Search Results

Search found 17816 results on 713 pages for 'variable names'.

Page 525/713 | < Previous Page | 521 522 523 524 525 526 527 528 529 530 531 532  | Next Page >

  • Create and use a Button class on AS3.0

    - by Madcowe
    I am currently working on a game and it is all going well. On the shop screen there are several buttons that affect the player's stats for when the player restarts the game. The button's names (with a text on the left), however, are rather cryptic and it's hard to figure out what they do unless you test or something. So the solution I came up with, is to create an InfoBox with an InfoText inside so that when the cursor is over the button it appears with the description, cost and etc. This I managed to do too however, the way I was about to do it would mean that I had to create 3 event listeners per button (CLICK, ROLL_OVER, ROLL_OUT) and, obviously, 3 functions connected to each event listener. Now, I don't mind much about having 1 event listener per button, for the click, but since the other events are just to make a box appear and disappear as well as display some text, I thought it was way too much of a mess of code. What I tried to do: I created a new class called InfoBoxButton, and this is the class' code: package { import flash.display.SimpleButton; import flash.display.MovieClip; import flash.ui.Mouse; import flash.events.MouseEvent; public class InfoBoxButton extends SimpleButton { public var description:String; public var infoBox:InfoBox; public function InfoBoxButton(description) { this.addEventListener( MouseEvent.ROLL_OVER, displayInfoText, false, 0, true); this.addEventListener( MouseEvent.ROLL_OUT, hideInfoText, false, 0, true); } private function displayInfoText() { infoBox.infoText.text = description; infoBox.visible = true; } private function hideInfoText() { infoBox.infoText.text = ""; infoBox.visible = false; } } } But now I don't have an idea how to associate it with the button, I have tried this: public var SoonButton:InfoBoxButton = new InfoBoxButton("This is merely a test"); The SoonButton is a button I made on the shopscreen, SoonButton is it's instance name, but I can't think of a way of associating one button to the other... I have been fiddling with the code for like 3 hours yesterday and no luck... can anyone give me some pointers on how I should go about doing it?

    Read the article

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • A couple of nice features when using OracleTextSearch

    - by kyle.hatlestad
    If you have your UCM/URM instance configured to use the Oracle 11g database as the search engine, you can be using OracleTextSearch as the search definition. OracleTextSearch uses the advanced features of Oracle Text for indexing and searching. This includes the ability to specify metadata fields to be optimized for the search index, fast rebuilding, and index optimization. If you are on 10g of UCM, then you'll need to load the OracleTextSearch component that is available in the CS10gR35UpdateBundle component on the support site (patch #6907073). If you are on 11g, no component is needed. Then you specify the search indexer name with the configuration flag of SearchIndexerEngineName=OracleTextSearch. Please see the docs for other configuration settings and setup instructions. So I thought I would highlight a couple of other unique features available with OracleTextSearch. The first is the Drill Down feature. This feature allows you to specify specific metadata fields that will break down the results of that field based on the total results. So in the above graphic, you can see how it broke down the extensions and gives a count for each. Then you just need to click on that link to then drill into that result. This setting is perfect for option list fields and ones with a distinct set of values possible. By default, it will use the fields Type, Security Group, and Account (if enabled). But you can also specify your own fields. In 10g, you can use the following configuration entry: DrillDownFields=xWebsiteObjectType,dExtension,dSecurityGroup,dDocType And in 11g, you can specify it through the Configuration Manager applet. Simply click on the Advanced Search Design, highlight the field to filter, click Edit, and check 'Is a filter category'. The other feature you get with OracleTextSearch are search snippets. These snippets show the occurrence of the search term in context of their usage. This is very similar to how Google displays its results. If you are on 10g, this is enabled by default. If you are on 11g, you need to turn on the feature. The following configuration entry will enable it: OracleTextDisableSearchSnippet=false Once enabled, you can add the snippets to your search results. Go to Change View -> Customize and add a new search result view. In the Available Fields in the Special section, select Snippet and move it to the Main or Additional Information. If you want to include the snippets with the Classic results, you can add the idoc variable of <$srfDocSnippet$> to display them. One caveat is that this can effect search performance on large collections. So plan the infrastructure accordingly.

    Read the article

  • On SQL Developer and TNSNAMES.ORA

    - by thatjeffsmith
    Tnsnames.ora [DOCS] is a configuration file for SQL*Net that describes the network service names for the databases in your organization. Basically, it tells Oracle applications how to find your databases. This post is just a quick overview on how to get SQL Developer to ‘see’ this file and define a connection. There’s only a single prerequisite for having SQL Devleoper setup such that it can use TNSNAMES to connect: You have somewhere a tnsnames.ora file You don’t need a client, instant or otherwise, on your machine. You just need the file. Now, if you DO you have a client or HOME on your machine, SQL Developer will look for those and find the tnsnames file for you. IF we can’t find it at the usual places, you can simply tell us where it is via this preference: On the Database – Advanced page Once you’ve done this, assuming you have a file (or 10) in that directory, we’ll read it, parse it, and list the entries in the connection dialog. The File(s) That’s right, files. Just like SQL*Plus, we’ll read any file that starts with ‘tnsnames’ – that includes files you’ve renamed to .bak or .old. Kris talks about that more here. I have just the one, which is all I need anyway. There we go! Defining the Connection Just set the connection type to TNS. This is a lot easier to do than manually defining the connections – esp as they’re likely to frequently change in ‘the real world.’ No Client or Home Required That’s right. You don’t need an Oracle Client or $ORACLE_HOME to have SQL Developer see and read a TNS file. Just so you know I’m not cheating… SQL Dev doesn’t know which client to use and won’t use it even if it DID know… I’m able to define a new connection AND connect with these preferences ON|OFF.

    Read the article

  • Coherence Based WebLogic Server Session Management

    - by [email protected]
    Specifications Supported Configurations WebLogic Server 10.3.2( or 10.3.1 ) Coherence 3.5.2/463 If you use other verion above, then please check the following matrix:   WebLogic Server 9.2 MP1 Weblogic Server 10.3 WebLogic Smart Update Patch ID: AJQB Patch ID: 6W2W Minimum Coherence Release Level/MetaLink Patch ID 3.4.2 Patch 2-Patch ID:8429415 3.4.2 Patch6-Patch ID:11399293 Environment Variables %COHERENCE_HOME%: coherence installation directory %DOMAIN_HOME%: weblogic domain foler. Instructions We Will create to weblogic domains: domain_a, domain_b. To configure those domains with coherence-based session management . Then the changings of session variable value in one domain will propagate to another domain. Main Steps WebLogic Server create domain_a The process is ignored copy %COHERENCE_HOME%\lib\coherence.jar to %DOMAIN_HOME%\lib startup domain deploy %COHERENCE_HOME%\lib\coherence-web-spi.war as a Shared Library repeat step 1~4 at domain_b Coherence duplicate %COHERENCE_HOME%\bin\cache-server.cmd at the same folder and rename it to web-cache-server.cmd modify web-cache-server.cmd java -server -Xms512m -Xmx512m -cp %coherence_home%/lib/coherence.jar;%coherence_home%/lib/coherence-web-spi.war -Dtangosol.coherence.management.remote=true -Dtangosol.coherence.cacheconfig=WEB-INF/classes/session-cache-config.xml -Dtangosol.coherence.session.localstorage=true com.tangosol.net.DefaultCacheServer startup web-cache-server.cmd Testing develop a web app  with OEPE or JDeveloper and implment functions: changing, viewing, listing  session variables. ( or download sample codes here ) modify weblogic.xml with following content: <?xml version="1.0" encoding="UTF-8"?> <wls:weblogic-web-app xmlns:wls=http://xmlns.oracle.com/weblogic/weblogic-web-app xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd http://xmlns.oracle.com/weblogic/weblogic-web-app http://xmlns.oracle.com/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"> <wls:weblogic-version>10.3.2</wls:weblogic-version> <wls:context-root>CoherenceWeb</wls:context-root> <wls:library-ref> <wls:library-name>coherence-web-spi</wls:library-name> <wls:specification-version>1.0.0.0</wls:specification-version> <wls:exact-match>true</wls:exact-match> </wls:library-ref> </wls:weblogic-web-app> deploy the web app to domain_a and domain_b change session varaible vlaue at domain_a and check whethe if changed at domain_b References Using Oracle Coherence*Web 3.4.2 with Oracle WebLogic Server 10gR3 Oracle Coherence*Web 3.4.2 with Oracle WebLogic Server 10gR3

    Read the article

  • Windows and SQL Azure Best Practices: Affinity Groups

    - by BuckWoody
    When you create a Windows Azure application, you’ll pick a subscription to put it under. This is a billing container - underneath that, you’ll deploy a Hosted Service. That holds the Web and Worker Roles that you’ll deploy for your applications. along side that, you use the Storage Account to create storage for the application. (In some cases, you might choose to use only storage or Roles - the info here applies anyway) As you are setting up your environment, you’re asked to pick a “region” where your application will run. If you choose a Region, you’ll be asked where to put the Roles. You’re given choices like Asia, North America and so on. This is where the hardware that physically runs your code lives. We have lots of fault domains, power considerations and so on to keep that set of datacenters running, but keep in mind that this is where the application lives. You also get this selection for Storage Accounts. When you make new storage, it’s a best practice to put it where your computing is. This makes the shortest path from the code to the data, and then back out to the user. One of the selections for the location is “Anywhere U.S.”. This selection might be interpreted to mean that we will bias towards keeping the data and the code together, but that may not be the case. There is a specific abstraction we created for just that purpose: Affinity Groups. An Affinity Group is simply a name you can use to tie together resources. You can do this in two places - when you’re creating the Hosted Service (shown above) and on it’s own tree item on the left, called “Affinity Groups”. When you select either of those actions, You’re presented with a dialog box that allows you to specify a name, and then the Region that  names ties the resources to. Now you can select that Affinity Group just as if it were a Region, and your code and data will stay together. That helps with keeping the performance high. Official Documentation: http://msdn.microsoft.com/en-us/library/windowsazure/hh531560.aspx

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Selling Solutions, Not Products

    - by David Dorf
    When I think about next-generation retailers, the names that come to mind are Apple, Whole Foods, Lulu Lemon, and IKEA.  They may not be the biggest retailers, but they are certainly growing fast. Success is never defined by just one dimension, and these retailers execute well across many dimensions, but the one that stands out for me is customer experience.  These stores feel...approachable...part of the community...local.  Customers are not intimidated to ask questions, and staff seem to go out of their way to help. What's makes these retailers stand out in the industry?  These retailers aren't selling products -- they're selling solutions.  Think about that.  You think you're going to the Apple store to buy a phone, but you're actually buying a communications solution that handles much, much more.  If you carry an iPhone, your life has changed.  The way you do things is different.  The impacts go much beyond a simple phone. Solutions start with a problem, which is why these retailers greet customers with "what brought you in today," or "can I answer any questions for you?"  Good retailers establish a relationship, even if it lasts only a few minutes. You don't walk into Whole Foods looking for cans of soup.  You are looking for meals: healthy snacks, interesting lunches, exotic dinners.  Its a learning experience where you might discover solutions to problems you didn't know you had.  Mention what foods you like, and you'll get a list of similar items you had not considered.  I didn't know I needed a closet organizer until I visited an IKEA and learned about all the options.  They were able to customize the solution to meet my needs, and now I'm much more organized. One of the differences between selling products and selling solutions is training.  Visit any of these retailers' sites and you'll see a long list of in-store events for the benefit of customers.  You can buy exercise clothing from Lulu Lemon, and also learn new yoga techniques, meet like-minded people, and branch off to other fitness regimes via their ambassadors.  You can visit the Geek Bar at Apple, eat lunch at IKEA, and learn to cook at Whole Foods. These retailers are making an investment in a relationship with their customers.  They are showing loyalty to their customers before asking for it back.  In the long-run, this strategic approach will outlive any scan-and-bag mentality.

    Read the article

  • Reducing Oracle LOB Memory Use in PHP, or Paul's Lesson Applied to Oracle

    - by christopher.jones
    Paul Reinheimer's PHP memory pro tip shows how re-assigning a value to a variable doesn't release the original value until the new data is ready. With large data lengths, this unnecessarily increases the peak memory usage of the application. In Oracle you might come across this situation when dealing with LOBS. Here's an example that selects an entire LOB into PHP's memory. I see this being done all the time, not that that is an excuse to code in this style. The alternative is to remove OCI_RETURN_LOBS to return a LOB locator which can be accessed chunkwise with LOB->read(). In this memory usage example, I threw some CLOB rows into a table. Each CLOB was about 1.5M. The fetching code looked like: $s = oci_parse ($c, 'SELECT CLOBDATA FROM CTAB'); oci_execute($s); echo "Start Current :" . memory_get_usage() . "\n"; echo "Start Peak : " .memory_get_peak_usage() . "\n"; while(($r = oci_fetch_array($s, OCI_RETURN_LOBS)) !== false) { echo "Current :" . memory_get_usage() . "\n"; echo "Peak : " . memory_get_peak_usage() . "\n"; // var_dump(substr($r['CLOBDATA'],0,10)); // do something with the LOB // unset($r); } echo "End Current :" . memory_get_usage() . "\n"; echo "End Peak : " . memory_get_peak_usage() . "\n"; Without "unset" in loop, $r retains the current data value while new data is fetched: Start Current : 345300 Start Peak : 353676 Current : 1908092 Peak : 2958720 Current : 1908092 Peak : 4520972 End Current : 345668 End Peak : 4520972 When I uncommented the "unset" line in the loop, PHP's peak memory usage is much lower: Start Current : 345376 Start Peak : 353676 Current : 1908168 Peak : 2958796 Current : 1908168 Peak : 2959108 End Current : 345744 End Peak : 2959108 Even if you are using LOB->read(), unsetting variables in this manner will reduce the PHP program's peak memory usage. With LOBS in Oracle DB there is also DB memory use to consider. Using LOB->free() is worthwhile for locators. Importantly, the OCI8 1.4.1 extension (from PECL or included in PHP 5.3.2) has a LOB fix to free up Oracle's locators earlier. For long running scripts using lots of LOBS, upgrading to OCI8 1.4.1 is recommended.

    Read the article

  • Passthrough Objects – Duck Typing++

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Can't see a genuine use for this, but I got the idea in my head and wanted to work it through. It's an extension to the idea of duck typing, for scenarios where types have similar behaviour, but implemented in differently-named members. So you may have a set of objects you want to treat as an interface, which don't implement the interface explicitly, and don't have the same member names so they can't be duck-typed into implicitly implementing the interface. In a fictitious example, I want to call Get on whichever ICache implementation is current, and have the call passed through to the relevant method – whether it's called Read, Retrieve or whatever: A sample implementation is up on github here: PassthroughSample. This uses Castle's DynamicProxy behind the scenes in the same way as my duck typing sample, but allows you to configure the passthrough to specify how the inner (implementation) and outer (interface) members are mapped:       var setup = new Passthrough();     var cache = setup.Create("PassthroughSample.Tests.Stubs.AspNetCache, PassthroughSample.Tests")                             .WithPassthrough("Name", "CacheName")                             .WithPassthrough("Get", "Retrieve")                             .WithPassthrough("Set", "Insert")                             .As<ICache>(); - or using some ugly Lambdas to avoid the strings :     Expression<Func<ICache, string, object>> get = (o, s) => o.Get(s);     Expression<Func<Memcached, string, object>> read = (i, s) => i.Read(s);     Expression<Action<ICache, string, object>> set = (o, s, obj) => o.Set(s, obj);     Expression<Action<Memcached, string, object>> insert = (i, s, obj) => i.Put(s, obj);       ICache cache = new Passthrough<ICache, Memcached>()                     .Create()                     .WithPassthrough(o => o.Name, i => i.InstanceName)                     .WithPassthrough(get, read)                     .WithPassthrough(set, insert)                     .As();   - or even in config:   ICache cache = Passthrough.GetConfigured<ICache>(); ...  <passthrough>     <types>       <typename="PassthroughSample.Tests.Stubs.ICache, PassthroughSample.Tests"             passesThroughTo="PassthroughSample.Tests.Stubs.AppFabricCache, PassthroughSample.Tests">         <members>           <membername="Name"passesThroughTo="RegionName"/>           <membername="Get"passesThroughTo="Out"/>           <membername="Set"passesThroughTo="In"/>         </members>       </type>   Possibly useful for injecting stubs for dependencies in tests, when your application code isn't using an IoC container. Possibly it also has an alternative implementation using .NET 4.0 dynamic objects, rather than the dynamic proxy.

    Read the article

  • ViewStateMode in ASP.Net 4.0

    - by sreejukg
    When asp.net introduced the concept of viewstate, it changed the way how developers maintain the state for the controls in a web page. Until then to keep the track of the control(in classic asp), it was the developer responsibility to manually assign the posted content before rendering the control again. Viewstate made allowed the developer to do it with ease. The developers are not bothered about how controls keep there state on post back. Viewstate is rendered to the browser as a hidden variable __viewstate. Since viewstate stores the values of all controls, as the number of controls in the page increases, the content of viewstate grows large. It causes some websites to load slowly. As developers we need viewstate, but actually we do not want this for all the controls in the page. Till asp.net 3.5, if viewstate is disabled from web.config (using <pages viewstate=”false”/> ..</pages>), then you can not enable it from the control level/page level. Both <%@ Page EnableViewState=”true”…. and <asp:textbox EnableViewState=”true” will not work in this case. Lot of developers demands for more control over viewstate. It will be useful if the developers are able to disable it for the entire page and enable it for only those controls that needed viewstate. With ASP.NET 4.0, this is possible, a happy news for the developers. This is achieved by introducing a new property called ViewStateMode. Let us see, What is ViewStateMode – Is a new property in asp.net 4.0, that allows developers to enable viewstate for individual control even if the parent has disabled it. This ViewStateMode property can contain either of three values Enabled- Enable view state for the control even if the parent control has view state disabled. Disabled - Disable view state for this control even if the parent control has view state enabled Inherit - Inherit the value of ViewStateMode from the parent, this is the default value. To disable view state for a page and to enable it for a specific control on the page, you can set the EnableViewState property of the page to true, then set the ViewStateMode property of the page to Disabled, and then set the ViewStateMode property of the control to Enabled. Find the example below. Page directive - <%@ Page Language="C#"  EnableViewState="True" ViewStateMode="Disabled" .......... %> Code for the control  - <asp:TextBox runat="server" ViewStateMode="Enabled" ............../> Now the viewstate will be disabled for the whole page, but enabled for the TextBox. ViewStateMode gives developers more control over the viewstate.

    Read the article

  • WLS MBeans

    - by Jani Rautiainen
    WLS provides a set of Managed Beans (MBeans) to configure, monitor and manage WLS resources. We can use the WLS MBeans to automate some of the tasks related to the configuration and maintenance of the WLS instance. The MBeans can be accessed a number of ways; using various UIs and programmatically using Java or WLST Python scripts.For customization development we can use the features to e.g. manage the deployed customization in MDS, control logging levels, automate deployment of dependent libraries etc. This article is an introduction on how to access and use the WLS MBeans. The goal is to illustrate the various access methods in a single article; the details of the features are left to the linked documentation.This article covers Windows based environment, steps for Linux would be similar however there would be some differences e.g. on how the file paths are defined. MBeansThe WLS MBeans can be categorized to runtime and configuration MBeans.The Runtime MBeans can be used to access the runtime information about the server and its resources. The data from runtime beans is only available while the server is running. The runtime beans can be used to e.g. check the state of the server or deployment.The Configuration MBeans contain information about the configuration of servers and resources. The configuration of the domain is stored in the config.xml file and the configuration MBeans can be used to access and modify the configuration data. For more information on the WLS MBeans refer to: Understanding WebLogic Server MBeans WLS MBean reference Java Management Extensions (JMX)We can use JMX APIs to access the WLS MBeans. This allows us to create Java programs to configure, monitor, and manage WLS resources. In order to use the WLS MBeans we need to add the following library into the class-path: WL_HOME\lib\wljmxclient.jar Connecting to a WLS MBean server The WLS MBeans are contained in a Mbean server, depending on the requirement we can connect to (MBean Server / JNDI Name): Domain Runtime MBean Server weblogic.management.mbeanservers.domainruntime Runtime MBean Server weblogic.management.mbeanservers.runtime Edit MBean Server weblogic.management.mbeanservers.edit To connect to the WLS MBean server first we need to create a map containing the credentials; Hashtable<String, String> param = new Hashtable<String, String>(); param.put(Context.SECURITY_PRINCIPAL, "weblogic");        param.put(Context.SECURITY_CREDENTIALS, "weblogic1");        param.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); These define the user, password and package containing the protocol. Next we create the connection: JMXServiceURL serviceURL =     new JMXServiceURL("t3","127.0.0.1",7101,     "/jndi/weblogic.management.mbeanservers.domainruntime"); JMXConnector connector = JMXConnectorFactory.connect(serviceURL, param); MBeanServerConnection connection = connector.getMBeanServerConnection(); With the connection we can now access the MBeans for the WLS instance. For a complete example see Appendix A of this post. For more details refer to Accessing WebLogic Server MBeans with JMX Accessing WLS MBeans The WLS MBeans are structured hierarchically; in order to access content we need to know the path to the MBean we are interested in. The MBean is accessed using “MBeanServerConnection. getAttribute” API.  WLS provides entry points to the hierarchy allowing us to navigate all the WLS MBeans in the hierarchy (MBean Server / JMX object name): Domain Runtime MBean Server com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean Runtime MBean Servers com.bea:Name=RuntimeService,Type=weblogic.management.mbeanservers.runtime.RuntimeServiceMBean Edit MBean Server com.bea:Name=EditService,Type=weblogic.management.mbeanservers.edit.EditServiceMBean For example we can access the Domain Runtime MBean using: ObjectName service = new ObjectName( "com.bea:Name=DomainRuntimeService," + "Type=weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean"); Same syntax works for any “child” WLS MBeans e.g. to find out all application deployments we can: ObjectName domainConfig = (ObjectName)connection.getAttribute(service,"DomainConfiguration"); ObjectName[] appDeployments = (ObjectName[])connection.getAttribute(domainConfig,"AppDeployments"); Alternatively we could access the same MBean using the full syntax: ObjectName domainConfig = new ObjectName("com.bea:Location=DefaultDomain,Name=DefaultDomain,Type=Domain"); ObjectName[] appDeployments = (ObjectName[])connection.getAttribute(domainConfig,"AppDeployments"); For more details refer to Accessing WebLogic Server MBeans with JMX Invoking operations on WLS MBeans The WLS MBean operations can be invoked with MBeanServerConnection. invoke API; in the following example we query the state of “AppsLoggerService” application: ObjectName appRuntimeStateRuntime = new ObjectName("com.bea:Name=AppRuntimeStateRuntime,Type=AppRuntimeStateRuntime"); Object[] parameters = { "AppsLoggerService", "DefaultServer" }; String[] signature = { "java.lang.String", "java.lang.String" }; String result = (String)connection.invoke(appRuntimeStateRuntime,"getCurrentState",parameters, signature); The result returned should be "STATE_ACTIVE" assuming the "AppsLoggerService" application is up and running. WebLogic Scripting Tool (WLST) The WebLogic Scripting Tool (WLST) is a command-line scripting environment that we can access the same WLS MBeans. The tool is located under: $MW_HOME\oracle_common\common\bin\wlst.bat Do note that there are several instances of the wlst script under the $MW_HOME, each of them works, however the commands available vary, so we want to use the one under “oracle_common”. The tool is started in offline mode. In offline mode we can access and manipulate the domain configuration. In online mode we can access the runtime information. We connect to the Administration Server : connect("weblogic","weblogic1", "t3://127.0.0.1:7101") In both online and offline modes we can navigate the WLS MBean using commands like "ls" to print content and "cd" to navigate between objects, for example: All the commands available can be obtained with: help('all') For details of the tool refer to WebLogic Scripting Tool and for the commands available WLST Command and Variable Reference. Also do note that the WLST tool can be invoked from Java code in Embedded Mode. Running Scripts The WLST tool allows us to automate tasks using Python scripts in Script Mode. The script can be manually created or recorded by the WLST tool. Example commands of recording a script: startRecording("c:/temp/recording.py") <commands that we want to record> stopRecording() We can run the script from WLST: execfile("c:/temp/recording.py") We can also run the script from the command line: C:\apps\Oracle\Middleware\oracle_common\common\bin\wlst.cmd c:/temp/recording.py There are various sample scripts are provided with the WLS instance. UI to Access the WLS MBeans There are various UIs through which we can access the WLS MBeans. Oracle Enterprise Manager Fusion Middleware Control Oracle WebLogic Server Administration Console Fusion Middleware Control MBean Browser In the integrated JDeveloper environment only the Oracle WebLogic Server Administration Console is available to us. For more information refer to the documentation, one noteworthy feature in the console is the ability to record WLST scripts based on the navigation. In addition to the UIs above the JConsole included in the JDK can be used to access the WLS MBeans. The JConsole needs to be started with specific parameter to force WLS objects to be used and jar files in the classpath: "C:\apps\Oracle\Middleware\jdk160_24\bin\jconsole" -J-Djava.class.path=C:\apps\Oracle\Middleware\jdk160_24\lib\jconsole.jar;C:\apps\Oracle\Middleware\jdk160_24\lib\tools.jar;C:\apps\Oracle\Middleware\wlserver_10.3\server\lib\wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote For more details refer to the Accessing Custom MBeans from JConsole. Summary In this article we have covered various ways we can access and use the WLS MBeans in context of integrated WLS in JDeveloper to be used for Fusion Application customization development. References Developing Custom Management Utilities With JMX for Oracle WebLogic Server Accessing WebLogic Server MBeans with JMX WebLogic Server MBean Reference WebLogic Scripting Tool WLST Command and Variable Reference Appendix A package oracle.apps.test; import java.io.IOException;import java.net.MalformedURLException;import java.util.Hashtable;import javax.management.MBeanServerConnection;import javax.management.MalformedObjectNameException;import javax.management.ObjectName;import javax.management.remote.JMXConnector;import javax.management.remote.JMXConnectorFactory;import javax.management.remote.JMXServiceURL;import javax.naming.Context;/** * This class contains simple examples on how to access WLS MBeans using JMX. */public class BlogExample {    /**     * Connection to the WLS MBeans     */    private MBeanServerConnection connection;    /**     * Constructor that takes in the connection information for the      * domain and obtains the resources from WLS MBeans using JMX.     * @param hostName host name to connect to for the WLS server     * @param port port to connect to for the WLS server     * @param userName user name to connect to for the WLS server     * @param password password to connect to for the WLS server     */    public BlogExample(String hostName, String port, String userName,                       String password) {        super();        try {            initConnection(hostName, port, userName, password);        } catch (Exception e) {            throw new RuntimeException("Unable to connect to the domain " +                                       hostName + ":" + port);        }    }    /**     * Default constructor.     * Tries to create connection with default values. Runtime exception will be     * thrown if the default values are not used in the local instance.     */    public BlogExample() {        this("127.0.0.1", "7101", "weblogic", "weblogic1");    }    /**     * Initializes the JMX connection to the WLS Beans     * @param hostName host name to connect to for the WLS server     * @param port port to connect to for the WLS server     * @param userName user name to connect to for the WLS server     * @param password password to connect to for the WLS server     * @throws IOException error connecting to the WLS MBeans     * @throws MalformedURLException error connecting to the WLS MBeans     * @throws MalformedObjectNameException error connecting to the WLS MBeans     */    private void initConnection(String hostName, String port, String userName,                                String password)                                 throws IOException, MalformedURLException,                                        MalformedObjectNameException {        String protocol = "t3";        String jndiroot = "/jndi/";        String mserver = "weblogic.management.mbeanservers.domainruntime";        JMXServiceURL serviceURL =            new JMXServiceURL(protocol, hostName, Integer.valueOf(port),                              jndiroot + mserver);        Hashtable<String, String> h = new Hashtable<String, String>();        h.put(Context.SECURITY_PRINCIPAL, userName);        h.put(Context.SECURITY_CREDENTIALS, password);        h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,              "weblogic.management.remote");        JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);        connection = connector.getMBeanServerConnection();    }    /**     * Main method used to invoke the logic for testing     * @param args arguments passed to the program     */    public static void main(String[] args) {        BlogExample blogExample = new BlogExample();        blogExample.testEntryPoint();        blogExample.testDirectAccess();        blogExample.testInvokeOperation();    }    /**     * Example of using an entry point to navigate the WLS MBean hierarchy.     */    public void testEntryPoint() {        try {            System.out.println("testEntryPoint");            ObjectName service =             new ObjectName("com.bea:Name=DomainRuntimeService,Type=" +"weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean");            ObjectName domainConfig =                (ObjectName)connection.getAttribute(service,                                                    "DomainConfiguration");            ObjectName[] appDeployments =                (ObjectName[])connection.getAttribute(domainConfig,                                                      "AppDeployments");            for (ObjectName appDeployment : appDeployments) {                String resourceIdentifier =                    (String)connection.getAttribute(appDeployment,                                                    "SourcePath");                System.out.println(resourceIdentifier);            }        } catch (Exception e) {            throw new RuntimeException(e);        }    }    /**     * Example of accessing WLS MBean directly with a full reference.     * This does the same thing as testEntryPoint in slightly difference way.     */    public void testDirectAccess() {        try {            System.out.println("testDirectAccess");            ObjectName appDeployment =                new ObjectName("com.bea:Location=DefaultDomain,"+                               "Name=AppsLoggerService,Type=AppDeployment");            String resourceIdentifier =                (String)connection.getAttribute(appDeployment, "SourcePath");            System.out.println(resourceIdentifier);        } catch (Exception e) {            throw new RuntimeException(e);        }    }    /**     * Example of invoking operation on a WLS MBean.     */    public void testInvokeOperation() {        try {            System.out.println("testInvokeOperation");            ObjectName appRuntimeStateRuntime =                new ObjectName("com.bea:Name=AppRuntimeStateRuntime,"+                               "Type=AppRuntimeStateRuntime");            String identifier = "AppsLoggerService";            String serverName = "DefaultServer";            Object[] parameters = { identifier, serverName };            String[] signature = { "java.lang.String", "java.lang.String" };            String result =                (String)connection.invoke(appRuntimeStateRuntime, "getCurrentState",                                          parameters, signature);            System.out.println("State of " + identifier + " = " + result);        } catch (Exception e) {            throw new RuntimeException(e);        }    }}

    Read the article

  • Asp.net session on browser close

    - by budugu
    Note: Cross posted from Vijay Kodali's Blog. Permalink How to capture logoff time when user closes browser? Or How to end user session when browser closed? These are some of the frequently asked questions in asp.net forums. In this post I'll show you how to do this when you're building an ASP.NET web application. Before we start, one fact: There is no full-proof technique to catch the browser close event for 100% of time. The trouble lies in the stateless nature of HTTP. The Web server is out of the picture as soon as it finishes sending the page content to the client. After that, all you can rely on is a client side script. Unfortunately, there is no reliable client side event for browser close. Solution: The first thing you need to do is create the web service. I've added web service and named it AsynchronousSave.asmx.    Make this web service accessible from Script, by setting class qualified with the ScriptServiceAttribute attribute...  Add a method (SaveLogOffTime) marked with [WebMethod] attribute. This method simply accepts UserId as a string variable and writes that value and logoff time to text file. But you can pass as many variables as required. You can then use this information for many purposes. To end user session, you can just call Session.Abandon() in the above web method. To enable web service to be called from page’s client side code, add script manager to page. Here i am adding to SessionTest.aspx page When the user closes the browser, onbeforeunload event fires on the client side. Our final step is adding a java script function to that event, which makes web service calls. The code is simple but effective My Code HTML:( SessionTest.aspx ) C#:( SessionTest.aspx.cs ) That’s’ it. Run the application and after browser close, open the text file to see the log off time. The above code works well in IE 7/8. If you have any questions, leave a comment.

    Read the article

  • Asp.net session on browser close

    - by budugu
    Note: Cross posted from Vijay Kodali's Blog. Permalink How to capture logoff time when user closes browser? Or How to end user session when browser closed? These are some of the frequently asked questions in asp.net forums. In this post I'll show you how to do this when you're building an ASP.NET web application. Before we start, one fact: There is no full-proof technique to catch the browser close event for 100% of time. The trouble lies in the stateless nature of HTTP. The Web server is out of the picture as soon as it finishes sending the page content to the client. After that, all you can rely on is a client side script. Unfortunately, there is no reliable client side event for browser close. Solution: The first thing you need to do is create the web service. I've added web service and named it AsynchronousSave.asmx.    Make this web service accessible from Script, by setting class qualified with the ScriptServiceAttribute attribute...  Add a method (SaveLogOffTime) marked with [WebMethod] attribute. This method simply accepts UserId as a string variable and writes that value and logoff time to text file. But you can pass as many variables as required. You can then use this information for many purposes. To end user session, you can just call Session.Abandon() in the above web method. To enable web service to be called from page’s client side code, add script manager to page. Here i am adding to SessionTest.aspx page When the user closes the browser, onbeforeunload event fires on the client side. Our final step is adding a java script function to that event, which makes web service calls. The code is simple but effective My Code HTML:( SessionTest.aspx ) C#:( SessionTest.aspx.cs ) That’s’ it. Run the application and after browser close, open the text file to see the log off time. The above code works well in IE 7/8. If you have any questions, leave a comment.

    Read the article

  • What was missing from the Content Strategy Forum?

    - by Roger Hart
    In April, Paris hosted the first ever Content Strategy Forum. The event's website proudly proclaims: 170 attendees, 18 nationalities, 17 speakers, 1 volcano... Content Strategy Forum 2010 rocked the world! The volcano was in Iceland, and the closest we came to rocking the world was a cursory mention in the Huffington Post, but I'll grant the event was awesome. One thing missing from that list, however, is "94 companies" (Plus a couple of universities and freelancers, and what have you). A glance through the attendees directory reveals a fairly wide organisational turnout - 24 students from two Parisian universities, countless design and marketing agencies, a series of tech firms, small and large. Two delegates from IBM, two from ARM, an appearance from RIM, Skype, and Facebook; twelve from the various bits of eBay. Oh, and, err, nobody from Google, Microsoft, Yahoo, Amazon, Play, Twitter, LinkedIn, Craigslist, the BBC, no banks I noticed, and I didn't spot a newspaper. You get the idea. Facebook notwithstanding, you have to scroll through a few pages to Alexa rankings to find company names from the attendee list. I find this interesting, and I'm not wholly sure what to make of it. Of the large, web-centric, content-rich organizations conspicuously absent, at least one of two things is true: They didn't know about the event They didn't care about the event Maybe these guys all have content strategy completely sorted, and it's an utterly naturalised part of their business process. Maybe nobody at say, Apple or Play.com ever publishes a single piece of content that isn't neatly tailored to their (clearly defined, of course) user and business goals. Wouldn't that be lovely? The thing is, in that rosy and beatific world, there's still a case for those folks to join the community. There are bound to be other perspectives, and things to learn. You see, the other thing achingly conspicuous by its absence was case studies. In her keynote address, Kristina Halvorson made the point that what content strategy really needs is some big, loud success stories. A point I'd firmly second as a content strategist working within an organisation. Sarah Cancilla's presentation on content strategy at Facebook included some very neat, specific examples, and was richer for it. It didn't hurt that the example was Facebook - you're getting impressively big numbers off base. What about the other big boys? Is there anybody out there with a perspective? Do we all just look very silly to you, fretting away over text and images and users and purposes? Is content validation and maintenance so accustomed a part of your business that calling attention to it is like sniffing the air and saying "Hmm, a lot of nitrogen about today."? And if it is, do you have any wisdom to share?

    Read the article

  • Solution 6 : Kill a Non-Clustered Process during Two-Node Cluster Failover

    - by StanleyGu
    Using Visual Studio 2008 and C#, I developed a windows service A and deployed it to two nodes of a windows server 2008 failover cluster. The service A is part of the failover cluster service, which means, when failover occurs at node1, the cluster service will failover the windows service A from node 1 to node 2. One of the tasks implemented by the windows service A is to start, monitor or kill a process B. The process B is installed to the two nodes but is not part of the failover cluster service. When a failover occurs at node1, the cluster service does not failover the process B from node 1 to node 2, and the process B continues running at node1. The requirement is: When failover occurs at node1, we want the process B running at node1 gets killed, but we do not want the process B be part of the failover cluster service. The first idea that pops up immediately is to put some code in an event handler triggered by the failover in the windows service A. The failover effect to the windows service A is similar to using the task manager to kill the process of the windows service A, but there is no event in windows service that can be triggered by killing the process of the window service. The events related to terminating a windows service are OnStop and OnShutDown, but killing the process of windows service A triggers neither of them. The OnStop event can only be triggered by stopping the windows service using Services Control Manager or Services Management Console. Apparently, the first idea is not feasible. The second idea that emerges is to put code into the OnStart event handler of the windows service A. When failover occurs at node 1, the windows service A is killed at node 1 and started at node 2. During the starting, the windows service A at node 2 kills the process B that is running at node 1. It is a workaround and works very well. The C# code implementation within the OnStart event handler is as following: 1.       Capture server names of the two nodes from App.config 2.       Determine server name of the remote node. 3.       Kill the process B running on the remote node. Check here for sample code.  

    Read the article

  • MVVM Light Toolkit V3 SP1 for Windows Phone 7

    - by Laurent Bugnion
    He he I start to sound like Microsoft… Anyway… I just released a service pack (SP1) for MVVM Light Toolkit V3. Why? Well mostly because I worked a bit more with the Windows Phone 7 tools that were released at MIX0, and I noticed a few things that could be better in the Windows Phone 7 template. Also, I only found out at MIX that you can actually install custom project templates for Visual Studio Express. For some reason I thought it was not possible. The best way to solve these issues is through a service pack, which consists of a few zip files. Simply follow the instructions on the “Installing Manually” page. You can go ahead and overwrite the files that were installed with V3, all the file structure and names are exactly the same. What? So what do you get in this service pack that was not already in V3? (for more info about what’s new in V3, check the What’s New page). Project and Item templates for Visual Studio 10 Express (phone edition). Unzip these files in your “My Documents” folder, and you can now create a new MVVM Light application in the WinPhone7 version of Visual Studio 2010 Express. Signed assemblies: All the assemblies are now signed, which is a requirement in certain build configurations. XML documentation files: Thanks to Matt Casto for pinging me and reminding me that I had forgotten to include them (doh). New and improved Windows Phone 7 assemblies and templates: This one deserves its own section (see below). What was wrong with the old Silverlight 3 assemblies in Windows Phone 7 projects? It was kind of weird. Functionality wise, it was working just right. However, if you noticed, the EventToCommand behavior was not visible in the Assets tab of Expression Blend, under Behaviors, where it should normally have been. The reason was that even though the Windows Phone 7 is using Silverlight 3, the System.Windows.Interactivity that Blend was expecting is the version that is normally used in Silverlight 4. Yeah, I know, it’s weird. This led me to create a specific version of these assemblies for the phone. The assemblies are located into C:\Program Files\Laurent Bugnion (GalaSoft)\Mvvm Light Toolkit\Binaries\WP7. There are 3 DLLs: GalaSoft.MvvmLight.WP7.dll with RelayCommand, Messenger and ViewModelBase GalaSoft.MvvmLight.Extras.WP7.dll with EventToCommand and DispatcherHelper System.Windows.Interactivity.dll which is the same DLL installed in the Blend SDK, and which is needed for the EventToCommand behavior to work. Happy coding! That’s all! Download and install the service pack according to the instructions on the Installation page, and create your first MVVM Light application for the phone (a blog post will follow later with more details).   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Getting Started With Sinatra

    - by Liam McLennan
    Sinatra is a Ruby DSL for building web applications. It is distinguished from its peers by its minimalism. Here is hello world in Sinatra: require 'rubygems' require 'sinatra' get '/hi' do "Hello World!" end A haml view is rendered by: def '/' haml :name_of_your_view end Haml is also new to me. It is a ruby-based view engine that uses significant white space to avoid having to close tags. A hello world web page in haml might look like: %html %head %title Hello World %body %div Hello World You see how the structure is communicated using indentation instead of opening and closing tags. It makes views more concise and easier to read. Based on my syntax highlighter for Gherkin I have started to build a sinatra web application that publishes syntax highlighted gherkin feature files. I have found that there is a need to have features online so that customers can access them, and so that they can be linked to project management tools like Jira, Mingle, trac etc. The first thing I want my application to be able to do is display a list of the features that it knows about. This will happen when a user requests the root of the application. Here is my sinatra handler: get '/' do feature_service = Finding::FeatureService.new(Finding::FeatureFileFinder.new, Finding::FeatureReader.new) @features = feature_service.features(settings.feature_path, settings.feature_extensions) haml :index end The handler and the view are in the same scope so the @features variable will be available in the view. This is the same way that rails passes data between actions and views. The view to render the result is: %h2 Features %ul - @features.each do |feature| %li %a{:href => "/feature/#{feature.name}"}= feature.name Clearly this is not a complete web page. I am using a layout to provide the basic html page structure. This view renders an <li> for each feature, with a link to /feature/#{feature.name}. Here is what the page looks like: When the user clicks on one of the links I want to display the contents of that feature file. The required handler is: get '/feature/:feature' do @feature_name = params[:feature] feature_service = Finding::FeatureService.new(Finding::FeatureFileFinder.new, Finding::FeatureReader.new) # TODO replace with feature_service.feature(name) @feature = feature_service.features(settings.feature_path, settings.feature_extensions).find do |feature| feature.name == @feature_name end haml :feature end and the view: %h2= @feature.name %pre{:class => "brush: gherkin"}= @feature.description %div= partial :_back_to_index %script{:type => "text/javascript", :src => "/scripts/shCore.js"} %script{:type => "text/javascript", :src => "/scripts/shBrushGherkin.js"} %script{:type => "text/javascript" } SyntaxHighlighter.all(); Now when I click on the Search link I get a nicely formatted feature file: If you would like see the full source it is available on bitbucket.

    Read the article

  • Open the SQL Server Error Log with PowerShell

    - by BuckWoody
    Using the Server Management Objects (SMO) library, you don’t even need to have the SQL Server 2008 PowerShell Provider to read the SQL Server Error Logs – in fact, you can use regular old everyday PowerShell. Keep in mind you will need the SMO libraries – which can be installed separately or by installing the Client Tools from the SQL Server install media. You could search for errors, store a result as a variable, or act on the returned values in some other way. Replace the Machine Name with your server and Instance Name with your instance, but leave the quotes, to make this work on your system: [reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") $machineName = "UNIVAC" $instanceName = "Production" $sqlServer = new-object ("Microsoft.SqlServer.Management.Smo.Server") "$machineName\$instanceName" $sqlServer.ReadErrorLog() Want to search for something specific, like the word “Error”? Replace the last line with this: $sqlServer.ReadErrorLog() | where {$_.Text -like "Error*"} Script Disclaimer, for people who need to be told this sort of thing: Never trust any script, including those that you find here, until you understand exactly what it does and how it will act on your systems. Always check the script on a test system or Virtual Machine, not a production system. Yes, there are always multiple ways to do things, and this script may not work in every situation, for everything. It’s just a script, people. All scripts on this site are performed by a professional stunt driver on a closed course. Your mileage may vary. Void where prohibited. Offer good for a limited time only. Keep out of reach of small children. Do not operate heavy machinery while using this script. If you experience blurry vision, indigestion or diarrhea during the operation of this script, see a physician immediately. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Autoscaling in a modern world&hellip;. Part 3

    - by Steve Loethen
    The Wasabi Hands on Labs give you a good look at the basic mechanics, but I don’t find the setup too practical.  Using a local console application to host the Autoscaler and rules files is probably the (IMHO) least likely architecture.  Far more common would be hosting in a service on premise (if you want to have the Autoscaler local) or most likely, host it in a Azure role of it’s own.  I chose to go the Azure route. First step was to get the rules.xml and the services.xml files into the cloud.  I tend to be a “one step at a time” sort of guy, so running the console application with the rules sitting in a Azure hosted set of blobs seemed to be the logical first step.  Here are the steps: 1) Create a container in the storage account you wish to use.  Name does not matter, you will get a chance to set the container name (as well as the file names) in the app.config 2) Copy the two files from where you created them to your  container.  I used the same files I had locally.  I made the container public to eliminate security issues, but in the final application, a bit of security needs to be applied (one problem at a time).  The content type was set to text/xml.  I found one reference claiming the importance of this step, and it makes sense. 3) Adjust the app.config to set the location of the files.  This will let you set all the storage account and key information needed to reach into the cloud form your console application.  The sections of your app.config will look like this: <rulesStores> <add name="Blob Rules Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.Rules.Configuration.BlobXmlFileRulesStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="rules.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </rulesStores> <serviceInformationStores> <add name="Blob Service Information Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.ServiceModel.Configuration.BlobXmlFileServiceInformationStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="services.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </serviceInformationStores> Once I had the files up in the sky, I renamed the local copies to just to make my self feel better about the application using the correct set of rules and services.  Deploy the web role to the cloud.  Once it is up and running, start the console application.  You should find the application scales up and down in response to the buttons on the web site.  Tune in next time for moving the hosting of the Autoscaler to a worker role, discussions on getting the logging information into diagnostics into storage, and a set of discussions about certs and how they play a role.

    Read the article

  • Network Solutions Gold VIP Program

    - by GGBlogger
    Today I received an email advising me “Congratulations! You have been selected for the Network Solutions Gold VIP Program” Now I get a bunch of messages from Network Solutions because a long time ago I chose them as my registrar. I usually just save these to my Outlook Network Solutions folder and move on. This time my wife was in the room and I chuckled and said something about “Network Solutions has made me a Gold VIP member.” She said “So what does that mean?” Prompted by that I scrolled down the page to look at my “perks". Let’s see – Special pricing, 1 year free Web Forwarding, 1 hour of free support… etc etc until I hit “Enrollment in SafeRenew* SafeRenew* simplifies your renewal process. It protects your domain name registrations and corresponding services in the event you forget or are unable to renew on time. I’m thinking “Now ain’t that neat” I don’t use auto renew anyway and never have. Then I continued reading: Beginning June 24th, 2012 your domains* (that’s 10 days away) will automatically renew. To ensure continuation of service, please be certain you have a valid credit card on file. If you do not wish for your services to be automatically renewed, please click here to log into account manager and opt out of the SafeRenew™ service. Whoa Network Solutions is going to start spending my money without so much as a by your leave sir!!! I don’t bloody think so and how truly magnanimous of them I can “click here” to opt out of what I didn’t opt in for. Talk about furious! I still am. Now the kicker is: if my wife hadn’t been curious and if I’d had a working credit card on file I wouldn’t have know this until one of my unwanted domain names auto renewed. Of course I was told “Oh – we’d have refunded your money” to which I say bull. In my view Networks Solutions is guilty of a crime of some sort. They DO NOT have a right to spend my money without asking!!!!! So watch out folks.

    Read the article

  • Watching Green Day and discovering Sitecore, priceless.

    - by jonel
    I’m feeling inspired and I’d like to share a technique we’ve implemented in Sitecore to address a URL mapping from our legacy site that we wanted to carry over to the new beautiful Littelfuse.com. The challenge is to carry over all of our series URLs that have been published in our datasheets, we currently have a lot of series and having to create a manual mapping for those could be really tedious. It has the format of http://www.littelfuse.com/series/series-name.html, for instance, http://www.littelfuse.com/series/flnr.html. It would have been easier if we have our information architecture defined like this but that would have been too easy. I took a solution that is 2-fold. First, I need to create a URL rewrite rule using the IIS URL Rewrite Module 2.0. Secondly, we need to implement a handler that will take care of the actual lookup of the actual series. It will be amazing after we’ve gone over the details. Let’s start with the URL rewrite. Create a new blank rule, you can name it with anything you wish. The key part here to talk about is the Pattern and the Action groups. The Pattern is nothing but regex. Basically, I’m telling it to match the regex I have defined. In the Action group, I am telling it what to do, in this case, rewrite to the redirect.aspx webform. In this implementation, I will be using Rewrite instead of redirect so the URL sticks in the browser. If you opt to use Redirect, then the URL bar will display the new URL our webform will redirect to. Let me explain one small thing, the (\w+) in my Pattern group’s regex, will actually translate to {R:1} in my Action’s group. This is where the magic begins. Now let’s see what our Redirect.aspx contains. Remember our {R:1} above which becomes the query string variable s? This are basic .Net code. The only thing that you will probably ask is the LFSearch class. It’s our own implementation of addressing finding items by using a field search, we supply the fieldname, the value of the field, the template name of the item we are after, and the value of true or false if we want to do an exact search, or not. If eureka, then redirect to that item’s Path (Url). If not, tell the user tough luck, here’s the 404 page as a consolation. Amazing, ain’t it?

    Read the article

  • Mathematica Programming Language&ndash;An Introduction

    - by JoshReuben
    The Mathematica http://www.wolfram.com/mathematica/ programming model consists of a kernel computation engine (or grid of such engines) and a front-end of notebook instances that communicate with the kernel throughout a session. The programming model of Mathematica is incredibly rich & powerful – besides numeric calculations, it supports symbols (eg Pi, I, E) and control flow logic.   obviously I could use this as a simple calculator: 5 * 10 --> 50 but this language is much more than that!   for example, I could use control flow logic & setup a simple infinite loop: x=1; While [x>0, x=x,x+1] Different brackets have different purposes: square brackets for function arguments:  Cos[x] round brackets for grouping: (1+2)*3 curly brackets for lists: {1,2,3,4} The power of Mathematica (as opposed to say Matlab) is that it gives exact symbolic answers instead of a rounded numeric approximation (unless you request it):   Mathematica lets you define scoped variables (symbols): a=1; b=2; c=a+b --> 5 these variables can contain symbolic values – you can think of these as partially computed functions:   use Clear[x] or Remove[x] to zero or dereference a variable.   To compute a numerical approximation to n significant digits (default n=6), use N[x,n] or the //N prefix: Pi //N -->3.14159 N[Pi,50] --> 3.1415926535897932384626433832795028841971693993751 The kernel uses % to reference the lastcalculation result, %% the 2nd last, %%% the 3rd last etc –> clearer statements: eg instead of: Sqrt[Pi+Sqrt[Sqrt[Pi+Sqrt[Pi]]] do: Sqrt[Pi]; Sqrt[Pi+%]; Sqrt[Pi+%] The help system supports wildcards, so I can search for functions like so: ?Inv* Mathematica supports some very powerful programming constructs and a rich function library that allow you to do things that you would have to write allot of code for in a language like C++.   the Factor function – factorization: Factor[x^3 – 6*x^2 +11x – 6] --> (-3+x) (-2+x) (-1+x)   the Solve function – find the roots of an equation: Solve[x^3 – 2x + 1 == 0] -->   the Expand function – express (1+x)^10 in polynomial form: Expand[(1+x)^10] --> 1+10x+45x^2+120x^3+210x^4+252x^5+210x^6+120x^7+45x^8+10x^9+x^10 the Prime function – what is the 1000th prime? Prime[1000] -->7919 Mathematica also has some powerful graphics capabilities:   the Plot function – plot the graph of y=Sin x in a single period: Plot[Sin[x], {x,0,2*Pi}] you can also plot 3D surfaces of functions using Plot3D function

    Read the article

  • Plan Operator Tuesday round-up

    - by Rob Farley
    Eighteen posts for T-SQL Tuesday #43 this month, discussing Plan Operators. I put them together and made the following clickable plan. It’s 1000px wide, so I hope you have a monitor wide enough. Let me explain this plan for you (people’s names are the links to the articles on their blogs – the same links as in the plan above). It was clearly a SELECT statement. Wayne Sheffield (@dbawayne) wrote about that, so we start with a SELECT physical operator, leveraging the logical operator Wayne Sheffield. The SELECT operator calls the Paul White operator, discussed by Jason Brimhall (@sqlrnnr) in his post. The Paul White operator is quite remarkable, and can consume three streams of data. Let’s look at those streams. The first pulls data from a Table Scan – Boris Hristov (@borishristov)’s post – using parallel threads (Bradley Ball – @sqlballs) that pull the data eagerly through a Table Spool (Oliver Asmus – @oliverasmus). A scalar operation is also performed on it, thanks to Jeffrey Verheul (@devjef)’s Compute Scalar operator. The second stream of data applies Evil (I figured that must mean a procedural TVF, but could’ve been anything), courtesy of Jason Strate (@stratesql). It performs this Evil on the merging of parallel streams (Steve Jones – @way0utwest), which suck data out of a Switch (Paul White – @sql_kiwi). This Switch operator is consuming data from up to four lookups, thanks to Kalen Delaney (@sqlqueen), Rick Krueger (@dataogre), Mickey Stuewe (@sqlmickey) and Kathi Kellenberger (@auntkathi). Unfortunately Kathi’s name is a bit long and has been truncated, just like in real plans. The last stream performs a join of two others via a Nested Loop (Matan Yungman – @matanyungman). One pulls data from a Spool (my post – @rob_farley) populated from a Table Scan (Jon Morisi). The other applies a catchall operator (the catchall is because Tamera Clark (@tameraclark) didn’t specify any particular operator, and a catchall is what gets shown when SSMS doesn’t know what to show. Surprisingly, it’s showing the yellow one, which is about cursors. Hopefully that’s not what Tamera planned, but anyway...) to the output from an Index Seek operator (Sebastian Meine – @sqlity). Lastly, I think everyone put in 110% effort, so that’s what all the operators cost. That didn’t leave anything for me, unfortunately, but that’s okay. Also, because he decided to use the Paul White operator, Jason Brimhall gets 0%, and his 110% was given to Paul’s Switch operator post. I hope you’ve enjoyed this T-SQL Tuesday, and have learned something extra about Plan Operators. Keep your eye out for next month’s one by watching the Twitter Hashtag #tsql2sday, and why not contribute a post to the party? Big thanks to Adam Machanic as usual for starting all this. @rob_farley

    Read the article

  • TSAM 11gR1

    - by todd.little
    The Tuxedo System and Application Monitor (TSAM) 11gR1 release provides powerful new application monitoring capabilities, as well as significant improvements in ease of use. The first thing users will notice is the completely redesigned user interface in the TSAM console. Based on Oracle ADF, the console is much easier to navigate, provides a Web 2.0 style interface with dynamically updating panels, and a look and feel familiar to those that have used Oracle Enterprise Manager. Monitoring data can be viewed in both tabular and graphical form and exported to Excel for further analysis. A number of new metrics are collected and displayed in this release. Call path monitoring now displays CPU time, message size, total transport time, and client address giving even more end-to-end information about a specific Tuxedo request. As well the call path display has been completely revamped to make it much easier to see the branches of the call path. The call pattern display now provides statistics on successful vs failed calls, system and application failures, and end-to-end average elapsed time. Service monitoring now displays minimum and maximum message size, CPU usage, and client address. System server monitoring now includes monitoring the SALT gateway servers to provide detailed performance metrics about those servers. Perhaps the most significant new feature is the consolidation of alert definitions and policy management. In previous versions of TSAM, some alerts were defined and checked on the monitored systems while others were defined and checked in the console. Policy management could be performed on both the monitored node via environment variable or command, as well as from the console. Now all alert definitions and policy definitions are only made using the console. For alerts this means that regardless of where the alert is evaluated it is defined in one and only one place. Thus the plug-in alert mechanism of previous releases can now be managed using the TSAM console, making SLA alert definition much easier and cleaner. Finally there is support in TSAM for monitoring rehosted mainframe applications. The newly announced Oracle Tuxedo Application Runtime for CICS and Batch can be monitored in the TSAM console using traditional mainframe views of the application such as regions. Look for a future blog entry with more details on this as well as some entries providing a glimpse of the console. TSAM gives users a single point for monitoring the performance of all of their Tuxedo applications.

    Read the article

< Previous Page | 521 522 523 524 525 526 527 528 529 530 531 532  | Next Page >