Search Results

Search found 5521 results on 221 pages for 'deeper understanding'.

Page 53/221 | < Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >

  • Linux: How to allow group members to set/change permissions on a file

    - by KThompson
    I thought I had a good understanding of how permissions worked on linux. I have folder where it and everything inside has the owner "me" and the group "group". I gave the group rwx access on all the files and still members of the group cannot modify permissions on any files. I'm using Redhat Enterprise Linux 5 Is it possible to allow group members to modify permissions on file and not just the owner? How? Thanks in advance

    Read the article

  • Failure Scenarios in IP networks [closed]

    - by Karthik
    I am searching for a list of faults that may occur in a traditional IP network. To give you a better understanding of what I am looking for: For an MPLS-IP network the set of faults may be something as given in this cisco site. I want pointers to such kind of faults for a traditional IP network. Individual suggestions from you are welcome, but in doing so, please also provide a link to the official site from which you came with those failure scenarios.

    Read the article

  • Is it possible upgrade to Windows 8 from Windows OEM?

    - by Drake
    In a Microsoft's post about Windows 8 upgrade it is written: We set out to make it as easy as possible for everyone to upgrade to Windows 8. Starting at general availability, if your PC is running Windows XP, Windows Vista, or Windows 7 you will qualify to download an upgrade to Windows 8 Pro for just $39.99 in 131 markets. I am now interested in understanding if this upgrade options are available also for Windows XP/Vista/7 OEM versions. Do you have any idea?

    Read the article

  • How to recover data from a partially overwritten partition

    - by shredder12
    By mistake, I configured a 900GB partition to be part of a 50GB raid. The sync is complete and my understanding is that only the first 50GB of the bigger partition is overwritten. How do I recover the rest of the data? When I try to mount this partition by identifying it as ext3, it mounts only the 50GB overwritten space. This partition was earlier divided into various logical volumes(all ext3 filesystems) through LVM. Any suggestions?

    Read the article

  • What filesystem comes closest to matching NTFS for support of ACLs, and highly-granular permissioning?

    - by warren
    It seems that most other filesystems handle the basic *nix permissions (ugo±rwx), with maybe an addition here or there. Or can be "made" to handle ACLs through the use of other tools on top of the system. On the wikipedia pages about filesystems (http://en.wikipedia.org/wiki/List%5Fof%5Ffile%5Fsystems & http://en.wikipedia.org/wiki/Comparison%5Fof%5Ffile%5Fsystems), it appears that while some do support extended meta-data, none support natively the level of permissioning that NTFS does. Am I wrong in this understanding?

    Read the article

  • Utilizing 5 physical servers in 1 cluster

    - by Vijay Gharge
    Hi, I have 5 physical servers with low end memory & cpu resources. I want to create 1 cluster using all these servers and want to run mysql db on the same such that mysql db would utilize 5 server's CPU power to execute db queries & same for memory. Could you please help me understanding how to achieve this? Regards,

    Read the article

  • Troubleshooting Network Speeds -- The Age Old Inquiry

    - by John K
    I'm looking for help with what I'm sure is an age old question. I've found myself in a situation of yearning to understand network throughput more clearly, but I can't seem to find information that makes it "click" We have a few servers distributed geographically, running various versions of Windows. Assuming we always use one host (a desktop) as the source, when copying data from that host to other servers across the country, we see a high variance in speed. In some cases, we can copy data at 12MB/s consistently, in others, we're seeing 0.8 MB/s. It should be noted, after testing 8 destinations, we always seem to be at either 0.6-0.8MB/s or 11-12 MB/s. In the building we're primarily concerned with, we have an OC-3 connection to our ISP. I know there are a lot of variables at play, but I guess I was hoping the experts here could help answer a few basic questions to help bolster my understanding. 1.) For older machines, running Windows XP, server 2003, etc, with a 100Mbps Ethernet card and 72 ms typical latency, does 0.8 MB/s sound at all reasonable? Or do you think that slow enough to indicate a problem? 2.) The classic "mathematical fastest speed" of "throughput = TCP window / latency," is, in our case, calculated to 0.8 MB/s (64Kb / 72 ms). My understanding is that is an upper bounds; that you would never expect to reach (due to overhead) let alone surpass that speed. In some cases though, we're seeing speeds of 12.3 MB/s. There are Steelhead accelerators scattered around the network, could those account for such a higher transfer rate? 3.) It's been suggested that the use SMB vs. SMB2 could explain the differences in speed. Indeed, as expected, packet captures show both being used depending on the OS versions in play, as we would expect. I understand what determines SMB2 being used or not, but I'm curious to know what kind of performance gain you can expect with SMB2. My problem simply seems to be a lack of experience, and more importantly, perspective, in terms of what are and are not reasonable network speeds. Could anyone help impart come context/perspective?

    Read the article

  • What is the CPU microcode?

    - by golem
    Today after unpacking the initramfs file from my Linux /boot directory I found that it contains the GenuineIntel.bin file, and that that file is an image of what is called the CPU microcode. Then I found articles on ArchWiki and Wikipedia describing the subject. Now I'm not sure that my vague understanding of the subject is correct. Can anyone please explain what the CPU microcode is in plain English?

    Read the article

  • How can a cloud be created from virtualization or how is it different from virtualization?

    - by Echelon
    I have heard that virtualization is the basis of Cloud,so If i have a machine with xen as virtualizing environment and many vms running on it,then can that be called as a cloud. Is it true that vms that scale based on load and memory is called cloud and vms that do not scale is called as just virtualization! How can a vm scale??Based on my understanding for xen once we fix cpu and ram,it cant go beyond that (am aware of Dynamic memory Management) so how it really scale?.Can any one please clarify this

    Read the article

  • Cisco 861 Router forces one-to-one NAT

    - by Slurpee
    I have a cisco 861 router that only allows one-to-one NATs in order to access the Internet. I would like for computers to get an address via DHCP from this router, and be able to access the Internet without needing to set a static NAT to one of my public IPs. What is wrong with the configuration? I have a basic understanding of the IOS CLI, most of the configuration file (edited for content) was created by my company's long gone Senior Network Engineer.

    Read the article

  • More RAM vs. more servers

    - by user357972
    I was recently asked "Do you know when to decide between going for more RAM or more servers?" (in the context of scaling data mining applications). I had no idea, so what are some ways to decide? I have very little knowledge of architecture and scaling (my understanding of computer memory and what a server does is limited to the high-level basics), so tips on learning more about these things in general are also very welcome.

    Read the article

  • Practical way to implement prevention of IP Spoofing

    - by user1369975
    I am an undergraduate Computer Science student and was hoping to gain some knowledge of ways to help prevent IP spoofing but all the resources I have tried out elaborate this concept in a theoretical way. I want to try out my hands at one of the techniques like: http://en.wikipedia.org/wiki/Port_knocking http://en.wikipedia.org/wiki/SYN_cookies How do I simulate this whole situation in my own system were I myself am the attacker and I myself have to defend it? And once I have gained an understanding of it, then how do I start translating that into programming terms?

    Read the article

  • Cached memory refers to both cached memory (that is currently usable) and used memory (that was previous cached)?

    - by Pacerier
    Hi all I was trying to confirm my understanding of "standby list" and "modified list" as stated in this article. Is it true that "Cached memory" (as shown in the image below) refers to memory that is currently cached (available for use), and memory that was previous cached (previously available for use), but currently used (now not available for use) ? So if x = "Cached memory" (1184), y = "modified cache pages", z = "cached and were modified", x = y + z holds true ?

    Read the article

  • How to start a local server and open it in a browser from a shell script

    - by davidchambers
    I have a test suite which runs in a browser (using QUnit, though that's unimportant). The test suite requires a local server running on a particular port. Running the tests currently involves a few steps: node test/server switch to browser of choice open localhost:3000 I'd like to have a single command which starts the server then runs open localhost:3000. Ideally, the node process would remain in the foreground so it could be killed with ^C. I don't have a good understanding of subshells, so I'm not sure whether this is possible.

    Read the article

  • .NET Code Evolution

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/07/24/153504.aspxAt my day job I do look at a lot of code written by other people. Most of the code is quite good and some is even a masterpiece. And there is also code which makes you think WTF… oh it was written by me. Hm not so bad after all. There are many excuses reasons for bad code. Most often it is time pressure followed by not enough ambition (who cares) or insufficient training. Normally I do care about code quality quite a lot which makes me a (perceived) slow worker who does write many tests and refines the code quite a lot because of the design deficiencies. Most of the deficiencies I do find by putting my design under stress while checking for invariants. It does also help a lot to step into the code with a debugger (sometimes also Windbg). I do this much more often when my tests are red. That way I do get a much better understanding what my code really does and not what I think it should be doing. This time I do want to show you how code can evolve over the years with different .NET Framework versions. Once there was  time where .NET 1.1 was new and many C++ programmers did switch over to get rid of not initialized pointers and memory leaks. There were also nice new data structures available such as the Hashtable which is fast lookup table with O(1) time complexity. All was good and much code was written since then. At 2005 a new version of the .NET Framework did arrive which did bring many new things like generics and new data structures. The “old” fashioned way of Hashtable were coming to an end and everyone used the new Dictionary<xx,xx> type instead which was type safe and faster because the object to type conversion (aka boxing) was no longer necessary. I think 95% of all Hashtables and dictionaries use string as key. Often it is convenient to ignore casing to make it easy to look up values which the user did enter. An often followed route is to convert the string to upper case before putting it into the Hashtable. Hashtable Table = new Hashtable(); void Add(string key, string value) { Table.Add(key.ToUpper(), value); } This is valid and working code but it has problems. First we can pass to the Hashtable a custom IEqualityComparer to do the string matching case insensitive. Second we can switch over to the now also old Dictionary type to become a little faster and we can keep the the original keys (not upper cased) in the dictionary. Dictionary<string, string> DictTable = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase); void AddDict(string key, string value) { DictTable.Add(key, value); } Many people do not user the other ctors of Dictionary because they do shy away from the overhead of writing their own comparer. They do not know that .NET has for strings already predefined comparers at hand which you can directly use. Today in the many core area we do use threads all over the place. Sometimes things break in subtle ways but most of the time it is sufficient to place a lock around the offender. Threading has become so mainstream that it may sound weird that in the year 2000 some guy got a huge incentive for the idea to reduce the time to process calibration data from 12 hours to 6 hours by using two threads on a dual core machine. Threading does make it easy to become faster at the expense of correctness. Correct and scalable multithreading can be arbitrarily hard to achieve depending on the problem you are trying to solve. Lets suppose we want to process millions of items with two threads and count the processed items processed by all threads. A typical beginners code might look like this: int Counter; void IJustLearnedToUseThreads() { var t1 = new Thread(ThreadWorkMethod); t1.Start(); var t2 = new Thread(ThreadWorkMethod); t2.Start(); t1.Join(); t2.Join(); if (Counter != 2 * Increments) throw new Exception("Hmm " + Counter + " != " + 2 * Increments); } const int Increments = 10 * 1000 * 1000; void ThreadWorkMethod() { for (int i = 0; i < Increments; i++) { Counter++; } } It does throw an exception with the message e.g. “Hmm 10.222.287 != 20.000.000” and does never finish. The code does fail because the assumption that Counter++ is an atomic operation is wrong. The ++ operator is just a shortcut for Counter = Counter + 1 This does involve reading the counter from a memory location into the CPU, incrementing value on the CPU and writing the new value back to the memory location. When we do look at the generated assembly code we will see only inc dword ptr [ecx+10h] which is only one instruction. Yes it is one instruction but it is not atomic. All modern CPUs have several layers of caches (L1,L2,L3) which try to hide the fact how slow actual main memory accesses are. Since cache is just another word for redundant copy it can happen that one CPU does read a value from main memory into the cache, modifies it and write it back to the main memory. The problem is that at least the L1 cache is not shared between CPUs so it can happen that one CPU does make changes to values which did change in meantime in the main memory. From the exception you can see we did increment the value 20 million times but half of the changes were lost because we did overwrite the already changed value from the other thread. This is a very common case and people do learn to protect their  data with proper locking.   void Intermediate() { var time = Stopwatch.StartNew(); Action acc = ThreadWorkMethod_Intermediate; var ar1 = acc.BeginInvoke(null, null); var ar2 = acc.BeginInvoke(null, null); ar1.AsyncWaitHandle.WaitOne(); ar2.AsyncWaitHandle.WaitOne(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Intermediate did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Intermediate() { for (int i = 0; i < Increments; i++) { lock (this) { Counter++; } } } This is better and does use the .NET Threadpool to get rid of manual thread management. It does give the expected result but it can result in deadlocks because you do lock on this. This is in general a bad idea since it can lead to deadlocks when other threads use your class instance as lock object. It is therefore recommended to create a private object as lock object to ensure that nobody else can lock your lock object. When you read more about threading you will read about lock free algorithms. They are nice and can improve performance quite a lot but you need to pay close attention to the CLR memory model. It does make quite weak guarantees in general but it can still work because your CPU architecture does give you more invariants than the CLR memory model. For a simple counter there is an easy lock free alternative present with the Interlocked class in .NET. As a general rule you should not try to write lock free algos since most likely you will fail to get it right on all CPU architectures. void Experienced() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); t1.Wait(); t2.Wait(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Experienced did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Experienced() { for (int i = 0; i < Increments; i++) { Interlocked.Increment(ref Counter); } } Since time does move forward we do not use threads explicitly anymore but the much nicer Task abstraction which was introduced with .NET 4 at 2010. It is educational to look at the generated assembly code. The Interlocked.Increment method must be called which does wondrous things right? Lets see: lock inc dword ptr [eax] The first thing to note that there is no method call at all. Why? Because the JIT compiler does know very well about CPU intrinsic functions. Atomic operations which do lock the memory bus to prevent other processors to read stale values are such things. Second: This is the same increment call prefixed with a lock instruction. The only reason for the existence of the Interlocked class is that the JIT compiler can compile it to the matching CPU intrinsic functions which can not only increment by one but can also do an add, exchange and a combined compare and exchange operation. But be warned that the correct usage of its methods can be tricky. If you try to be clever and look a the generated IL code and try to reason about its efficiency you will fail. Only the generated machine code counts. Is this the best code we can write? Perhaps. It is nice and clean. But can we make it any faster? Lets see how good we are doing currently. Level Time in s IJustLearnedToUseThreads Flawed Code Intermediate 1,5 (lock) Experienced 0,3 (Interlocked.Increment) Master 0,1 (1,0 for int[2]) That lock free thing is really a nice thing. But if you read more about CPU cache, cache coherency, false sharing you can do even better. int[] Counters = new int[12]; // Cache line size is 64 bytes on my machine with an 8 way associative cache try for yourself e.g. 64 on more modern CPUs void Master() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Master, 0); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Master, Counters.Length - 1); t1.Wait(); t2.Wait(); Counter = Counters[0] + Counters[Counters.Length - 1]; if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Master did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Master(object number) { int index = (int) number; for (int i = 0; i < Increments; i++) { Counters[index]++; } } The key insight here is to use for each core its own value. But if you simply use simply an integer array of two items, one for each core and add the items at the end you will be much slower than the lock free version (factor 3). Each CPU core has its own cache line size which is something in the range of 16-256 bytes. When you do access a value from one location the CPU does not only fetch one value from main memory but a complete cache line (e.g. 16 bytes). This means that you do not pay for the next 15 bytes when you access them. This can lead to dramatic performance improvements and non obvious code which is faster although it does have many more memory reads than another algorithm. So what have we done here? We have started with correct code but it was lacking knowledge how to use the .NET Base Class Libraries optimally. Then we did try to get fancy and used threads for the first time and failed. Our next try was better but it still had non obvious issues (lock object exposed to the outside). Knowledge has increased further and we have found a lock free version of our counter which is a nice and clean way which is a perfectly valid solution. The last example is only here to show you how you can get most out of threading by paying close attention to your used data structures and CPU cache coherency. Although we are working in a virtual execution environment in a high level language with automatic memory management it does pay off to know the details down to the assembly level. Only if you continue to learn and to dig deeper you can come up with solutions no one else was even considering. I have studied particle physics which does help at the digging deeper part. Have you ever tried to solve Quantum Chromodynamics equations? Compared to that the rest must be easy ;-). Although I am no longer working in the Science field I take pride in discovering non obvious things. This can be a very hard to find bug or a new way to restructure data to make something 10 times faster. Now I need to get some sleep ….

    Read the article

  • Raycasting "fisheye effect" question

    - by mattboy
    Continuing my exploration of raycasting, I am very confused about how the correction of the fisheye effect works. Looking at the screenshot below from the tutorial at permadi.com, the way I understand the cause of the fisheye effect is that the rays that are cast are distances from the player, rather than the distances perpendicular to the screen (or camera plane) which is what really needs to be displayed. The distance perpendicular to the screen then, in my world, should simply be the distance of Y coordinates (Py - Dy) assuming that the player is facing straight upwards. Continuing the tutorial, this is exactly how it seems to be according to the below screenshot. From my point of view, the "distorted distance" below is the same as the distance PD calculated above, and what's labelled the "correct distance" below should be the same as Py - Dy. Yet, this clearly isn't the case according to the tutorial. My question is, WHY is this not the same? How could it not be? What am I understanding and visualizing wrong here?

    Read the article

  • Ruby on Rails - How can I start? [closed]

    - by Mashael
    I have misconception in understanding the relationship between Ruby language and Ruby on Rails Framework. Because of 'I am an absolute beginner' in web development I have no idea if I have to grasp the fundamentals of Ruby before I go with Ruby on Rails! I also want to ask who is behind both Ruby and Ruby on Rails. Who is developing both? And is there intention to improve its speed? In short, I'd like to know the road map to effectively beginning learning Ruby on Rails. Furthermore, I'm wondering about the next steps in improving Ruby and Rails and who are the main role players in improving them?

    Read the article

  • Show Notes: Architects in the Cloud

    - by Bob Rhubart
    Stephen G. Bennett and Archie Reed, the authors of Silver Clouds, Dark Linings: A Concise Guide to Cloud Computing,  discuss what’s new and what’s not so new about cloud computing, talk about how marketing hype has muddied understanding of what cloud is and what it can do, and explore other issues in the latest ArchBeat interview series. Listen to Part 1 Listen to Part 2 (December 22) Listen to Part 3 (December 29) Listen to Part 4 (January 5) Connect If you have questions, comments, or would otherwise like to interact directly with Steve or Archie, you can so through the following channels: Stephen G. Bennett Blog | Twitter | LinkedIn Archie Reed Blog | Twitter | LinkedIn Steve and Archie have also set up a Twitter account and blog specifically for their book: Twitter: @concisecloud Blog: concisecloud.com Of course, the book is available on Amazon: http://amzn.to/silverclouddarklinings Stay tuned: RSS Technorati Tags: oracle,otn,archbeat,cloud computing,podcast,. stephen bennett,archie reed del.icio.us Tags: oracle,otn,archbeat,cloud computing,podcast,. stephen bennett,archie reed

    Read the article

  • The Mysterious ARR Server Farm to URL Rewrite link

    Application Request Routing (ARR) is a reverse proxy plug-in for IIS7+ that does many things, including functioning as a load balancer.  For this post, Im assuming that you already have an understanding of ARR.  Today I wanted to find out how the mysterious link between ARR and URL Rewrite is maintained.  Let me explain ARR is unique in that it doesnt work by itself.  It sits on top of IIS7 and uses URL Rewrite.  As a result, ARR depends on URL Rewrite to catch the traffic...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • TFS 2010 and SSL Configuration: Part 1 Certificates in Place

    - by Enrique Lima
    What is needed?  For starters, an understanding on the how to properly configure a certificate in IIS. Many people have found challenges in working with certificates in IIS 7 First thing is to get your certificate created, and then proceed to add it to IIS 7 By clicking on Server Certificates, we will get to this And we will be able to see the certificate or certificates installed. What options do we have to get certificates? They can be generated “in-house” or purchase them from certification authorities.  If it is “in-house”, you will those options in the Server Certificates area of IIS Manager.

    Read the article

  • SQL SERVER – Database Dynamic Caching by Automatic SQL Server Performance Acceleration

    - by pinaldave
    My second look at SafePeak’s new version (2.1) revealed to me few additional interesting features. For those of you who hadn’t read my previous reviews SafePeak and not familiar with it, here is a quick brief: SafePeak is in business of accelerating performance of SQL Server applications, as well as their scalability, without making code changes to the applications or to the databases. SafePeak performs database dynamic caching, by caching in memory result sets of queries and stored procedures while keeping all those cache correct and up to date. Cached queries are retrieved from the SafePeak RAM in microsecond speed and not send to the SQL Server. The application gets much faster results (100-500 micro seconds), the load on the SQL Server is reduced (less CPU and IO) and the application or the infrastructure gets better scalability. SafePeak solution is hosted either within your cloud servers, hosted servers or your enterprise servers, as part of the application architecture. Connection of the application is done via change of connection strings or adding reroute line in the c:\windows\system32\drivers\etc\hosts file on all application servers. For those who would like to learn more on SafePeak architecture and how it works, I suggest to read this vendor’s webpage: SafePeak Architecture. More interesting new features in SafePeak 2.1 In my previous review of SafePeak new I covered the first 4 things I noticed in the new SafePeak (check out my article “SQLAuthority News – SafePeak Releases a Major Update: SafePeak version 2.1 for SQL Server Performance Acceleration”): Cache setup and fine-tuning – a critical part for getting good caching results Database templates Choosing which database to cache Monitoring and analysis options by SafePeak Since then I had a chance to play with SafePeak some more and here is what I found. 5. Analysis of SQL Performance (present and history): In SafePeak v.2.1 the tools for understanding of performance became more comprehensive. Every 15 minutes SafePeak creates and updates various performance statistics. Each query (or a procedure execute) that arrives to SafePeak gets a SQL pattern, and after it is used again there are statistics for such pattern. An important part of this product is that it understands the dependencies of every pattern (list of tables, views, user defined functions and procs). From this understanding SafePeak creates important analysis information on performance of every object: response time from the database, response time from SafePeak cache, average response time, percent of traffic and break down of behavior. One of the interesting things this behavior column shows is how often the object is actually pdated. The break down analysis allows knowing the above information for: queries and procedures, tables, views, databases and even instances level. The data is show now on all arriving queries, both read queries (that can be cached), but also any types of updates like DMLs, DDLs, DCLs, and even session settings queries. The stats are being updated every 15 minutes and SafePeak dashboard allows going back in time and investigating what happened within any time frame. 6. Logon trigger, for making sure nothing corrupts SafePeak cache data If you have an application with many parts, many servers many possible locations that can actually update the database, or the SQL Server is accessible to many DBAs or software engineers, each can access some database directly and do some changes without going thru SafePeak – this can create a potential corruption of the data stored in SafePeak cache. To make sure SafePeak cache is correct it needs to get all updates to arrive to SafePeak, and if a DBA will access the database directly and do some changes, for example, then SafePeak will simply not know about it and will not clean SafePeak cache. In the new version, SafePeak brought a new feature called “Logon Trigger” to solve the above challenge. By special click of a button SafePeak can deploy a special server logon trigger (with a CLR object) on your SQL Server that actually monitors all connections and informs SafePeak on any connection that is coming not from SafePeak. In SafePeak dashboard there is an interface that allows to control which logins can be ignored based on login names and IPs, while the rest will invoke cache cleanup of SafePeak and actually locks SafePeak cache until this connection will not be closed. Important to note, that this does not interrupt any logins, only informs SafePeak on such connection. On the Dashboard screen in SafePeak you will be able to see those connections and then decide what to do with them. Configuration of this feature in SafePeak dashboard can be done here: Settings -> SQL instances management -> click on instance -> Logon Trigger tab. Other features: 7. User management ability to grant permissions to someone without changing its configuration and only use SafePeak as performance analysis tool. 8. Better reports for analysis of performance using 15 minute resolution charts. 9. Caching of client cursors 10. Support for IPv6 Summary SafePeak is a great SQL Server performance acceleration solution for users who want immediate results for sites with performance, scalability and peak spikes challenges. Especially if your apps are packaged or 3rd party, since no code changes are done. SafePeak can significantly increase response times, by reducing network roundtrip to the database, decreasing CPU resource usage, eliminating I/O and storage access. SafePeak team provides a free fully functional trial www.safepeak.com/download and actually provides a one-on-one assistance during such trial. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Podcast: Advanced MVVM with Josh Smith

    - by craigshoemaker
    Author, Microsoft MVP and accomplished pianist Josh Smith, Sr. UX Developer at IdentityMine, joins the show to discuss some of Model View ViewModel’s more advanced scenarios. Full Speed: download Fast Version: download Josh shares is experience using MVVM gives some real-world advice on: Using modal dialogs Evils and virtues of code behind in views Use of attached behaviors Undo/redo strategies Working with animations Building a task based architecture for managing communication between View and ViewModel Frameworks in the MVVM space The Book Get first-hand experience implementing the solutions to the challenges discussed in the show by reading Josh’s new book ‘Advanced MVVM’. Resources The following resources are mentioned in the show: Laurent Bugnion's mix talk ‘Understanding the Model-View-ViewModel Pattern Josh Smith’s MVVM Foundation Laurent Bugnion’s MVVM Light framework Rob Eisenberg's Caliburn

    Read the article

  • Firefox not detecting Flash 11

    - by user34103
    I installed the Flash 11 plugin using the software center (and have also removed the reinstalled it via command-line in the terminal), yet Firefox still claims the latest version of the plugin I have is 10. (And just to clarify, I have been sure to reboot both Firefox and the entire computer after installing). On further investigation (this may be a red herring, pardon) I ran the uname -a command-line in terminal to assure that I was running the 64-bit version of Ubuntu, and received this feedback: 3.0.0-13-generic #22-Ubuntu SMP Wed Nov 2 13:25:36 UTC 2011 i686 i686 i386 GNU/Linux I don't understand the series "i686 i686 i386". Which applies to my version of Ubuntu? Does this mean I've accidentally installed 32-bit Ubuntu? Very much a beginner here - I've combed the threads but have so little understanding what my exact issue is that I haven't been able to find an answer.

    Read the article

  • Which are the fundamental stack manipulation operations?

    - by Aadit M Shah
    I'm creating a stack oriented virtual machine, and so I started learning Forth for a general understanding about how it would work. Then I shortlisted the essential stack manipulation operations I would need to implement in my virtual machine: drop ( a -- ) dup ( a -- a a ) swap ( a b -- b a ) rot ( a b c -- b c a ) I believe that the following four stack manipulation operations can be used to simulate any other stack manipulation operation. For example: nip ( a b -- b ) swap drop -rot ( a b c -- c a b ) rot rot tuck ( a b -- b a b ) dup -rot over ( a b -- a b a ) swap tuck That being said however I wanted to know whether I have listed all the fundamental stack manipulation operations necessary to manipulate the stack in any possible way. Are there any more fundamental stack manipulation operations I would need to implement, without which my virtual machine wouldn't be Turing complete?

    Read the article

< Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >