g. administrator, premium user), and may have some additional "nice to have" optional information that can be accessed via an API in your application. This doesn't fit well with some modern usage patterns: In OAuth and OpenID, the user doesn't have a password Often these kinds of scenarios map better to user claims or rights instead of monolithic user roles For many sites, profile or other non-traditional information is very important and needs to come from somewhere other than an API call that maps to a database blob What would work a lot better here is a system in which you were able to define your users, rights, and other attributes however you wanted and the membership system worked with your model - not the other way around. Requires specific schema, overflow in blob columns I've already mentioned this a few times, but it bears calling out separately - ASP.NET Membership focuses on SQL Server storage, and that storage is based on a very specific database schema. SimpleMembership as a better membership system As you might have guessed, SimpleMembership was designed to address the above problems. Works with your Schema As Matthew Osborn explains in his Using SimpleMembership With ASP.NET WebPages post, SimpleMembership is designed to integrate with your database schema: All SimpleMembership requires is that there are two columns on your users table so that we can hook up to it – an “ID” column and a “username” column. The important part here is that they can be named whatever you want. For instance username doesn't have to be an alias it could be an email column you just have to tell SimpleMembership to treat that as the “username” used to log in. Matthew's example shows using a very simple user table named Users (it could be named anything) with a UserID and Username column, then a bunch of other columns he wanted in his app. Then we point SimpleMemberhip at that table with a one-liner: WebSecurity.InitializeDatabaseFile("SecurityDemo.sdf", "Users", "UserID", "Username", true); No other tables are needed, the table can be named anything we want, and can have pretty much any schema we want as long as we've got an ID and something that we can map to a username. Broaden database support to the whole SQL Server family While SimpleMembership is not database agnostic, it works across the SQL Server family. It continues to support full SQL Server, but it also works with SQL Azure, SQL Server CE, SQL Server Express, and LocalDB. Everything's implemented as SQL calls rather than requiring stored procedures, views, agents, and change notifications. Note that SimpleMembership still requires some flavor of SQL Server - it won't work with MySQL, NoSQL databases, etc. You can take a look at the code in WebMatrix.WebData.dll using a tool like ILSpy if you'd like to see why - there places where SQL Server specific SQL statements are being executed, especially when creating and initializing tables. It seems like you might be able to work with another database if you created the tables separately, but I haven't tried it and it's not supported at this point. Note: I'm thinking it would be possible for SimpleMembership (or something compatible) to run Entity Framework so it would work with any database EF supports. That seems useful to me - thoughts? Note: SimpleMembership has the same database support - anything in the SQL Server family - that Universal Providers brings to the ASP.NET Membership system. Easy to with Entity Framework Code First The problem with with ASP.NET Membership's system for storing additional account information is that it's the gate keeper. That means you're stuck with its schema and accessing profile information through its API. SimpleMembership flips that around by allowing you to use any table as a user store. That means you're in control of the user profile information, and you can access it however you'd like - it's just data. Let's look at a practical based on the AccountModel.cs class in an ASP.NET MVC 4 Internet project. Here I'm adding a Birthday property to the UserProfile class. [Table("UserProfile")] public class UserProfile { [Key] [DatabaseGeneratedAttribute(DatabaseGeneratedOption.Identity)] public int UserId { get; set; } public string UserName { get; set; } public DateTime Birthday { get; set; } } Now if I want to access that information, I can just grab the account by username and read the value. var context = new UsersContext(); var username = User.Identity.Name; var user = context.UserProfiles.SingleOrDefault(u => u.UserName == username); var birthday = user.Birthday; So instead of thinking of SimpleMembership as a big membership API, think of it as something that handles membership based on your user database. In SimpleMembership, everything's keyed off a user row in a table you define rather than a bunch of entries in membership tables that were out of your control. How SimpleMembership integrates with ASP.NET Membership Okay, enough sales pitch (and hopefully background) on why things have changed. How does this affect you? Let's start with a diagram to show the relationship (note: I've simplified by removing a few classes to show the important relationships): So SimpleMembershipProvider is an implementaiton of an ExtendedMembershipProvider, which inherits from MembershipProvider and adds some other account / OAuth related things. Here's what ExtendedMembershipProvider adds to MembershipProvider: The important thing to take away here is that a SimpleMembershipProvider is a MembershipProvider, but a MembershipProvider is not a SimpleMembershipProvider. This distinction is important in practice: you cannot use an existing MembershipProvider (including the Universal Providers found in System.Web.Providers) with an API that requires a SimpleMembershipProvider, including any of the calls in WebMatrix.WebData.WebSecurity or Microsoft.Web.WebPages.OAuth.OAuthWebSecurity. However, that's as far as it goes. Membership Providers still work if you're accessing them through the standard Membership API, and all of the core stuff  - including the AuthorizeAttribute, role enforcement, etc. - will work just fine and without any change. Let's look at how that affects you in terms of the new templates. Membership in the ASP.NET MVC 4 project templates ASP.NET MVC 4 offers six Project Templates: Empty - Really empty, just the assemblies, folder structure and a tiny bit of basic configuration. Basic - Like Empty, but with a bit of UI preconfigured (css / images / bundling). Internet - This has both a Home and Account controller and associated views. The Account Controller supports registration and login via either local accounts and via OAuth / OpenID providers. Intranet - Like the Internet template, but it's preconfigured for Windows Authentication. Mobile - This is preconfigured using jQuery Mobile and is intended for mobile-only sites. Web API - This is preconfigured for a service backend built on ASP.NET Web API. Out of these templates, only one (the Internet template) uses SimpleMembership. ASP.NET MVC 4 Basic template The Basic template has configuration in place to use ASP.NET Membership with the Universal Providers. You can see that configuration in the ASP.NET MVC 4 Basic template's web.config: <profile defaultProvider="DefaultProfileProvider"> <providers> <add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </profile> <membership defaultProvider="DefaultMembershipProvider"> <providers> <add name="DefaultMembershipProvider" type="System.Web.Providers.DefaultMembershipProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <roleManager defaultProvider="DefaultRoleProvider"> <providers> <add name="DefaultRoleProvider" type="System.Web.Providers.DefaultRoleProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" applicationName="/" /> </providers> </roleManager> <sessionState mode="InProc" customProvider="DefaultSessionProvider"> <providers> <add name="DefaultSessionProvider" type="System.Web.Providers.DefaultSessionStateProvider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" connectionStringName="DefaultConnection" /> </providers> </sessionState> This means that it's business as usual for the Basic template as far as ASP.NET Membership works. ASP.NET MVC 4 Internet template The Internet template has a few things set up to bootstrap SimpleMembership: \Models\AccountModels.cs defines a basic user account and includes data annotations to define keys and such \Filters\InitializeSimpleMembershipAttribute.cs creates the membership database using the above model, then calls WebSecurity.InitializeDatabaseConnection which verifies that the underlying tables are in place and marks initialization as complete (for the application's lifetime) \Controllers\AccountController.cs makes heavy use of OAuthWebSecurity (for OAuth account registration / login / management) and WebSecurity. WebSecurity provides account management services for ASP.NET MVC (and Web Pages) WebSecurity can work with any ExtendedMembershipProvider. There's one in the box (SimpleMembershipProvider) but you can write your own. Since a standard MembershipProvider is not an ExtendedMembershipProvider, WebSecurity will throw exceptions if the default membership provider is a MembershipProvider rather than an ExtendedMembershipProvider. Practical example: Create a new ASP.NET MVC 4 application using the Internet application template Install the Microsoft ASP.NET Universal Providers for LocalDB NuGet package Run the application, click on Register, add a username and password, and click submit You'll get the following execption in AccountController.cs::Register: To call this method, the "Membership.Provider" property must be an instance of "ExtendedMembershipProvider". This occurs because the ASP.NET Universal Providers packages include a web.config transform that will update your web.config to add the Universal Provider configuration I showed in the Basic template example above. When WebSecurity tries to use the configured ASP.NET Membership Provider, it checks if it can be cast to an ExtendedMembershipProvider before doing anything else. So, what do you do? Options: If you want to use the new AccountController, you'll either need to use the SimpleMembershipProvider or another valid ExtendedMembershipProvider. This is pretty straightforward. If you want to use an existing ASP.NET Membership Provider in ASP.NET MVC 4, you can't use the new AccountController. You can do a few things: Replace  the AccountController.cs and AccountModels.cs in an ASP.NET MVC 4 Internet project with one from an ASP.NET MVC 3 application (you of course won't have OAuth support). Then, if you want, you can go through and remove other things that were built around SimpleMembership - the OAuth partial view, the NuGet packages (e.g. the DotNetOpenAuthAuth package, etc.) Use an ASP.NET MVC 4 Internet application template and add in a Universal Providers NuGet package. Then copy in the AccountController and AccountModel classes. Create an ASP.NET MVC 3 project and upgrade it to ASP.NET MVC 4 using the steps shown in the ASP.NET MVC 4 release notes. None of these are particularly elegant or simple. Maybe we (or just me?) can do something to make this simpler - perhaps a NuGet package. However, this should be an edge case - hopefully the cases where you'd need to create a new ASP.NET but use legacy ASP.NET Membership Providers should be pretty rare. Please let me (or, preferably the team) know if that's an incorrect assumption. Membership in the ASP.NET 4.5 project template ASP.NET 4.5 Web Forms took a different approach which builds off ASP.NET Membership. Instead of using the WebMatrix security assemblies, Web Forms uses Microsoft.AspNet.Membership.OpenAuth assembly. I'm no expert on this, but from a bit of time in ILSpy and Visual Studio's (very pretty) dependency graphs, this uses a Membership Adapter to save OAuth data into an EF managed database while still running on top of ASP.NET Membership. Note: There may be a way to use this in ASP.NET MVC 4, although it would probably take some plumbing work to hook it up. How does this fit in with Universal Providers (System.Web.Providers)? Just to summarize: Universal Providers are intended for cases where you have an existing ASP.NET Membership Provider and you want to use it with another SQL Server database backend (other than SQL Server). It doesn't require agents to handle expired session cleanup and other background tasks, it piggybacks these tasks on other calls. Universal Providers are not really, strictly speaking, universal - at least to my way of thinking. They only work with databases in the SQL Server family. Universal Providers do not work with Simple Membership. The Universal Providers packages include some web config transforms which you would normally want when you're using them. What about the Web Site Administration Tool? Visual Studio includes tooling to launch the Web Site Administration Tool (WSAT) to configure users and roles in your application. WSAT is built to work with ASP.NET Membership, and is not compatible with Simple Membership. There are two main options there: Use the WebSecurity and OAuthWebSecurity API to manage the users and roles Create a web admin using the above APIs Since SimpleMembership runs on top of your database, you can update your users as you would any other data - via EF or even in direct database edits (in development, of course)

    Read the article

  • WCF REST on .Net 4.0

    - by AngelEyes
    A simple and straight forward article taken from: http://christopherdeweese.com/blog2/post/drop-the-soap-wcf-rest-and-pretty-uris-in-net-4 Drop the Soap: WCF, REST, and Pretty URIs in .NET 4 Years ago I was working in libraries when the Web 2.0 revolution began.  One of the things that caught my attention about early start-ups using the AJAX/REST/Web 2.0 model was how nice the URIs were for their applications.  Those were my first impressions of REST; pretty URIs.  Turns out there is a little more to it than that. REST is an architectural style that focuses on resources and structured ways to access those resources via the web.  REST evolved as an “anti-SOAP” movement, driven by developers who did not want to deal with all the complexity SOAP introduces (which is al lot when you don’t have frameworks hiding it all).  One of the biggest benefits to REST is that browsers can talk to rest services directly because REST works using URIs, QueryStrings, Cookies, SSL, and all those HTTP verbs that we don’t have to think about anymore. If you are familiar with ASP.NET MVC then you have been exposed to rest at some level.  MVC is relies heavily on routing to generate consistent and clean URIs.  REST for WCF gives you the same type of feel for your services.  Let’s dive in. WCF REST in .NET 3.5 SP1 and .NET 4 This post will cover WCF REST in .NET 4 which drew heavily from the REST Starter Kit and community feedback.  There is basic REST support in .NET 3.5 SP1 and you can also grab the REST Starter Kit to enable some of the features you’ll find in .NET 4. This post will cover REST in .NET 4 and Visual Studio 2010. Getting Started To get started we’ll create a basic WCF Rest Service Application using the new on-line templates option in VS 2010: When you first install a template you are prompted with this dialog: Dude Where’s my .Svc File? The WCF REST template shows us the new way we can simply build services.  Before we talk about what’s there, let’s look at what is not there: The .Svc File An Interface Contract Dozens of lines of configuration that you have to change to make your service work REST in .NET 4 is greatly simplified and leverages the Web Routing capabilities used in ASP.NET MVC and other parts of the web frameworks.  With REST in .NET 4 you use a global.asax to set the route to your service using the new ServiceRoute class.  From there, the WCF runtime handles dispatching service calls to the methods based on the Uri Templates. global.asax using System; using System.ServiceModel.Activation; using System.Web; using System.Web.Routing; namespace Blog.WcfRest.TimeService {     public class Global : HttpApplication     {         void Application_Start(object sender, EventArgs e)         {             RegisterRoutes();         }         private static void RegisterRoutes()         {             RouteTable.Routes.Add(new ServiceRoute("TimeService",                 new WebServiceHostFactory(), typeof(TimeService)));         }     } } The web.config contains some new structures to support a configuration free deployment.  Note that this is the default config generated with the template.  I did not make any changes to web.config. web.config <?xml version="1.0"?> <configuration>   <system.web>     <compilation debug="true" targetFramework="4.0" />   </system.web>   <system.webServer>     <modules runAllManagedModulesForAllRequests="true">       <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,            System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />     </modules>   </system.webServer>   <system.serviceModel>     <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>     <standardEndpoints>       <webHttpEndpoint>         <!--             Configure the WCF REST service base address via the global.asax.cs file and the default endpoint             via the attributes on the <standardEndpoint> element below         -->         <standardEndpoint name="" helpEnabled="true" automaticFormatSelectionEnabled="true"/>       </webHttpEndpoint>     </standardEndpoints>   </system.serviceModel> </configuration> Building the Time Service We’ll create a simple “TimeService” that will return the current time.  Let’s start with the following code: using System; using System.ServiceModel; using System.ServiceModel.Activation; using System.ServiceModel.Web; namespace Blog.WcfRest.TimeService {     [ServiceContract]     [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]     [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]     public class TimeService     {         [WebGet(UriTemplate = "CurrentTime")]         public string CurrentTime()         {             return DateTime.Now.ToString();         }     } } The endpoint for this service will be http://[machinename]:[port]/TimeService.  To get the current time http://[machinename]:[port]/TimeService/CurrentTime will do the trick. The Results Are In Remember That Route In global.asax? Turns out it is pretty important.  When you set the route name, that defines the resource name starting after the host portion of the Uri. Help Pages in WCF 4 Another feature that came from the starter kit are the help pages.  To access the help pages simply append Help to the end of the service’s base Uri. Dropping the Soap Having dabbled with REST in the past and after using Soap for the last few years, the WCF 4 REST support is certainly refreshing.  I’m currently working on some REST implementations in .NET 3.5 and VS 2008 and am looking forward to working on REST in .NET 4 and VS 2010.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Think Centre 71, Ubuntu 12 ... Error 1962: No operating system found

    - by johnboy7
    Brought a new Think Centre Edge 71 because The Lenovo ThinkCentre Edge71 desktop has been awarded the status of Certified for Ubuntu. Source. Spent the the past 2 days trying to get *any*Ubuntu 12.04 64bit to install and boot. All give me the same answer: Error 1962: No operating system found Here are a few of the links I've tried: Just installed Ubuntu 12.04. When booting, all I get is a black screen with cursor. Some of the links report to solve the problem. None have worked. http://ubuntuforums.org/showthread.php?t=1901748 Is there a relative simple way to install and boot Ubuntu 12.04 64bit on a Think Centre Edge 71?? I mean it is Certified for Ubuntu?

    Read the article

  • Microsoft TypeScript : A Typed Superset of JavaScript

    - by shiju
    JavaScript is gradually becoming a ubiquitous programming language for the web, and the popularity of JavaScript is increasing day by day. Earlier, JavaScript was just a language for browser. But now, we can write JavaScript apps for browser, server and mobile. With the advent of Node.js, you can build scalable, high performance apps on the server with JavaScript. But many developers, especially developers who are working with static type languages, are hating the JavaScript language due to the lack of structuring and the maintainability problems of JavaScript. Microsoft TypeScript is trying to solve some problems of JavaScript when we are building scalable JavaScript apps. Microsoft TypeScript TypeScript is Microsoft's solution for writing scalable JavaScript programs with the help of Static Types, Interfaces, Modules and Classes along with greater tooling support. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. This would be more productive for developers who are coming from static type languages. You can write scalable JavaScript  apps in TypeScript with more productive and more maintainable manner, and later you can compiles to plain JavaScript which will be run on any browser and any OS. TypeScript will work with browser based JavaScript apps and JavaScript apps that following CommonJS specification. You can use TypeScript for building HTML 5 apps, Node.JS apps, WinRT apps. TypeScript is providing better tooling support with Visual Studio, Sublime Text, Vi, Emacs. Microsoft has open sourced its TypeScript languages on CodePlex at http://typescript.codeplex.com/    Install TypeScript You can install TypeScript compiler as a Node.js package via the NPM or you can install as a Visual Studio 2012 plug-in which will enable you better tooling support within the Visual Studio IDE. Since TypeScript is distributed as a Node.JS package, and it can be installed on other OS such as Linux and MacOS. The following command will install TypeScript compiler via an npm package for node.js npm install –g typescript TypeScript provides a Visual Studio 2012 plug-in as MSI file which will install TypeScript and also provides great tooling support within the Visual Studio, that lets the developers to write TypeScript apps with greater productivity and better maintainability. You can download the Visual Studio plug-in from here Building JavaScript  apps with TypeScript You can write typed version of JavaScript programs with TypeScript and then compiles it to plain JavaScript code. The beauty of the TypeScript is that it is already JavaScript and normal JavaScript programs are valid TypeScript programs, which means that you can write normal  JavaScript code and can use typed version of JavaScript whenever you want. TypeScript files are using extension .ts and this will be compiled using a compiler named tsc. The following is a sample program written in  TypeScript greeter.ts 1: class Greeter { 2: greeting: string; 3: constructor (message: string) { 4: this.greeting = message; 5: } 6: greet() { 7: return "Hello, " + this.greeting; 8: } 9: } 10:   11: var greeter = new Greeter("world"); 12:   13: var button = document.createElement('button') 14: button.innerText = "Say Hello" 15: button.onclick = function() { 16: alert(greeter.greet()) 17: } 18:   19: document.body.appendChild(button) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above program is compiling with the TypeScript compiler as shown in the below picture The TypeScript compiler will generate a JavaScript file after compiling the TypeScript program. If your TypeScript programs having any reference to other TypeScript files, it will automatically generate JavaScript files for the each referenced files. The following code block shows the compiled version of plain JavaScript  for the above greeter.ts greeter.js 1: var Greeter = (function () { 2: function Greeter(message) { 3: this.greeting = message; 4: } 5: Greeter.prototype.greet = function () { 6: return "Hello, " + this.greeting; 7: }; 8: return Greeter; 9: })(); 10: var greeter = new Greeter("world"); 11: var button = document.createElement('button'); 12: button.innerText = "Say Hello"; 13: button.onclick = function () { 14: alert(greeter.greet()); 15: }; 16: document.body.appendChild(button); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Tooling Support with Visual Studio TypeScript is providing a plug-in for Visual Studio which will provide an excellent support for writing TypeScript  programs within the Visual Studio. The following screen shot shows the Visual Studio template for TypeScript apps   The following are the few screen shots of Visual Studio IDE for TypeScript apps. Summary TypeScript is Microsoft's solution for writing scalable JavaScript apps which will solve lot of problems involved in larger JavaScript apps. I hope that this solution will attract lot of developers who are really looking for writing maintainable structured code in JavaScript, without losing any productivity. TypeScript lets developers to write JavaScript apps with the help of Static Types, Interfaces, Modules and Classes and also providing better productivity. I am a passionate developer on Node.JS and would definitely try to use TypeScript for building Node.JS apps on the Windows Azure cloud. I am really excited about to writing Node.JS apps by using TypeScript, from my favorite development IDE Visual Studio. You can follow me on twitter at @shijucv

    Read the article

  • Agile Awakenings and the Rules of Agile

    - by Robert May
    For those that care, you can read my history of management and technology to understand why I think I’m qualified to talk about this at all.  It’s boring, so feel free to skip it. Awakenings I first started to play around with the idea of “agile” in 2004 or 2005.  I found a book on the Rational Unified Process that I thought was good, and attempted to implement parts of it.  I thought I was agile, but really, it wasn’t.   I still didn’t understand the concept of a team.  I still wanted to tell the team what to do and how to get it done.  I still thought I was smarter than the team. After that job, I started work on another project and began helping that team.  The first few months were really rough.  We were implementing Scrum, which was relatively new to everyone on the team, and, quite frankly, I was doing a poor job of it.  I was trying to micro-manage every aspect of the teams work, and we were all miserable. The moment of change came when the senior architect bailed on the project.  His comment to me was: “This isn’t Agile.  Where are the stand-ups?  Where are the stories?”  He was dead on, and I finally woke up.  I finally realized that I was the problem!  I wasn’t trusting the team.  I wasn’t helping the team.  I was being a manager. Like many (most?), I was claiming to be Agile and use Scrum, but I wasn’t in fact following the rules Scrum.  Since then, I’ve done a lot of studying, hands on practice, coaching of many different teams, and other learning around Scrum, and I have discovered that Scrum has some rules that must be followed for success, even though the process is about continuous improvement. I’ve been practicing Scrum right for about 4 years now and have helped multiple teams implement it successfully, so what you’re about to get is based on experience, rather than just theory. The Rules of Scrum In my experience, what I’ve found is that most companies that claim to be doing Scrum or Agile are actually NOT doing either.  This stems largely because they think that they can “adopt the rules of Agile that fit their organization.”  Sadly, many of them think that this means they can adopt iterations (sprints) and not much else.  Either that, or they think they can do whatever they want, or were doing before, and call it Scrum.  This is simply not true. Here are some rules that must be followed for you to really be doing Scrum.  I’ll go into detail on each one of these posts in future blog posts and update links here.  My intent is that this will help other teams implementing scrum to see more success. Agile does not allow you to do whatever you want A Product Owner is required A ScrumMaster is required The team must function as a Team, and QA must be part of the team Support from upper management is required A prioritized product backlog is required A prioritized sprint backlog is required Release planning is required Complete spring planning is required Showcases are required Velocity must be measured Retrospectives are required Daily stand-ups are required Visibility is absolutely required For now, I think that’s enough, although I reserve the right to add more.  If you’re breaking any of these rules, you’re probably not doing Scrum.  There are exceptions to these rules, but until you have practiced Scrum for a while, you don’t know what those exceptions are. Breaking the Rules Many teams break these rules because they are the ones that expose the most pain.  Scrum is not Advil.  It’s not intended to mask the pain, its intended to cure it.  Let me explain that analogy a bit more.  Recently, my 7 year old son broke his arm, quite severely (see the X-Ray to the right).  That caused him a great deal of pain.  We went first to one doctor, and after viewing the X-Ray, they determined that there was no way that they’d cast the arm at their location.  It was simply too bad of a break for them to deal with.  They did, however, give him some Advil for the pain and put a splint on his arm to stabilize the broken bones.  Within minutes, he was feeling much better.  Had we been stupid, we could have gone home and he’d have been just as happy as ever . . . until the pain medication wore off or one of his siblings touched the splint.  Then, all of that pain would come right back to the top.  Sure, he could make it go away by just taking more Advil and moving the splint out of the way, but that wasn’t going to fix the problem permanently. We ended up in an emergency room with a doctor who could fix his arm.  However, we were warned that the fix was going to be VERY painful, and it was.  Even with heavy sedation (Propofol), my son was in enough pain that he squirmed and wiggled trying to get his arm away from the doctor.  He had to endure this pain in order to have a functional arm. But the setting wasn’t the end.  He had to have several casts, had to have it re-broken once, since the first setting didn’t take and finally was given a clean bill of health. Agile implementation is much like this story.  Agile was developed as a result of people recognizing that the development methodologies that were currently in place simply were ineffective.  However, the fix to the broken development that’s been festering for many years is not painless.  Many people start Agile thinking that things will be wonderful.  They won’t!  Agile is about visibility, and often, it brings great pain to surface.  It causes all of the missed deadlines, the cowboy coders, the coasters, the micro-managers, the lazy, and all of the other problems that are really part of your development process now to become painfully visible to EVERYONE.  Many people don’t like this exposure.  Agile will make the pain better, but not if you remove the cast (the rules above) prematurely and start breaking the rules that expose the most pain.  The healing will take time and is not instant (like Advil).  Figuring out what the true source of pain and fixing it is very valuable to you, your team, and your company.  Remember as you’re doing this that Agile isn’t the source of the pain, it’s really just exposing it.  Find the source. My recommendation is that ALL of these rules are followed for a minimum of six months, and preferably for an entire year, before you decide to break any of these rules.  Get a few good releases under your belt.  Figure out what your velocity is and start firing as a team.  Chances are, after you see agile really in action, you won’t want to break the rules because you’ll see their value. More Reading Jean Tabaka recently published a list of 78 Things I Have Learned in 6 Years of Agile Coaching.  Highly recommended. Technorati Tags: Agile,Scrum,Rules

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET Chart Control - During a PostBack

    - by Guilherme Cardoso
    To use the Chart control from a PostBack is necessary to modify the ChartImg.axd HttpHandler, otherwise we'll get the error message: Error executing child request for ChartImg.axd In Web.Config search the line: <add path = "ChartImg.axd" verb = "GET,HEAD" type = "System.Web.UI.DataVisualization.Charting.ChartHttpHandler, System.Web.DataVisualization, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" <Add path = "ChartImg.axd" verb = "GET, HEAD" type = "System.Web.UI.DataVisualization.Charting.ChartHttpHandler, System.Web.DataVisualization, Version = 3.5.0.0, Culture = neutral, PublicKeyToken = 31bf3856ad364e35 " validate = "false" /> Validate = "false" />   Change to: <add path = "ChartImg.axd" verb = "GET,HEAD,POST" type = "System.Web.UI.DataVisualization.Charting.ChartHttpHandler, System.Web.DataVisualization, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" <Add path = "ChartImg.axd" verb = "GET, HEAD, POST" type = "System.Web.UI.DataVisualization.Charting.ChartHttpHandler, System.Web.DataVisualization, Version = 3.5.0.0, Culture = Neutral, PublicKeyToken = 31bf3856ad364e35 " validate = "false" /> validate = "false" /> The attribute that we are adding is the Post.  For those not familiar with this control is very useful for creating graphics. You can see more information here .

    Read the article

  • "Loading operating system... boot error" when booting from live CD

    - by jeremy
    I'm having a problem installing Ubuntu 12.10 on a new drive. I was running Windows7 on my SSD but when the drive crashed, I decided to use that as an excuse to make the switch to Ubuntu. I've been experimenting with it on my old laptop until I got my SSD replaced under warranty. Now I have my SSD back and want to install Ubuntu on my desktop machine. I used UNetbootin to make a bootable flash drive. I then I went into my BIOS and made sure USB loaded before the hard drive. However, when I try to load it I get an error that says: Loading operating system ... boot error I know the flash drive works because if I reboot my laptop or my other Windows PC with the flash drive and it loads into Ubuntu...just when I try to do it in the PC with no OS currently on the drive.

    Read the article

  • Creating an HttpHandler to handle request of your own extension

    - by Jalpesh P. Vadgama
    I have already posted about http handler in details before some time here. Now let’s create an http handler which will handle my custom extension. For that we need to create a http handlers class which will implement Ihttphandler. As we are implementing IHttpHandler we need to implement one method called process request and another one is isReusable property. The process request function will handle all the request of my custom extension. so Here is the code for my http handler class. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; namespace Experiement { public class MyExtensionHandler:IHttpHandler { public MyExtensionHandler() { //Implement intialization here } bool IHttpHandler.IsReusable { get { return true; } } void IHttpHandler.ProcessRequest(HttpContext context) { string excuttablepath = context.Request.AppRelativeCurrentExecutionFilePath; if (excuttablepath.Contains("HelloWorld.dotnetjalps")) { Page page = new HelloWorld(); page.AppRelativeVirtualPath = context.Request.AppRelativeCurrentExecutionFilePath; page.ProcessRequest(context); } } } } Here in above code you can see that in process request function I am getting current executable path and then I am processing that page. Now Lets create a page with extension .dotnetjalps and then we will process this page with above created http handler. so let’s create it. It will create a page like following. Now let’s write some thing in page load Event like following. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; namespace Experiement { public partial class HelloWorld : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World"); } } } Now we have to tell our web server that we want to process request from this .dotnetjalps extension through our custom http handler for that we need to add a tag in httphandler sections of web.config like following. <configuration> <system.web> <compilation debug="true" targetFramework="4.0" /> <httpHandlers> <add verb="*" path="*.dotnetjalps" type="Experiement.MyExtensionHandler,Experiement"/> </httpHandlers> </system.web> </configuration> That’s it now run that page into browser and it will execute like following in browser That’s you.. Isn’t it cool.. Stay tuned for more.. Happy programming.. Technorati Tags: HttpHandler,ASP.NET,Extension

    Read the article

  • What is the difference between String and string in C#

    - by SAMIR BHOGAYTA
    string : ------ The string type represents a sequence of zero or more Unicode characters. string is an alias for String in the .NET Framework. 'string' is the intrinsic C# datatype, and is an alias for the system provided type "System.String". The C# specification states that as a matter of style the keyword ('string') is preferred over the full system type name (System.String, or String). Although string is a reference type, the equality operators (== and !=) are defined to compare the values of string objects, not references. This makes testing for string equality more intuitive. For example: String : ------ A String object is called immutable (read-only) because its value cannot be modified once it has been created. Methods that appear to modify a String object actually return a new String object that contains the modification. If it is necessary to modify the actual contents of a string-like object Difference between string & String : ---------- ------- ------ - ------ the string is usually used for declaration while String is used for accessing static string methods we can use 'string' do declare fields, properties etc that use the predefined type 'string', since the C# specification tells me this is good style. we can use 'String' to use system-defined methods, such as String.Compare etc. They are originally defined on 'System.String', not 'string'. 'string' is just an alias in this case. we can also use 'String' or 'System.Int32' when communicating with other system, especially if they are CLR-compliant. I.e. - if I get data from elsewhere, I'd deserialize it into a System.Int32 rather than an 'int', if the origin by definition was something else than a C# system.

    Read the article

  • I tried to transplant the wireless_tools to Android4.0 system, but I have a problem with Java

    - by Chen Guoli
    My Linux system is Ubuntu Kylin, a new branch of Ubuntu spreading mainly in China. I have changed some files, such as wireless.22.h, ifrename.c and iwlib.h, in wireless_tools.29/ which is located in Android4.0 root directory. Then I followed these steps: $ cd ~/Android4.0 $ su $[key](change to root) root# source build/envsetup.sh root# cd ~/Android4.0/wireless_tools.2.9/ root# mm Then I got a message telling me that: Your version is: java version "1.7.0_21". The correct version is: Java SE 1.6. Then I did as How can I uninstall my current java and install sun java 1.6 The java was installed successfully, but when i tried mm again: Your version is: java version "1.6.0_27". The correct version is: Java SE 1.6. Then I tried https://source.android.com/source/initializing.html , but it didn't work. How can I install "java SE 1.6." correctly?

    Read the article

  • Odd MVC 4 Beta Razor Designer Issue

    - by Rick Strahl
    This post is a small cry for help along with an explanation of a problem that is hard to describe on twitter or even a connect bug and written in hopes somebody has seen this before and any ideas on what might cause this. Lots of helpful people had comments on Twitter for me, but they all assumed that the code doesn't run, which is not the case - it's a designer issue. A few days ago I started getting some odd problems in my MVC 4 designer for an app I've been working on for the past 2 weeks. Basically the MVC 4 Razor designer keeps popping me errors, about the call signature to various Html Helper methods being incorrect. It also complains about the ViewBag object and not supporting dynamic requesting to load assemblies into the project. Here's what the designer errors look like: You can see the red error underlines under the ViewBag and an Html Helper I plopped in at the top to demonstrate the behavior. Basically any HtmlHelper I'm accessing is showing the same errors. Note that the code *runs just fine* - it's just the designer that is complaining with Errors. What's odd about this is that *I think* this started only a few days ago and nothing consequential that I can think of has happened to the project or overall installations. These errors aren't critical since the code runs but pretty annoying especially if you're building and have .csHtml files open in Visual Studio mixing these fake errors with real compiler errors. What I've checked Looking at the errors it indeed looks like certain references are missing. I can't make sense of the Html Helpers error, but certainly the ViewBag dynamic error looks like System.Core or Microsoft.CSharp assemblies are missing. Rest assured they are there and the code DOES run just fine at runtime. This is a designer issue only. I went ahead and checked the namespaces that MVC has access to in Razor which lives in the Views folder's web.config file: /Views/web.config For good measure I added <system.web.webPages.razor> <host factoryType="System.Web.Mvc.MvcWebRazorHostFactory, System.Web.Mvc, <split for layout> Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <pages pageBaseType="System.Web.Mvc.WebViewPage"> <namespaces> <add namespace="System.Web.Mvc" /> <add namespace="System.Web.Mvc.Ajax" /> <add namespace="System.Web.Mvc.Html" /> <add namespace="System.Web.Routing" /> <add namespace="System.Linq" /> <add namespace="System.Linq.Expressions" /> <add namespace="ClassifiedsBusiness" /> <add namespace="ClassifiedsWeb"/> <add namespace="Westwind.Utilities" /> <add namespace="Westwind.Web" /> <add namespace="Westwind.Web.Mvc" /> </namespaces> </pages> </system.web.webPages.razor> For good measure I added System.Linq and System.Linq.Expression on which some of the Html.xxxxFor() methods rely, but no luck. So, has anybody seen this before? Any ideas on what might be causing these issues only at design time rather, when the final compiled code runs just fine?© Rick Strahl, West Wind Technologies, 2005-2012Posted in Razor  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Login failed for user 'sa' because the account is currently locked out. The system administrator can

    - by cabhilash
    Login failed for user 'sa' because the account is currently locked out. The system administrator can unlock it. (Microsoft SQL Server, Error: 18486) SQL server has local password policies. If policy is enabled which locks down the account after X number of failed attempts then the account is automatically locked down.This error with 'sa' account is very common. sa is default administartor login available with SQL server. So there are chances that an ousider has tried to bruteforce your system. (This can cause even if a legitimate tries to access the account with wrong password.Sometimes a user would have changed the password without informing others. So the other users would try to lo) You can unlock the account with the following options (use another admin account or connect via windows authentication) Alter account & unlock ALTER LOGIN sa WITH PASSWORD='password' UNLOCK Use another account Almost everyone is aware of the sa account. This can be the potential security risk. Even if you provide strong password hackers can lock the account by providing the wrong password. ( You can provide extra security by installing firewall or changing the default port but these measures are not always practical). As a best practice you can disable the sa account and use another account with same privileges.ALTER LOGIN sa DISABLE You can edit the lock-ot options using gpedit.msc( in command prompt type gpedit.msc and press enter). Navigate to Account Lokout policy as shown in the figure The Following options are available Account lockout threshold This security setting determines the number of failed logon attempts that causes a user account to be locked out. A locked-out account cannot be used until it is reset by an administrator or until the lockout duration for the account has expired. You can set a value between 0 and 999 failed logon attempts. If you set the value to 0, the account will never be locked out. Failed password attempts against workstations or member servers that have been locked using either CTRL+ALT+DELETE or password-protected screen savers count as failed logon attempts. Account lockout duration This security setting determines the number of minutes a locked-out account remains locked out before automatically becoming unlocked. The available range is from 0 minutes through 99,999 minutes. If you set the account lockout duration to 0, the account will be locked out until an administrator explicitly unlocks it. If an account lockout threshold is defined, the account lockout duration must be greater than or equal to the reset time. Default: None, because this policy setting only has meaning when an Account lockout threshold is specified. Reset account lockout counter after This security setting determines the number of minutes that must elapse after a failed logon attempt before the failed logon attempt counter is reset to 0 bad logon attempts. The available range is 1 minute to 99,999 minutes. If an account lockout threshold is defined, this reset time must be less than or equal to the Account lockout duration. Default: None, because this policy setting only has meaning when an Account lockout threshold is specified.When creating SQL user you can set CHECK_POLICY=on which will enforce the windows password policy on the account. The following policies will be applied Define the Enforce password history policy setting so that several previous passwords are remembered. With this policy setting, users cannot use the same password when their password expires.  Define the Maximum password age policy setting so that passwords expire as often as necessary for your environment, typically, every 30 to 90 days. With this policy setting, if an attacker cracks a password, the attacker only has access to the network until the password expires.  Define the Minimum password age policy setting so that passwords cannot be changed until they are more than a certain number of days old. This policy setting works in combination with the Enforce password historypolicy setting. If a minimum password age is defined, users cannot repeatedly change their passwords to get around the Enforce password history policy setting and then use their original password. Users must wait the specified number of days to change their passwords.  Define a Minimum password length policy setting so that passwords must consist of at least a specified number of characters. Long passwords--seven or more characters--are usually stronger than short ones. With this policy setting, users cannot use blank passwords, and they have to create passwords that are a certain number of characters long.  Enable the Password must meet complexity requirements policy setting. This policy setting checks all new passwords to ensure that they meet basic strong password requirements.  Password must meet the following complexity requirement, when they are changed or created: Not contain the user's entire Account Name or entire Full Name. The Account Name and Full Name are parsed for delimiters: commas, periods, dashes or hyphens, underscores, spaces, pound signs, and tabs. If any of these delimiters are found, the Account Name or Full Name are split and all sections are verified not to be included in the password. There is no check for any character or any three characters in succession. Contain characters from three of the following five categories:  English uppercase characters (A through Z) English lowercase characters (a through z) Base 10 digits (0 through 9) Non-alphabetic characters (for example, !, $, #, %) A catch-all category of any Unicode character that does not fall under the previous four categories. This fifth category can be regionally specific.

    Read the article

  • Migration & Modernization: Windows/VB6 Apps to ASP.NET HTML5

    - by Visual WebGui
    I would like to invite you to a webinar we are doing in collaboration with Jeffrey S. Hammond , Principal Analyst serving Application Development & Delivery Professionals at Forrester Research. The webinar is free and it will will introduce the substantial changes brought on by the move to Web Applications and Open Web architectures, and the challenges it places on application development shops. We’ll also introduce how we at Gizmox are helping client navigate this mobile shift and evolve existing...(read more)

    Read the article

  • Difference between Website and Web Application in ASP.NET

    - by SAMIR BHOGAYTA
    Web site in Visual Studio 2005: A web site is just a group of all files in a folder and sub folders. There is no project file. All files under the specific folder - including your word documents, text files, images etc are part of the web site. You have to deploy all files including source files (unless you pre compile them) to the server. Files are compiled dynamically during run time. To create a "web site", you need to use the menu File New Website You will have the option to choose either one of the following location types: # File System - Allows you to choose a folder to put all the files. # Http - Allows you to choose a virtual directory to put the files. # FTP - Allows you to choose an ftp location. In any of the above cases, no project file is created automatically. Visual Studio considers all files under the folder are part of the web site. There will be no single assembly created and you will nto see a "Bin" folder. The benefits of this model is, you do not need a project file or virtual directory to open a project. It is very handy when you share or download code from the internet. You just need to copy the downloaded code into a folder and you are ready to go! Web Application Project in Visual Studio 2005: Microsoft introduced the "web site" concept where all files under a web site are part of the site, hoping that the development community is going to love that. In fact, this is very usefull to share code. However, they did not consider millions of existing web applications where people are comfortable with the "project" based application. Also, there were lot of web applications where several un wanted files were kept under the web site folder. So, the new model did not work well for them. When people started screaming, Microsoft came up with the answer. On April 7, 2006, they announced "Visual Studio 2005 Web Application Projects" as an Add-On to Visual Studio 2005. This Add-On will allow you to create and use web applications just like the way it used to be in Visual Studio 2003. The Visual Studio 2005 Web Application Project model uses the same project, build and compilation method as the Visual Studio .NET 2003 web project model. All code files within the project are compiled into a single assembly that is built and copied in the Bin directory. All files contained within the project are defined within a project file (as well as the assembly references and other project meta-data settings). Files under the web's file-system root that are not defined in the project file are not considered part of the web project.

    Read the article

  • Expression Blend 4 available and training resources

    As you may know Expression Blend 4 has shipped! It is still part of Expression Studio, which now comes in 2 flavors: Expression Studio 4 Ultimate Expression Blend SketchFlow Expression Web + SuperPreview Expression Encoder Expression Design Expression Studio 4 Web Professional Expression Web + SuperPreview Expression Encoder Expression Design So the version you want for Silverlight is Expression Studio 4 Ultimate (because you cant...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • IntelliSense for Razor Hosting in non-Web Applications

    - by Rick Strahl
    When I posted my Razor Hosting article a couple of weeks ago I got a number of questions on how to get IntelliSense to work inside of Visual Studio while editing your templates. The answer to this question is mainly dependent on how Visual Studio recognizes assemblies, so a little background is required. If you open a template just on its own as a standalone file by clicking on it say in Explorer, Visual Studio will open up with the template in the editor, but you won’t get any IntelliSense on any of your related assemblies that you might be using by default. It’ll give Intellisense on base System namespace, but not on your imported assembly types. This makes sense: Visual Studio has no idea what the assembly associations for the single file are. There are two options available to you to make IntelliSense work for templates: Add the templates as included files to your non-Web project Add a BIN folder to your template’s folder and add all assemblies required there Including Templates in your Host Project By including templates into your Razor hosting project, Visual Studio will pick up the project’s assembly references and make IntelliSense available for any of the custom types in your project and on your templates. To see this work I moved the \Templates folder from the samples from the Debug\Bin folder into the project root and included the templates in the WinForm sample project. Here’s what this looks like in Visual Studio after the templates have been included:   Notice that I take my original example and type cast the Context object to the specific type that it actually represents – namely CustomContext – by using a simple code block: @{ CustomContext Model = Context as CustomContext; } After that assignment my Model local variable is in scope and IntelliSense works as expected. Note that you also will need to add any namespaces with the using command in this case: @using RazorHostingWinForm which has to be defined at the very top of a Razor document. BTW, while you can only pass in a single Context 'parameter’ to the template with the default template I’ve provided realize that you can also assign a complex object to Context. For example you could have a container object that references a variety of other objects which you can then cast to the appropriate types as needed: @{ ContextContainer container = Context as ContextContainer; CustomContext Model = container.Model; CustomDAO DAO = container.DAO; } and so forth. IntelliSense for your Custom Template Notice also that you can get IntelliSense for the top level template by specifying an inherits tag at the top of the document: @inherits RazorHosting.RazorTemplateFolderHost By specifying the above you can then get IntelliSense on your base template’s properties. For example, in my base template there are Request and Response objects. This is very useful especially if you end up creating custom templates that include your custom business objects as you can get effectively see full IntelliSense from the ‘page’ level down. For Html Help Builder for example, I’d have a Help object on the page and assuming I have the references available I can see all the way into that Help object without even having to do anything fancy. Note that the @inherits key is a GREAT and easy way to override the base template you normally specify as the default template. It allows you to create a custom template and as long as it inherits from the base template it’ll work properly. Since the last post I’ve also made some changes in the base template that allow hooking up some simple initialization logic so it gets much more easy to create custom templates and hook up custom objects with an IntializeTemplate() hook function that gets called with the Context and a Configuration object. These objects are objects you can pass in at runtime from your host application and then assign to custom properties on your template. For example the default implementation for RazorTemplateFolderHost does this: public override void InitializeTemplate(object context, object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; // Just use the entire ConfigData as the model, but in theory // configData could contain many objects or values to set on // template properties this.Model = config.ConfigData as TModel; } to set up a strongly typed Model and the Request object. You can do much more complex hookups here of course and create complex base template pages that contain all the objects that you need in your code with strong typing. Adding a Bin folder to your Template’s Root Path Including templates in your host project works if you own the project and you’re the only one modifying the templates. However, if you are distributing the Razor engine as a templating/scripting solution as part of your application or development tool the original project is likely not available and so that approach is not practical. Another option you have is to add a Bin folder and add all the related assemblies into it. You can also add a Web.Config file with assembly references for any GAC’d assembly references that need to be associated with the templates. Between the web.config and bin folder Visual Studio can figure out how to provide IntelliSense. The Bin folder should contain: The RazorHosting.dll Your host project’s EXE or DLL – renamed to .dll if it’s an .exe Any external (bin folder) dependent assemblies Note that you most likely also want a reference to the host project if it contains references that are going to be used in templates. Visual Studio doesn’t recognize an EXE reference so you have to rename the EXE to DLL to make it work. Apparently the binary signature of EXE and DLL files are identical and it just works – learn something new everyday… For GAC assembly references you can add a web.config file to your template root. The Web.config file then should contain any full assembly references to GAC components: <configuration> <system.web> <compilation debug="true"> <assemblies> <add assembly="System.Web.Mvc, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> <add assembly="System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" /> <add assembly="System.Web.Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> </assemblies> </compilation> </system.web> </configuration> And with that you should get full IntelliSense. Note that if you add a BIN folder and you also have the templates in your Visual Studio project Visual Studio will complain about reference conflicts as it’s effectively seeing both the project references and the ones in the bin folder. So it’s probably a good idea to use one or the other but not both at the same time :-) Seeing IntelliSense in your Razor templates is a big help for users of your templates. If you’re shipping an application level scripting solution especially it’ll be real useful for your template consumers/users to be able to get some quick help on creating customized templates – after all that’s what templates are all about – easy customization. Making sure that everything is referenced in your bin folder and web.config is a good idea and it’s great to see that Visual Studio (and presumably WebMatrix/Visual Web Developer as well) will be able to pick up your custom IntelliSense in Razor templates.© Rick Strahl, West Wind Technologies, 2005-2011Posted in Razor  

    Read the article

  • Is Linear Tape File System (LTFS) Best For Transportable Storage?

    - by rickramsey
    Those of us in tape storage engineering take a lot of pride in what we do, but understand that tape is the right answer to a storage problem only some of the time. And, unfortunately for a storage medium with such a long history, it has built up a few preconceived notions that are no longer valid. When I hear customers debate whether to implement tape vs. disk, one of the common strikes against tape is its perceived lack of usability. If you could go back a few generations of corporate acquisitions, you would discover that StorageTek engineers recognized this problem and started developing a solution where a tape drive could look just like a memory stick to a user. The goal was to not have to care about where files were on the cartridge, but to simply see the list of files that were on the tape, and click on them to open them up. Eventually, our friends in tape over at IBM built upon our work at StorageTek and Sun Microsystems and released the Linear Tape File System (LTFS) feature for the current LTO5 generation of tape drives as an open specification. LTFS is really a wonderful feature and we’re proud to have taken part in its beginnings and, as you’ll soon read, its future. Today we offer LTFS-Open Edition, which is free for you to use in your in Oracle Enterprise Linux 5.5 environment - not only on your LTO5 drives, but also on your Oracle StorageTek T10000C drives. You can download it free from Oracle and try it out. LTFS does exactly what its forefathers imagined. Now you can see immediately which files are on a cartridge. LTFS does this by splitting a cartridge into two partitions. The first holds all of the necessary metadata to create a directory structure for you to easily view the contents of the cartridge. The second partition holds all of the files themselves. When tape media is loaded onto a drive, a complete file system image is presented to the user. Adding files to a cartridge can be as simple as a drag-and-drop just as you do today on your laptop when transferring files from your hard drive to a thumb drive or with standard POSIX file operations. You may be thinking all of this sounds nice, but asking, “when will I actually use it?” As I mentioned at the beginning, tape is not the right solution all of the time. However, if you ever need to physically move data between locations, tape storage with LTFS should be your most cost-effective and reliable answer. I will give you a few use cases examples of when LTFS can be utilized. Media and Entertainment (M&E), Oil and Gas (O&G), and other industries have a strong need for their storage to be transportable. For example, an O&G company hunting for new oil deposits in remote locations takes very large underground seismic images which need to be shipped back to a central data center. M&E operations conduct similar activities when shooting video for productions. M&E companies also often transfers files to third-parties for editing and other activities. These companies have three highly flawed options for transporting data: electronic transfer, disk storage transport, or tape storage transport. The first option, electronic transfer, is impractical because of the expense of the bandwidth required to transfer multi-terabyte files reliably and efficiently. If there’s one place that has bandwidth, it’s your local post office so many companies revert to physically shipping storage media. Typically, M&E companies rely on transporting disk storage between sites even though it, too, is expensive. Tape storage should be the preferred format because as IDC points out, “Tape is more suitable for physical transportation of large amounts of data as it is less vulnerable to mechanical damage during transportation compared with disk" (See note 1, below). However, tape storage has not been used in the past because of the restrictions created by proprietary formats. A tape may only be readable if both the sender and receiver have the same proprietary application used to write the file. In addition, the workflows may be slowed by the need to read the entire tape cartridge during recall. LTFS solves both of these problems, clearing the way for tape to become the standard platform for transferring large files. LTFS is open and, as long as you’ve downloaded the free reader from our website or that of anyone in the LTO consortium, you can read the data. So if a movie studio ships a scene to a third-party partner to add, for example, sounds effects or a music score, it doesn’t have to care what technology the third-party has. If it’s written back to an LTFS-formatted tape cartridge, it can be read. Some tape vendors like to claim LTFS is a “standard,” but beauty is in the eye of the beholder. It’s a specification at this point, not a standard. That said, we’re already seeing application vendors create functionality to write in an LTFS format based on the specification. And it’s my belief that both customers and the tape storage industry will see the most benefit if we all follow the same path. As such, we have volunteered to lead the way in making LTFS a standard first with the Storage Network Industry Association (SNIA), and eventually through to standard bodies such as American National Standards Institute (ANSI). Expect to hear good news soon about our efforts. So, if storage transportability is one of your requirements, I recommend giving LTFS a look. It makes tape much more user-friendly and it’s free, which allows tape to maintain all of its cost advantages over disk! Note 1 - IDC Report. April, 2011. “IDC’s Archival Storage Solutions Taxonomy, 2011” - Brian Zents Website Newsletter Facebook Twitter

    Read the article

  • Oracle Solaris 11 ZFS Lab for Openworld 2012

    - by user12626122
    Preface This is the content from the Oracle Openworld 2012 ZFS lab. It was well attended - the feedback was that it was a little short - thats probably because in writing it I bacame very time-concious after the ASM/ACFS on Solaris extravaganza I ran last year which was almost too long for mortal man to finish in the 1 hour session. Enjoy. Table of Contents Exercise Z.1: ZFS Pools Exercise Z.2: ZFS File Systems Exercise Z.3: ZFS Compression Exercise Z.4: ZFS Deduplication Exercise Z.5: ZFS Encryption Exercise Z.6: Solaris 11 Shadow Migration Introduction This set of exercises is designed to briefly demonstrate new features in Solaris 11 ZFS file system: Deduplication, Encryption and Shadow Migration. Also included is the creation of zpools and zfs file systems - the basic building blocks of the technology, and also Compression which is the compliment of Deduplication. The exercises are just introductions - you are referred to the ZFS Adminstration Manual for further information. From Solaris 11 onward the online manual pages consist of zpool(1M) and zfs(1M) with further feature-specific information in zfs_allow(1M), zfs_encrypt(1M) and zfs_share(1M). The lab is easily carried out in a VirtualBox running Solaris 11 with 6 virtual 3 Gb disks to play with. Exercise Z.1: ZFS Pools Task: You have several disks to use for your new file system. Create a new zpool and a file system within it. Lab: You will check the status of existing zpools, create your own pool and expand it. Your Solaris 11 installation already has a root ZFS pool. It contains the root file system. Check this: root@solaris:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 15.9G 6.62G 9.25G 41% 1.00x ONLINE - root@solaris:~# zpool status pool: rpool state: ONLINE scan: none requested config: NAME STATE READ WRITE CKSUM rpool ONLINE 0 0 0 c3t0d0s0 ONLINE 0 0 0 errors: No known data errors Note the disk device the root pool is on - c3t0d0s0 Now you will create your own ZFS pool. First you will check what disks are available: root@solaris:~# echo | format Searching for disks...done AVAILABLE DISK SELECTIONS: 0. c3t0d0 <ATA-VBOX HARDDISK-1.0 cyl 2085 alt 2 hd 255 sec 63> /pci@0,0/pci8086,2829@d/disk@0,0 1. c3t2d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@2,0 2. c3t3d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@3,0 3. c3t4d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@4,0 4. c3t5d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@5,0 5. c3t6d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@6,0 6. c3t7d0 <ATA-VBOX HARDDISK-1.0 cyl 1534 alt 2 hd 128 sec 32> /pci@0,0/pci8086,2829@d/disk@7,0 Specify disk (enter its number): Specify disk (enter its number): The root disk is numbered 0. The others are free for use. Try creating a simple pool and observe the error message: root@solaris:~# zpool create mypool c3t2d0 c3t3d0 'mypool' successfully created, but with no redundancy; failure of one device will cause loss of the pool So destroy that pool and create a mirrored pool instead: root@solaris:~# zpool destroy mypool root@solaris:~# zpool create mypool mirror c3t2d0 c3t3d0 root@solaris:~# zpool status mypool pool: mypool state: ONLINE scan: none requested config: NAME STATE READ WRITE CKSUM mypool ONLINE 0 0 0 mirror-0 ONLINE 0 0 0 c3t2d0 ONLINE 0 0 0 c3t3d0 ONLINE 0 0 0 errors: No known data errors Back to topExercise Z.2: ZFS File Systems Task: You have to create file systems for later exercises. You can see that when a pool is created, a file system of the same name is created: root@solaris:~# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 86.5K 2.94G 31K /mypool Create your filesystems and mountpoints as follows: root@solaris:~# zfs create -o mountpoint=/data1 mypool/mydata1 The -o option sets the mount point and automatically creates the necessary directory. root@solaris:~# zfs list mypool/mydata1 NAME USED AVAIL REFER MOUNTPOINT mypool/mydata1 31K 2.94G 31K /data1 Back to top Exercise Z.3: ZFS Compression Task:Try out different forms of compression available in ZFS Lab:Create 2nd filesystem with compression, fill both file systems with the same data, observe results You can see from the zfs(1) manual page that there are several types of compression available to you, set with the property=value syntax: compression=on | off | lzjb | gzip | gzip-N | zle Controls the compression algorithm used for this dataset. The lzjb compression algorithm is optimized for performance while providing decent data compression. Setting compression to on uses the lzjb compression algorithm. The gzip compression algorithm uses the same compression as the gzip(1) command. You can specify the gzip level by using the value gzip-N where N is an integer from 1 (fastest) to 9 (best compression ratio). Currently, gzip is equivalent to gzip-6 (which is also the default for gzip(1)). Create a second filesystem with compression turned on. Note how you set and get your values separately: root@solaris:~# zfs create -o mountpoint=/data2 mypool/mydata2 root@solaris:~# zfs set compression=gzip-9 mypool/mydata2 root@solaris:~# zfs get compression mypool/mydata1 NAME PROPERTY VALUE SOURCE mypool/mydata1 compression off default root@solaris:~# zfs get compression mypool/mydata2 NAME PROPERTY VALUE SOURCE mypool/mydata2 compression gzip-9 local Now you can copy the contents of /usr/lib into both your normal and compressing filesystem and observe the results. Don't forget the dot or period (".") in the find(1) command below: root@solaris:~# cd /usr/lib root@solaris:/usr/lib# find . -print | cpio -pdv /data1 root@solaris:/usr/lib# find . -print | cpio -pdv /data2 The copy into the compressing file system takes longer - as it has to perform the compression but the results show the effect: root@solaris:/usr/lib# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.35G 1.59G 31K /mypool mypool/mydata1 1.01G 1.59G 1.01G /data1 mypool/mydata2 341M 1.59G 341M /data2 Note that the available space in the pool is shared amongst the file systems. This behavior can be modified using quotas and reservations which are not covered in this lab but are covered extensively in the ZFS Administrators Guide. Back to top Exercise Z.4: ZFS Deduplication The deduplication property is used to remove redundant data from a ZFS file system. With the property enabled duplicate data blocks are removed synchronously. The result is that only unique data is stored and common componenents are shared. Task:See how to implement deduplication and its effects Lab: You will create a ZFS file system with deduplication turned on and see if it reduces the amount of physical storage needed when we again fill it with a copy of /usr/lib. root@solaris:/usr/lib# zfs destroy mypool/mydata2 root@solaris:/usr/lib# zfs set dedup=on mypool/mydata1 root@solaris:/usr/lib# rm -rf /data1/* root@solaris:/usr/lib# mkdir /data1/2nd-copy root@solaris:/usr/lib# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.02M 2.94G 31K /mypool mypool/mydata1 43K 2.94G 43K /data1 root@solaris:/usr/lib# find . -print | cpio -pd /data1 2142768 blocks root@solaris:/usr/lib# zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.02G 1.99G 31K /mypool mypool/mydata1 1.01G 1.99G 1.01G /data1 root@solaris:/usr/lib# find . -print | cpio -pd /data1/2nd-copy 2142768 blocks root@solaris:/usr/lib#zfs list NAME USED AVAIL REFER MOUNTPOINT mypool 1.99G 1.96G 31K /mypool mypool/mydata1 1.98G 1.96G 1.98G /data1 You could go on creating copies for quite a while...but you get the idea. Note that deduplication and compression can be combined: the compression acts on metadata. Deduplication works across file systems in a pool and there is a zpool-wide property dedupratio: root@solaris:/usr/lib# zpool get dedupratio mypool NAME PROPERTY VALUE SOURCE mypool dedupratio 4.30x - Deduplication can also be checked using "zpool list": root@solaris:/usr/lib# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT mypool 2.98G 1001M 2.01G 32% 4.30x ONLINE - rpool 15.9G 6.66G 9.21G 41% 1.00x ONLINE - Before moving on to the next topic, destroy that dataset and free up some space: root@solaris:~# zfs destroy mypool/mydata1 Back to top Exercise Z.5: ZFS Encryption Task: Encrypt sensitive data. Lab: Explore basic ZFS encryption. This lab only covers the basics of ZFS Encryption. In particular it does not cover various aspects of key management. Please see the ZFS Adminastrion Manual and the zfs_encrypt(1M) manual page for more detail on this functionality. Back to top root@solaris:~# zfs create -o encryption=on mypool/data2 Enter passphrase for 'mypool/data2': ******** Enter again: ******** root@solaris:~# Creation of a descendent dataset shows that encryption is inherited from the parent: root@solaris:~# zfs create mypool/data2/data3 root@solaris:~# zfs get -r encryption,keysource,keystatus,checksum mypool/data2 NAME PROPERTY VALUE SOURCE mypool/data2 encryption on local mypool/data2 keysource passphrase,prompt local mypool/data2 keystatus available - mypool/data2 checksum sha256-mac local mypool/data2/data3 encryption on inherited from mypool/data2 mypool/data2/data3 keysource passphrase,prompt inherited from mypool/data2 mypool/data2/data3 keystatus available - mypool/data2/data3 checksum sha256-mac inherited from mypool/data2 You will find the online manual page zfs_encrypt(1M) contains examples. In particular, if time permits during this lab session you may wish to explore the changing of a key using "zfs key -c mypool/data2". Exercise Z.6: Shadow Migration Shadow Migration allows you to migrate data from an old file system to a new file system while simultaneously allowing access and modification to the new file system during the process. You can use Shadow Migration to migrate a local or remote UFS or ZFS file system to a local file system. Task: You wish to migrate data from one file system (UFS, ZFS, VxFS) to ZFS while mainaining access to it. Lab: Create the infrastructure for shadow migration and transfer one file system into another. First create the file system you want to migrate root@solaris:~# zpool create oldstuff c3t4d0 root@solaris:~# zfs create oldstuff/forgotten Then populate it with some files: root@solaris:~# cd /var/adm root@solaris:/var/adm# find . -print | cpio -pdv /oldstuff/forgotten You need the shadow-migration package installed: root@solaris:~# pkg install shadow-migration Packages to install: 1 Create boot environment: No Create backup boot environment: No Services to change: 1 DOWNLOAD PKGS FILES XFER (MB) Completed 1/1 14/14 0.2/0.2 PHASE ACTIONS Install Phase 39/39 PHASE ITEMS Package State Update Phase 1/1 Image State Update Phase 2/2 You then enable the shadowd service: root@solaris:~# svcadm enable shadowd root@solaris:~# svcs shadowd STATE STIME FMRI online 7:16:09 svc:/system/filesystem/shadowd:default Set the filesystem to be migrated to read-only root@solaris:~# zfs set readonly=on oldstuff/forgotten Create a new zfs file system with the shadow property set to the file system to be migrated: root@solaris:~# zfs create -o shadow=file:///oldstuff/forgotten mypool/remembered Use the shadowstat(1M) command to see the progress of the migration: root@solaris:~# shadowstat EST BYTES BYTES ELAPSED DATASET XFRD LEFT ERRORS TIME mypool/remembered 92.5M - - 00:00:59 mypool/remembered 99.1M 302M - 00:01:09 mypool/remembered 109M 260M - 00:01:19 mypool/remembered 133M 304M - 00:01:29 mypool/remembered 149M 339M - 00:01:39 mypool/remembered 156M 86.4M - 00:01:49 mypool/remembered 156M 8E 29 (completed) Note that if you had created /mypool/remembered as encrypted, this would be the preferred method of encrypting existing data. Similarly for compressing or deduplicating existing data. The procedure for migrating a file system over NFS is similar - see the ZFS Administration manual. That concludes this lab session.

    Read the article

  • 11 ADF Mobile Apps in 30 Hours

    - by Shay Shmeltzer
    The Oracle ADF Mobile team took part in a special "hackathon" this weekend, where 11 teams of new college hires who joined Oracle lately spent 30 hours building enterprise mobile applications leveraging ADF Mobile. One important thing to note - none of the participants worked with Oracle ADF Mobile before! In fact 90% of them didn't develop with ADF previously. All they had is a 2 hour training session before the event - and that's all they needed. From that point on they were able to build great cross device mobile applications. So what did they build? Here are some examples: A mileage expense tracking system: An ad campaign analysis system An expense report entry system Bug tracking system with data analysis: Carpooling social system: College Hiring system with CV scanning: Shipment management system for Farmers: Project time entry system: For sale post-it system (with item location): Conference event experience system with conference map and twitter feed integration: It was great to see how fast developers were able to learn and leverage ADF Mobile - and how creative the teams were. Here they are in action: So how about you? What would you build next? What would be your first ADF Mobile application? Start today!

    Read the article

< Previous Page | 516 517 518 519 520 521 522 523 524 525 526 527  | Next Page >