Search Results

Search found 87926 results on 3518 pages for 'deft code'.

Page 521/3518 | < Previous Page | 517 518 519 520 521 522 523 524 525 526 527 528  | Next Page >

  • Intercept method calls in Groovy for automatic type conversion

    - by kerry
    One of the cooler things you can do with groovy is automatic type conversion.  If you want to convert an object to another type, many times all you have to do is invoke the ‘as’ keyword: def letters = 'abcdefghijklmnopqrstuvwxyz' as List But, what if you are wanting to do something a little fancier, like converting a String to a Date? def christmas = '12-25-2010' as Date ERROR org.codehaus.groovy.runtime.typehandling.GroovyCastException: Cannot cast object '12-25-2010' with class java.lang.String' to class 'java.util.Date' No bueno! I want to be able to do custom type conversions so that my application can do a simple String to Date conversion. Enter the metaMethod. You can intercept method calls in Groovy using the following method: def intercept(name, params, closure) { def original = from.metaClass.getMetaMethod(name, params) from.metaClass[name] = { Class clazz -> closure() original.doMethodInvoke(delegate, clazz) } } Using this method, and a little syntactic sugar, we create the following ‘Convert’ class: // Convert.from( String ).to( Date ).using { } class Convert { private from private to private Convert(clazz) { from = clazz } static def from(clazz) { new Convert(clazz) } def to(clazz) { to = clazz return this } def using(closure) { def originalAsType = from.metaClass.getMetaMethod('asType', [] as Class[]) from.metaClass.asType = { Class clazz -> if( clazz == to ) { closure.setProperty('value', delegate) closure(delegate) } else { originalAsType.doMethodInvoke(delegate, clazz) } } } } Now, we can make the following statement to add the automatic date conversion: Convert.from( String ).to( Date ).using { new java.text.SimpleDateFormat('MM-dd-yyyy').parse(value) } def christmas = '12-25-2010' as Date Groovy baby!

    Read the article

  • Asp.net Menu

    Hi,Just to help others. Link http://blog.ysatech.com/post/2009/12/14/ASP-NET-Horizontal-Menu-Control.aspx guides working of asp.net menus(Horizantal,vertical).You can also download the code.Thanks for keeping this code. Its helped me alot....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Using a site page to find out the web Template Name used in a SharePoint Site

    - by ybbest
    Today, I have created a SharePoint solution. It deploys a site page with code behind to show the web template name used in a SharePoint site. You can download the project from here. After you have deployed the project, you can see your template name from http://[site collection Name]/sitepage/WebTemplateInfo.aspx References: http://blogs.msdn.com/b/kaevans/archive/2010/06/28/creating-a-sharepoint-site-page-with-code-behind-using-visual-studio-2010.aspx http://www.devexpertise.com/2009/02/06/sharepoint-list-template-ids-and-site-template-ids/ http://blog.rafelo.com/2008/05/determining-site-template-used-on.html

    Read the article

  • Google I/O 2012 - Managing Google Compute Engine Virtual Machines Through Google App Engine

    Google I/O 2012 - Managing Google Compute Engine Virtual Machines Through Google App Engine Alon Levi, Adam Eijdenberg Google Compute Engine provides highly efficient and scalable virtual machines for large scale data processing operations. Integration with Google App Engine provides an orchestration framework to manage large virtual machine clusters used for data processing. This session will talk demonstrate integration and discuss future use cases of the two technologies. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 0 0 ratings Time: 51:06 More in Science & Technology

    Read the article

  • Extending Currying: Partial Functions in Javascript

    - by kerry
    Last week I posted about function currying in javascript.  This week I am taking it a step further by adding the ability to call partial functions. Suppose we have a graphing application that will pull data via Ajax and perform some calculation to update a graph.  Using a method with the signature ‘updateGraph(id,value)’. To do this, we have do something like this: 1: for(var i=0;i<objects.length;i++) { 2: Ajax.request('/some/data',{id:objects[i].id},function(json) { 3: updateGraph(json.id, json.value); 4: } 5: } This works fine.  But, using this method we need to return the id in the json response from the server.  This works fine, but is not that elegant and increase network traffic. Using partial function currying we can bind the id parameter and add the second parameter later (when returning from the asynchronous call).  To do this, we will need the updated curry method.  I have added support for sending additional parameters at runtime for curried methods. 1: Function.prototype.curry = function(scope) { 2: scope = scope || window 3: var args = []; 4: for (var i=1, len = arguments.length; i < len; ++i) { 5: args.push(arguments[i]); 6: } 7: var m = this; 8: return function() { 9: for (var i=0, len = arguments.length; i < len; ++i) { 10: args.push(arguments[i]); 11: } 12: return m.apply(scope, args); 13: }; 14: } To partially curry this method we will call the curry method with the id parameter, then the request will callback on it with just the value.  Any additional parameters are appended to the method call. 1: for(var i=0;i<objects.length;i++) { 2: var id=objects[i].id; 3: Ajax.request('/some/data',{id: id}, updateGraph.curry(id)); 4: } As you can see, partial currying gives is a very useful tool and this simple method should be a part of every developer’s toolbox.

    Read the article

  • Routing Manager for WCF4

    This article describes a design, implementation and usage of the Custom Routing Manager for managing messages via Routing Service built-in .Net 4 Technology.

    Read the article

  • Using polygons instead of quads on Cocos2d

    - by rraallvv
    I've been looking under the hood of Cocos2d, and I think (please correct me if I'm wrong) that although working with quads is a key feature of the engine, it should't be dificult to make it work with arrays of vertices (aka polygons) instead of quads, being the quads a special case of an array of four vertices by the way, does anyone have any code that makes cocos2d render a texture filled polygon inside a batch node? the code posted here (http://www.cocos2d-iphone.org/forum/topic/8142/page/2#post-89393) does a nice job rendering a texture filled polygon but the class doesn't work with batch nodes

    Read the article

  • Strict Pomodoro and other time management Chrome extensions

    - by kerry
    I have recently begun using the Pomodoro Technique to increase my productivity. However, I still find myself getting sucked in to the vortex of useless information that is the internet. With that in mind I began searching for a useful chrome extension to replace the Android Pomodoro app I have been using to manage my ‘doros. I even considered writing it myself. Luckily, I stumbled on one that had a similar featureset to what I was looking for. Strict Pomodoro is an excellent Chrome extension for practicing Pomodoro. Though lacking a few key features, such as the ability to set the duration of your pomodoros and breaks, it still has a key feature that helps me stay on task. It blocks time sucking websites. You can set filter lists and it will keep you from accessing them during a Pomodoro. Effectively reminding you to stay on task. Also, the author readily admits that it was quickly put together and new features may be added down the road. For now, it is still an excellent option. For those of you who do not practice Pomodoro but are trying to stay on task. The StayFocusd extension will effectively manage the amount of time you spend on useless (non-productive) sites. It also has a rich feature set that may be better for your work habits. OK, breaks over. Time to get back to work. 25 minutes at a time.

    Read the article

  • Patterns for Handling Changing Property Sets in C++

    - by Bhargav Bhat
    I have a bunch "Property Sets" (which are simple structs containing POD members). I'd like to modify these property sets (eg: add a new member) at run time so that the definition of the property sets can be externalized and the code itself can be re-used with multiple versions/types of property sets with minimal/no changes. For example, a property set could look like this: struct PropSetA { bool activeFlag; int processingCount; /* snip few other such fields*/ }; But instead of setting its definition in stone at compile time, I'd like to create it dynamically at run time. Something like: class PropSet propSetA; propSetA("activeFlag",true); //overloading the function call operator propSetA("processingCount",0); And the code dependent on the property sets (possibly in some other library) will use the data like so: bool actvFlag = propSet["activeFlag"]; if(actvFlag == true) { //Do Stuff } The current implementation behind all of this is as follows: class PropValue { public: // Variant like class for holding multiple data-types // overloaded Conversion operator. Eg: operator bool() { return (baseType == BOOLEAN) ? this->ToBoolean() : false; } // And a method to create PropValues various base datatypes static FromBool(bool baseValue); }; class PropSet { public: // overloaded[] operator for adding properties void operator()(std::string propName, bool propVal) { propMap.insert(std::make_pair(propName, PropVal::FromBool(propVal))); } protected: // the property map std::map<std::string, PropValue> propMap; }; This problem at hand is similar to this question on SO and the current approach (described above) is based on this answer. But as noted over at SO this is more of a hack than a proper solution. The fundamental issues that I have with this approach are as follows: Extending this for supporting new types will require significant code change. At the bare minimum overloaded operators need to be extended to support the new type. Supporting complex properties (eg: struct containing struct) is tricky. Supporting a reference mechanism (needed for an optimization of not duplicating identical property sets) is tricky. This also applies to supporting pointers and multi-dimensional arrays in general. Are there any known patterns for dealing with this scenario? Essentially, I'm looking for the equivalent of the visitor pattern, but for extending class properties rather than methods. Edit: Modified problem statement for clarity and added some more code from current implementation.

    Read the article

  • Enumerable Interleave Extension Method

    - by João Angelo
    A recent stackoverflow question, which I didn’t bookmark and now I’m unable to find, inspired me to implement an extension method for Enumerable that allows to insert a constant element between each pair of elements in a sequence. Kind of what String.Join does for strings, but maintaining an enumerable as the return value. Having done the single element part I got a bit carried away and ended up expanding it adding overloads to support interleaving elements of another sequence and support for a predicate to control when interleaving takes place. I have to confess that I did this for fun and now I can’t think of any real usage scenario, nonetheless, it may prove useful for someone. First a simple example: var target = new string[] { "(", ")", "(", ")" }; var result = target.Interleave(".", (f, s) => f == "("); // Prints: (.)(.) Console.WriteLine(String.Join(string.Empty, result)); And now the untested but documented implementation: using System; using System.Collections; using System.Collections.Generic; using System.Linq; public static class EnumerableExtensions { /// <summary> /// Iterates infinitely over a constant element. /// </summary> /// <typeparam name="T"> /// The type of element in the sequence. /// </typeparam> private class InfiniteSequence<T> : IEnumerable<T>, IEnumerator<T> { public InfiniteSequence(T element) { this.Element = element; } public T Element { get; private set; } public IEnumerator<T> GetEnumerator() { return this; } IEnumerator IEnumerable.GetEnumerator() { return this; } T IEnumerator<T>.Current { get { return this.Element; } } void IDisposable.Dispose() { } object IEnumerator.Current { get { return this.Element; } } bool IEnumerator.MoveNext() { return true; } void IEnumerator.Reset() { } } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence. /// </summary> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="element"> /// The element used to perform the interleave operation. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="element"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, T element) { if (target == null) throw new ArgumentNullException("target"); if (element == null) throw new ArgumentNullException("element"); return InterleaveInternal(target, new InfiniteSequence<T>(element), (f, s) => true); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence. /// </summary> /// <remarks> /// The interleave operation is interrupted as soon as the <paramref name="target"/> sequence is exhausted; If the number of <paramref name="elements"/> to be interleaved are not enough to completely interleave the <paramref name="target"/> sequence then the remainder of the sequence is returned without being interleaved. /// </remarks> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="elements"> /// The elements used to perform the interleave operation. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="elements"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, IEnumerable<T> elements) { if (target == null) throw new ArgumentNullException("target"); if (elements == null) throw new ArgumentNullException("elements"); return InterleaveInternal(target, elements, (f, s) => true); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence that satisfy <paramref name="predicate"/>. /// </summary> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="element"> /// The element used to perform the interleave operation. /// </param> /// <param name="predicate"> /// A predicate used to assert if interleaving should occur between two target elements. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> or <paramref name="predicate"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="element"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, T element, Func<T, T, bool> predicate) { if (target == null) throw new ArgumentNullException("target"); if (element == null) throw new ArgumentNullException("element"); if (predicate == null) throw new ArgumentNullException("predicate"); return InterleaveInternal(target, new InfiniteSequence<T>(element), predicate); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence that satisfy <paramref name="predicate"/>. /// </summary> /// <remarks> /// The interleave operation is interrupted as soon as the <paramref name="target"/> sequence is exhausted; If the number of <paramref name="elements"/> to be interleaved are not enough to completely interleave the <paramref name="target"/> sequence then the remainder of the sequence is returned without being interleaved. /// </remarks> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="elements"> /// The elements used to perform the interleave operation. /// </param> /// <param name="predicate"> /// A predicate used to assert if interleaving should occur between two target elements. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> or <paramref name="predicate"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="elements"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, IEnumerable<T> elements, Func<T, T, bool> predicate) { if (target == null) throw new ArgumentNullException("target"); if (elements == null) throw new ArgumentNullException("elements"); if (predicate == null) throw new ArgumentNullException("predicate"); return InterleaveInternal(target, elements, predicate); } private static IEnumerable<T> InterleaveInternal<T>( this IEnumerable<T> target, IEnumerable<T> elements, Func<T, T, bool> predicate) { var targetEnumerator = target.GetEnumerator(); if (targetEnumerator.MoveNext()) { var elementsEnumerator = elements.GetEnumerator(); while (true) { T first = targetEnumerator.Current; yield return first; if (!targetEnumerator.MoveNext()) yield break; T second = targetEnumerator.Current; bool interleave = true && predicate(first, second) && elementsEnumerator.MoveNext(); if (interleave) yield return elementsEnumerator.Current; } } } }

    Read the article

< Previous Page | 517 518 519 520 521 522 523 524 525 526 527 528  | Next Page >