Search Results

Search found 2745 results on 110 pages for 'waiting'.

Page 54/110 | < Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >

  • 2 year cis degree and in school for computer science what can I do?

    - by chame1eon
    Hi I am 29 and have a recent 2 cis year degree from a community college , an A+ certification , and meager experience with web stuff ( Java , Javascript , php ) while in my 1 year help desk internship. In all the programming classes I was able to blow through the homework easily even while other students were panicking and dropping. I think I have managed to avoid the most atrocious noob/self taught mistakes ( spaghetti code etc) by just doing research before starting something and trying to keep good design in mind. Even so I'd have to make heavy use of references to crawl through even simple projects that would result in fully finished useful applications. I need a job now and I am tired of the slow pace of the classes and would love to get any kind of practical experience I could. The problem is that I am not sure what I should be trying to do. I have a very strong preference for application programming or at least anything light on design and preferably pretty low level. If I can't do that then anything technology related , for example help desk would be better than nothing. I live near Raleigh NC. Am I qualified for anything that could contribute to coding (C++ or Java ) experience or even web development though I don't really like it. Would web development experience help. If not is there anything I could read or do that could help? Is the help desk my only choice? If it is, are there any relatively quick certifications or anything similar that would help while I am waiting? Sorry about the long multi-part question. Thanks for reading.

    Read the article

  • Configuring network to set wlan0 as primary

    - by Sheed
    I recently had to rebuild my pc and decided to go for ubuntu 14.04. I think the mistake I made was I started from a 12.04 install disk instead of the 12.10 disk I'd used previously and when given the option set my primary connection as ethernet (because the wireless option didn't work). After upgrading to 14.04 etc, I managed to get the wireless working, or more using steps like ifconfig -a and the likes I managed to prove that the wireless card etc. is all installed and working. However every time I boot without a hard wired connection plugged in I get the message "waiting for network configuration". I can then once it's booted without a network get my wirless working using sudo ifconfig wlan0 up iwlist wlan0 scan This seems to kick the wireless module into life and it appears in the GUI and I can then select a network, however all the options like edit network and disconnect etc are all greyed out. What I would like of course is if the WLAN0 was just set as my primary default network so I've been looking for a solution to this and it would seem that I need to adjust the old /etc/network/interfaces file but when I try to do so using the sudo vi /etc/network/interfaces command I, well I simply have no idea what I'm doing. Other than that typing :q! gets me out of there before I do to much damage! As far as I can tell (by navigating to the file in the GUI) the output of my /etc/network/interfaces is as follows: (obviously not including the " in each line that's just to break the heading rule of the #) "# This file describes the network interfaces available on your system "# and how to activate them. For more information, see interfaces(5). "# The loopback network interface auto lo iface lo inet loopback "# The primary network interface auto eth0 iface eth0 inet dhcp If this is the case then this clearly doesn't contain what it should do but I don't how to fix it. Nor do I even know if I'm on the right track. Any help would be appreciated thanks :)

    Read the article

  • Just installed Ubuntu 12.04. When booting, all I get is a black screen with cursor

    - by user66378
    Installation appears to go fine. After rebooting, I get my motherboard loading screens, but when it comes time for Ubuntu to boot, I just get a black screen with a blinking white underscore in the top-left - same as I got when waiting for the install CD to load, except it lasts forever. The only keypress it seems to recognize is ctrl+alt+del, which reboots. Letters don't register, function keys w/ or w/o modifiers do nothing. I've installed Ubuntu 12.04 twice and got the same error. The first time, I installed it as the only OS, and had it take up the whole disk. The second time, I installed Windows 7 first, then Ubuntu by specifying custom partitions. After this install, it would boot straight to Windows without showing grub. I used EasyBCD to add the Ubuntu installation to grub, and this got grub to show, and let me select it, but it led back to the same error described up top. I've had Linux Mint 11 and 12 installed on this PC, but was unable to get previous versions of Ubuntu to install (always had errors while installing, not after). Hardware: Intel Core i7-2600K Sandy Bridge 3.4GHz (3.8GHz Turbo Boost) LGA 1155 ASUS SABERTOOTH P67 (REV 3.0) LGA 1155 Intel P67 SATA 6Gb/s USB 3.0 ATX Intel Motherboard EVGA 01G-P3-1371-TR GeForce GTX 460 (Fermi) CORSAIR Vengeance 16GB (4 x 4GB) 240-Pin DDR3 SDRAM DDR3 1600 (PC3 12800) Western Digital RE4 WD5003ABYX 500GB 7200 RPM SATA 3.0Gb/s 3.5" Internal Hard Drive

    Read the article

  • a c++ program for task scheduling [closed]

    - by scheduling
    This is the code which I made but I am not able to correct the mistake in the code. Please correct the mistake in my code. #include<unistd.h> #include<stdio.h> #include<stdlib.h> #include<time.h> #include<string.h> int main() { char *timetoken; char currtime[7]; char schedtime[7]; int i; struct tm *localtimeptr; strcpy(schedtime,"15:25:00"); while(6!=9) { time_t lt; sleep(1); lt = time(NULL); localtimeptr = localtime(<); timetoken=strtok(asctime(localtimeptr)," "); for(i=1;i<5;i++) timetoken=strtok('\0'," "); if(i==3) { strcpy(currtime,timetoken); } } printf("The current time is: %s\n",currtime); printf("We are waiting for: %s\n",schedtime); if(!strcmp(currtime,schedtime)) { printf("Time to do stuff \n"); system("C:\PROJECT X"); } getch(); return 0; }

    Read the article

  • a c++ code for scheduling tasks [closed]

    - by scheduling
    This code has no errors but then when i execute it, there is no output and the program automatically shuts down saying the program has stopped working. #include<unistd.h> #include<stdio.h> #include<stdlib.h> #include<time.h> #include<string.h> int main() { char *timetoken; char currtime[7]; char schedtime[7]; int i; struct tm *localtimeptr; strcpy(schedtime,"15:25:00"); while(6!=9) { time_t lt; sleep(1); lt = time(NULL); localtimeptr = localtime(lt); timetoken=strtok(asctime(localtimeptr)," "); for(i=1;i<5;i++) timetoken=strtok('\0'," "); if(i==3) { strcpy(currtime,timetoken); } } printf("The current time is: %s\n",currtime); printf("We are waiting for: %s\n",schedtime); if(!strcmp(currtime,schedtime)) { printf("Time to do stuff \n"); system("C:\PROJECT X"); } getch(); return 0; }

    Read the article

  • Can't turn off display - 13.10 / iMac

    - by user209883
    I can find no way to completely turn off the display on a late 2013 iMac running 13.10 (Saucy). In the power management settings, I configured the display to "turn off" after one minute to see what would happen. The dimness goes all the way down and everything disappears, BUT the LED backlight remains on. When I try the "xset dpms force off" command, absolutely nothing happens--the command is accepted (no error or warning), but nothing changes. I then wiped everything clean and installed 13.04 (Raring). Both methods (dpms and waiting for sleep) work perfectly there, so something has changed in this new version. The problem can be replicated simply by booting from a bootable USB stick. So, I also gave version 14.04 (Trusty) a try in this manner and it has the exact same issues as 13.10. P.S. I would gladly use 13.04, but the catch there is that I can not get the network card to function. I have spent a week now reading everything i can find on both of these matters with no luck at all. Thank you in advance for any advice.

    Read the article

  • Android edtftpj/PRo SFTP heap worker problem

    - by Mr. Kakakuwa Bird
    Hi I am using edtftpj-pro3.1 trial copy in my android app to make SFTP connection with the server. After few connections with the server with 5-6 file transfers, my app is crashing with following exception. Is it causing the problem or what could be the problem?? I tried setParallelMode(false) in SSHFTPClient, but it is not working. Exception i'm getting is, 05-31 18:28:12.661: ERROR/dalvikvm(589): HeapWorker is wedged: 10173ms spent inside Lcom/enterprisedt/net/j2ssh/sftp/SftpFileInputStream;.finalize()V 05-31 18:28:12.661: INFO/dalvikvm(589): DALVIK THREADS: 05-31 18:28:12.661: INFO/dalvikvm(589): "main" prio=5 tid=3 WAIT 05-31 18:28:12.661: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x4001b260 self=0xbd18 05-31 18:28:12.661: INFO/dalvikvm(589): | sysTid=589 nice=0 sched=0/0 cgrp=default handle=-1343993192 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.Object.wait(Native Method) 05-31 18:28:12.661: INFO/dalvikvm(589): - waiting on <0x122d70 (a android.os.MessageQueue) 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.Object.wait(Object.java:288) 05-31 18:28:12.661: INFO/dalvikvm(589): at android.os.MessageQueue.next(MessageQueue.java:148) 05-31 18:28:12.661: INFO/dalvikvm(589): at android.os.Looper.loop(Looper.java:110) 05-31 18:28:12.661: INFO/dalvikvm(589): at android.app.ActivityThread.main(ActivityThread.java:4363) 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.reflect.Method.invokeNative(Native Method) 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.reflect.Method.invoke(Method.java:521) 05-31 18:28:12.661: INFO/dalvikvm(589): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) 05-31 18:28:12.661: INFO/dalvikvm(589): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) 05-31 18:28:12.661: INFO/dalvikvm(589): at dalvik.system.NativeStart.main(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): "Transport protocol 1" daemon prio=5 tid=29 NATIVE 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x44774768 self=0x3a7938 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=605 nice=0 sched=0/0 cgrp=default handle=3834600 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.platform.OSNetworkSystem.receiveStreamImpl(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.platform.OSNetworkSystem.receiveStream(OSNetworkSystem.java:478) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.net.PlainSocketImpl.read(PlainSocketImpl.java:565) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.net.SocketInputStream.read(SocketInputStream.java:87) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.net.SocketInputStream.read(SocketInputStream.java:67) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.io.BufferedInputStream.fillbuf(BufferedInputStream.java:157) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.io.BufferedInputStream.read(BufferedInputStream.java:346) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.io.BufferedInputStream.read(BufferedInputStream.java:341) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.A.A((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.A.B((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.TransportProtocolCommon.processMessages((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.TransportProtocolCommon.startBinaryPacketProtocol((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.TransportProtocolCommon.run((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.671: INFO/dalvikvm(589): "StreamFrameSender" prio=5 tid=27 TIMED_WAIT 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x44750a60 self=0x3964d8 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=603 nice=0 sched=0/0 cgrp=default handle=3761648 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): - waiting on <0x399478 (a com.corventis.gateway.ppp.StreamFrameSender) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Object.java:326) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.ppp.StreamFrameSender.run(StreamFrameSender.java:154) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.util.MonitoredRunnable.run(MonitoredRunnable.java:41) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.671: INFO/dalvikvm(589): "SftpActiveWorker" prio=5 tid=25 TIMED_WAIT 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x447522b0 self=0x398e00 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=604 nice=0 sched=0/0 cgrp=default handle=3762704 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): - waiting on <0x3962d8 (a com.corventis.gateway.hostcommunicator.SftpActiveWorker) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Object.java:326) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.SftpActiveWorker.run(SftpActiveWorker.java:151) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.util.MonitoredRunnable.run(MonitoredRunnable.java:41) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.671: INFO/dalvikvm(589): "Thread-12" prio=5 tid=23 NATIVE 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x4474aca8 self=0x115690 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=602 nice=0 sched=0/0 cgrp=default handle=878120 05-31 18:28:12.671: INFO/dalvikvm(589): at android.bluetooth.BluetoothSocket.acceptNative(Native Method) 05-31 18:28:12.681: INFO/dalvikvm(589): at android.bluetooth.BluetoothSocket.accept(BluetoothSocket.java:287) 05-31 18:28:12.681: INFO/dalvikvm(589): at android.bluetooth.BluetoothServerSocket.accept(BluetoothServerSocket.java:105) 05-31 18:28:12.681: INFO/dalvikvm(589): at android.bluetooth.BluetoothServerSocket.accept(BluetoothServerSocket.java:91) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.bluetooth.BluetoothManager.openPort(BluetoothManager.java:215) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.bluetooth.BluetoothManager.open(BluetoothManager.java:84) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.patchcommunicator.PatchCommunicator.open(PatchCommunicator.java:123) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.patchcommunicator.PatchCommunicatorRunnable.run(PatchCommunicatorRunnable.java:134) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.681: INFO/dalvikvm(589): "HfGatewayApplication" prio=5 tid=21 RUNNABLE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=0 dsCount=0 s=N obj=0x4472d9b0 self=0x120928 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=601 nice=0 sched=0/0 cgrp=default handle=1264672 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.Deflate.deflateInit2(Deflate.java:~1361) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.Deflate.deflateInit(Deflate.java:1316) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.ZStream.deflateInit(ZStream.java:127) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.ZStream.deflateInit(ZStream.java:120) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.ZOutputStream.(ZOutputStream.java:62) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.zipfile.ZipStorer.addStream(ZipStorer.java:211) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.zipfile.ZipStorer.createZip(ZipStorer.java:127) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.HostCommunicator.scanAndCompress(HostCommunicator.java:453) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.HostCommunicator.doWork(HostCommunicator.java:1434) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hf.HfGatewayApplication.doWork(HfGatewayApplication.java:621) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hf.HfGatewayApplication.run(HfGatewayApplication.java:546) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.util.MonitoredRunnable.run(MonitoredRunnable.java:41) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.681: INFO/dalvikvm(589): "Thread-10" prio=5 tid=19 TIMED_WAIT 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x447287f8 self=0x1451b8 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=598 nice=0 sched=0/0 cgrp=default handle=1331920 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.VMThread.sleep(Native Method) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.sleep(Thread.java:1306) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.sleep(Thread.java:1286) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.util.Watchdog.run(Watchdog.java:167) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.681: INFO/dalvikvm(589): "Thread-9" prio=5 tid=17 RUNNABLE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=Y obj=0x44722c90 self=0x114e20 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=597 nice=0 sched=0/0 cgrp=default handle=1200048 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.time.Time.currentTimeMillis(Time.java:~77) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.patchcommunicator.PatchCommunicatorState$1.run(PatchCommunicatorState.java:27) 05-31 18:28:12.681: INFO/dalvikvm(589): "Thread-8" prio=5 tid=15 RUNNABLE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=Y obj=0x44722430 self=0x124dd0 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=596 nice=0 sched=0/0 cgrp=default handle=1199848 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.time.Time.currentTimeMillis(Time.java:~80) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.HostCommunicatorState$1.run(HostCommunicatorState.java:35) 05-31 18:28:12.681: INFO/dalvikvm(589): "Binder Thread #2" prio=5 tid=13 NATIVE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x4471ccc0 self=0x149b60 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=595 nice=0 sched=0/0 cgrp=default handle=1317992 05-31 18:28:12.681: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.681: INFO/dalvikvm(589): "Binder Thread #1" prio=5 tid=11 NATIVE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x447159a8 self=0x123298 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=594 nice=0 sched=0/0 cgrp=default handle=1164896 05-31 18:28:12.681: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: INFO/dalvikvm(589): "JDWP" daemon prio=5 tid=9 VMWAIT 05-31 18:28:12.691: INFO/dalvikvm(589): | group="system" sCount=1 dsCount=0 s=N obj=0x4470f2a0 self=0x141a90 05-31 18:28:12.691: INFO/dalvikvm(589): | sysTid=593 nice=0 sched=0/0 cgrp=default handle=1316864 05-31 18:28:12.691: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: INFO/dalvikvm(589): "Signal Catcher" daemon prio=5 tid=7 VMWAIT 05-31 18:28:12.691: INFO/dalvikvm(589): | group="system" sCount=1 dsCount=0 s=N obj=0x4470f1e8 self=0x124970 05-31 18:28:12.691: INFO/dalvikvm(589): | sysTid=592 nice=0 sched=0/0 cgrp=default handle=1316800 05-31 18:28:12.691: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: INFO/dalvikvm(589): "HeapWorker" daemon prio=5 tid=5 MONITOR 05-31 18:28:12.691: INFO/dalvikvm(589): | group="system" sCount=1 dsCount=0 s=N obj=0x431b4550 self=0x141670 05-31 18:28:12.691: INFO/dalvikvm(589): | sysTid=591 nice=0 sched=0/0 cgrp=default handle=1316400 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpSubsystemClient.closeHandle((null):~-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpSubsystemClient.closeFile((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpFile.close((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpFileInputStream.close((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpFileInputStream.finalize((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: ERROR/dalvikvm(589): VM aborting 05-31 18:28:12.801: INFO/DEBUG(49): * ** * ** * ** * ** * ** * 05-31 18:28:12.801: INFO/DEBUG(49): Build fingerprint: 'google/passion/passion/mahimahi:2.1-update1/ERE27/24178:user/release-keys' 05-31 18:28:12.801: INFO/DEBUG(49): pid: 589, tid: 601 com.corventis.gateway.hf <<< 05-31 18:28:12.801: INFO/DEBUG(49): signal 11 (SIGSEGV), fault addr deadd00d 05-31 18:28:12.801: INFO/DEBUG(49): r0 00000026 r1 afe13329 r2 afe13329 r3 00000000 05-31 18:28:12.801: INFO/DEBUG(49): r4 ad081f50 r5 400091e8 r6 009b3a6a r7 00000000 05-31 18:28:12.801: INFO/DEBUG(49): r8 000002e8 r9 ad082ba0 10 ad082ba0 fp 00000000 05-31 18:28:12.801: INFO/DEBUG(49): ip deadd00d sp 46937c58 lr afe14373 pc ad035b4c cpsr 20000030 05-31 18:28:12.851: INFO/DEBUG(49): #00 pc 00035b4c /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #01 pc 00044d7c /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #02 pc 000162e4 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #03 pc 00016b60 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #04 pc 00016ce0 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #05 pc 00057b64 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #06 pc 00057cc0 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #07 pc 00057dd4 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #08 pc 00012ffc /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #09 pc 00019338 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #10 pc 00018804 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #11 pc 0004eed0 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #12 pc 0004eef8 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #13 pc 000426d4 /system/lib/libdvm.so 05-31 18:28:12.881: INFO/DEBUG(49): #14 pc 0000fd74 /system/lib/libc.so 05-31 18:28:12.881: INFO/DEBUG(49): #15 pc 0000f840 /system/lib/libc.so 05-31 18:28:12.881: INFO/DEBUG(49): code around pc: 05-31 18:28:12.881: INFO/DEBUG(49): ad035b3c 58234808 b1036b9b f8df4798 2026c01c 05-31 18:28:12.881: INFO/DEBUG(49): ad035b4c 0000f88c ef52f7d8 0004c428 fffe631c 05-31 18:28:12.881: INFO/DEBUG(49): ad035b5c fffe94f4 000002f8 deadd00d f8dfb40e 05-31 18:28:12.881: INFO/DEBUG(49): code around lr: 05-31 18:28:12.881: INFO/DEBUG(49): afe14360 686768a5 f9b5e008 b120000c 46289201 05-31 18:28:12.881: INFO/DEBUG(49): afe14370 9a014790 35544306 37fff117 6824d5f3 05-31 18:28:12.881: INFO/DEBUG(49): afe14380 d1ed2c00 bdfe4630 00026ab0 000000b4 05-31 18:28:12.881: INFO/DEBUG(49): stack: 05-31 18:28:12.881: INFO/DEBUG(49): 46937c18 00000015 05-31 18:28:12.881: INFO/DEBUG(49): 46937c1c afe13359 /system/lib/libc.so 05-31 18:28:12.881: INFO/DEBUG(49): 46937c20 afe3b02c /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c24 afe3afd8 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c28 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c2c afe14373 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c30 afe13329 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c34 afe13329 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c38 afe13380 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c3c ad081f50 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c40 400091e8 /dev/ashmem/mspace/dalvik-heap/zygote/0 (deleted) 05-31 18:28:12.891: INFO/DEBUG(49): 46937c44 009b3a6a 05-31 18:28:12.891: INFO/DEBUG(49): 46937c48 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c4c afe1338d /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c50 df002777 05-31 18:28:12.891: INFO/DEBUG(49): 46937c54 e3a070ad 05-31 18:28:12.891: INFO/DEBUG(49): #00 46937c58 ad06f573 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c5c ad044d81 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): #01 46937c60 000027bd 05-31 18:28:12.891: INFO/DEBUG(49): 46937c64 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c68 463b6ab4 /data/dalvik-cache/data@[email protected]@classes.dex 05-31 18:28:12.891: INFO/DEBUG(49): 46937c6c 463d1ecf /data/dalvik-cache/data@[email protected]@classes.dex 05-31 18:28:12.891: INFO/DEBUG(49): 46937c70 00140450 [heap] 05-31 18:28:12.891: INFO/DEBUG(49): 46937c74 ad041d2b /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c78 ad082f2c /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c7c ad06826c /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c80 00140450 [heap] 05-31 18:28:12.891: INFO/DEBUG(49): 46937c84 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c88 000002f8 05-31 18:28:12.891: INFO/DEBUG(49): 46937c8c 400091e8 /dev/ashmem/mspace/dalvik-heap/zygote/0 (deleted) 05-31 18:28:12.891: INFO/DEBUG(49): 46937c90 ad081f50 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c94 000002f8 05-31 18:28:12.891: INFO/DEBUG(49): 46937c98 00002710 05-31 18:28:12.891: INFO/DEBUG(49): 46937c9c ad0162e8 /system/lib/libdvm.so Thanks & Regards,

    Read the article

  • Cold Start

    - by antony.reynolds
    Well we had snow drifts 3ft deep on Saturday so it must be spring time.  In preparation for Spring we decided to move the lawn tractor.  Of course after sitting in the garage all winter it refused to start.  I then come into the office and need to start my 11g SOA Suite installation.  I thought about this and decided my tractor might be cranky but at least I can script the startup of my SOA Suite 11g installation. So with this in mind I created 6 scripts.  I created them for Linux but they should translate to Windows without too many problems.  This is left as an exercise to the reader, note you will have to hardcode more than I did in the Linux scripts and create separate script files for the sqlplus and WLST sections. Order to start things I believe there should be order in all things, especially starting the SOA Suite.  So here is my preferred order. Start Database This is need by EM and the rest of SOA Suite so best to start it before the Admin Server and managed servers. Start Node Manager on all machines This is needed if you want the scripts to work across machines. Start Admin Server Once this is done in theory you can manually stat the managed servers using WebLogic console.  But then you have to wait for console to be available.  Scripting it all is quicker and easier way of starting. Start Managed Servers & Clusters Best to start them one per physical machine at a time to avoid undue load on the machines.  Non-clustered install will have just soa_server1 and bam_serv1 by default.  Clusters will have at least SOA and BAM clusters that can be started as a group or individually.  I have provided scripts for standalone servers, but easy to change them to work with clusters. Starting Database I have provided a very primitive script (available here) to start the database, the listener and the DB console.  The section highlighted in red needs to match your database name. #!/bin/sh echo "##############################" echo "# Setting Oracle Environment #" echo "##############################" . oraenv <<-EOF orcl EOF echo "#####################" echo "# Starting Database #" echo "#####################" sqlplus / as sysdba <<-EOF startup exit EOF echo "#####################" echo "# Starting Listener #" echo "#####################" lsnrctl start echo "######################" echo "# Starting dbConsole #" echo "######################" emctl start dbconsole read -p "Hit <enter> to continue" Starting SOA Suite My script for starting the SOA Suite (available here) breaks the task down into five sections. Setting the Environment First set up the environment variables.  The variables highlighted in red probably need changing for your environment. #!/bin/sh echo "###########################" echo "# Setting SOA Environment #" echo "###########################" export MW_HOME=~oracle/Middleware11gPS1 export WL_HOME=$MW_HOME/wlserver_10.3 export ORACLE_HOME=$MW_HOME/Oracle_SOA export DOMAIN_NAME=soa_std_domain export DOMAIN_HOME=$MW_HOME/user_projects/domains/$DOMAIN_NAME Starting the Node Manager I start node manager with a nohup to stop it exiting when the script terminates and I redirect the standard output and standard error to a file in a logs directory. cd $DOMAIN_HOME echo "#########################" echo "# Starting Node Manager #" echo "#########################" nohup $WL_HOME/server/bin/startNodeManager.sh >logs/NodeManager.out 2>&1 & Starting the Admin Server I had problems starting the Admin Server from Node Manager so I decided to start it using the command line script.  I again use nohup and redirect output. echo "#########################" echo "# Starting Admin Server #" echo "#########################" nohup ./startWebLogic.sh >logs/AdminServer.out 2>&1 & Starting the Managed Servers I then used WLST (WebLogic Scripting Tool) to start the managed servers.  First I waited for the Admin Server to come up by putting a connect command in a loop.  I could have put the WLST commands into a separate script file but I wanted to reduce the number of files I was using and so used redirected input (here syntax). $ORACLE_HOME/common/bin/wlst.sh <<-EOF import time sleep=time.sleep print "#####################################" print "# Waiting for Admin Server to Start #" print "#####################################" while True:   try:     connect(adminServerName="AdminServer")     break   except:     sleep(10) I then start the SOA server and tell WLST to wait until it is started before returning.  If starting a cluster then the start command would be modified accordingly to start the SOA cluster. print "#######################" print "# Starting SOA Server #" print "#######################" start(name="soa_server1", block="true") I then start the BAM server in the same way as the SOA server. print "#######################" print "# Starting BAM Server #" print "#######################" start(name="bam_server1", block="true") EOF Finally I let people know the servers are up and wait for input in case I am running in a separate window, in which case the result would be lost without the read command. echo "#####################" echo "# SOA Suite Started #" echo "#####################" read -p "Hit <enter> to continue" Stopping the SOA Suite My script for shutting down the SOA Suite (available here)  is basically the reverse of my startup script.  After setting the environment I connect to the Admin Server using WLST and shut down the managed servers and the admin server.  Again the script would need modifying for a cluster. Stopping the Servers If I cannot connect to the Admin Server I try to connect to the node manager, in case the Admin Server is down but the managed servers are up. #!/bin/sh echo "###########################" echo "# Setting SOA Environment #" echo "###########################" export MW_HOME=~oracle/Middleware11gPS1 export WL_HOME=$MW_HOME/wlserver_10.3 export ORACLE_HOME=$MW_HOME/Oracle_SOA export DOMAIN_NAME=soa_std_domain export DOMAIN_HOME=$MW_HOME/user_projects/domains/$DOMAIN_NAME cd $DOMAIN_HOME $MW_HOME/Oracle_SOA/common/bin/wlst.sh <<-EOF try:   print("#############################")   print("# Connecting to AdminServer #")   print("#############################")   connect(username='weblogic',password='welcome1',url='t3://localhost:7001') except:   print "#########################################"   print "#   Unable to connect to Admin Server   #"   print "# Attempting to connect to Node Manager #"   print "#########################################"   nmConnect(domainName=os.getenv("DOMAIN_NAME")) print "#######################" print "# Stopping BAM Server #" print "#######################" shutdown('bam_server1') print "#######################" print "# Stopping SOA Server #" print "#######################" shutdown('soa_server1') print "#########################" print "# Stopping Admin Server #" print "#########################" shutdown('AdminServer') disconnect() nmDisconnect() EOF Stopping the Node Manager I stopped the node manager by searching for the java node manager process using the ps command and then killing that process. echo "#########################" echo "# Stopping Node Manager #" echo "#########################" kill -9 `ps -ef | grep java | grep NodeManager |  awk '{print $2;}'` echo "#####################" echo "# SOA Suite Stopped #" echo "#####################" read -p "Hit <enter> to continue" Stopping the Database Again my script for shutting down the database is the reverse of my start script.  It is available here.  The only change needed might be to the database name. #!/bin/sh echo "##############################" echo "# Setting Oracle Environment #" echo "##############################" . oraenv <<-EOF orcl EOF echo "######################" echo "# Stopping dbConsole #" echo "######################" emctl stop dbconsole echo "#####################" echo "# Stopping Listener #" echo "#####################" lsnrctl stop echo "#####################" echo "# Stopping Database #" echo "#####################" sqlplus / as sysdba <<-EOF shutdown immediate exit EOF read -p "Hit <enter> to continue" Cleaning Up Cleaning SOA Suite I often run tests and want to clean up all the log files.  The following script (available here) does this for the WebLogic servers in a given domain on a machine.  After setting the domain I just remove all files under the servers logs directories.  It also cleans up the log files I created with my startup scripts.  These scripts could be enhanced to copy off the log files if you needed them but in my test environments I don’t need them and would prefer to reclaim the disk space. #!/bin/sh echo "###########################" echo "# Setting SOA Environment #" echo "###########################" export MW_HOME=~oracle/Middleware11gPS1 export WL_HOME=$MW_HOME/wlserver_10.3 export ORACLE_HOME=$MW_HOME/Oracle_SOA export DOMAIN_NAME=soa_std_domain export DOMAIN_HOME=$MW_HOME/user_projects/domains/$DOMAIN_NAME echo "##########################" echo "# Cleaning SOA Log Files #" echo "##########################" cd $DOMAIN_HOME rm -Rf logs/* servers/*/logs/* read -p "Hit <enter> to continue" Cleaning Database I also created a script to clean up the dump files of an Oracle database instance and also the EM log files (available here).  This relies on the machine name being correct as the EM log files are stored in a directory that is based on the hostname and the Oracle SID. #!/bin/sh echo "##############################" echo "# Setting Oracle Environment #" echo "##############################" . oraenv <<-EOF orcl EOF echo "#############################" echo "# Cleaning Oracle Log Files #" echo "#############################" rm -Rf $ORACLE_BASE/admin/$ORACLE_SID/*dump/* rm -Rf $ORACLE_HOME/`hostname`_$ORACLE_SID/sysman/log/* read -p "Hit <enter> to continue" Summary Hope you find the above scripts useful.  They certainly stop me hanging around waiting for things to happen on my test machine and make it easy to run a test, change parameters, bounce the SOA Suite and clean the logs between runs so I can see exactly what is happening. Now I need to get that mower started…

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 3

    - by Tarun Arora
    Welcome back once again, in Part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies, in Part 2 of Load and Web Performance Testing using Visual Studio 2010 I discussed the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. In part 3 I’ll be discussing Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, Asp.net Profiler and some closing thoughts. Test Results – I see some creepy worms! In Part 2 we put together a web performance test and a load test, lets run the test to see load test to see how the Web site responds to the load simulation. While the load test is running you will be able to see close to real time analysis in the Load Test Analyser window. You can use the Load Test Analyser to conduct load test analysis in three ways: Monitor a running load test - A condensed set of the performance counter data is maintained in memory. To prevent the results memory requirements from growing unbounded, up to 200 samples for each performance counter are maintained. This includes 100 evenly spaced samples that span the current elapsed time of the run and the most recent 100 samples.         After the load test run is completed - The test controller spools all collected performance counter data to a database while the test is running. Additional data, such as timing details and error details, is loaded into the database when the test completes. The performance data for a completed test is loaded from the database and analysed by the Load Test Analyser. Below you can see a screen shot of the summary view, this provides key results in a format that is compact and easy to read. You can also print the load test summary, this is generated after the test has completed or been stopped.         Analyse the load test results of a previously run load test – We’ll see this in the section where i discuss comparison between two test runs. The performance counters can be plotted on the graphs. You also have the option to highlight a selected part of the test and view details, drill down to the user activity chart where you can hover over to see more details of the test run.   Generate Report => Test Run Comparisons The level of reports you can generate using the Load Test Analyser is astonishing. You have the option to create excel reports and conduct side by side analysis of two test results or to track trend analysis. The tools also allows you to export the graph data either to MS Excel or to a CSV file. You can view the ASP.NET profiler report to conduct further analysis as well. View Data and Diagnostic Attachments opens the Choose Diagnostic Data Adapter Attachment dialog box to select an adapter to analyse the result type. For example, you can select an IntelliTrace adapter, click OK and open the IntelliTrace summary for the test agent that was used in the load test.   Compare results This creates a set of reports that compares the data from two load test results using tables and bar charts. I have taken these screen shots from the MSDN documentation, I would highly recommend exploring the wealth of knowledge available on MSDN. Leaving Thoughts While load testing the application with an excessive load for a longer duration of time, i managed to bring the IIS to its knees by piling up a huge queue of requests waiting to be processed. This clearly means that the IIS had run out of threads as all the threads were busy processing existing request, one easy way of fixing this is by increasing the default number of allocated threads, but this might escalate the problem. The better suggestion is to try and drill down to the actual root cause of the problem. When ever the garbage collection runs it stops processing any pages so all requests that come in during that period are queued up, but realistically the garbage collection completes in fraction of a a second. To understand this better lets look at the .net heap, it is divided into large heap and small heap, anything greater than 85kB in size will be allocated to the Large object heap, the Large object heap is non compacting and remember large objects are expensive to move around, so if you are allocating something in the large object heap, make sure that you really need it! The small object heap on the other hand is divided into generations, so all objects that are supposed to be short-lived are suppose to live in Gen-0 and the long living objects eventually move to Gen-2 as garbage collection goes through.  As you can see in the picture below all < 85 KB size objects are first assigned to Gen-0, when Gen-0 fills up and a new object comes in and finds Gen-0 full, the garbage collection process is started, the process checks for all the dead objects and assigns them as the valid candidate for deletion to free up memory and promotes all the remaining objects in Gen-0 to Gen-1. So in the future when ever you clean up Gen-1 you have to clean up Gen-0 as well. When you fill up Gen – 0 again, all of Gen – 1 dead objects are drenched and rest are moved to Gen-2 and Gen-0 objects are moved to Gen-1 to free up Gen-0, but by this time your Garbage collection process has started to take much more time than it usually takes. Now as I mentioned earlier when garbage collection is being run all page requests that come in during that period are queued up. Does this explain why possibly page requests are getting queued up, apart from this it could also be the case that you are waiting for a long running database process to complete.      Lets explore the heap a bit more… What is really a case of crisis is when the objects are living long enough to make it to Gen-2 and then dying, this is definitely a high cost operation. But sometimes you need objects in memory, for example when you cache data you hold on to the objects because you need to use them right across the user session, which is acceptable. But if you wanted to see what extreme caching can do to your server then write a simple application that chucks in a lot of data in cache, run a load test over it for about 10-15 minutes, forcing a lot of data in memory causing the heap to run out of memory. If you get to such a state where you start running out of memory the IIS as a mode of recovery restarts the worker process. It is great way to free up all your memory in the heap but this would clear the cache. The problem with this is if the customer had 10 items in their shopping basket and that data was stored in the application cache, the user basket will now be empty forcing them either to get frustrated and go to a competitor website or if the customer is really patient, give it another try! How can you address this, well two ways of addressing this; 1. Workaround – A x86 bit processor only allows a maximum of 4GB of RAM, this means the machine effectively has around 3.4 GB of RAM available, the OS needs about 1.5 GB of RAM to run efficiently, the IIS and .net framework also need their share of memory, leaving you a heap of around 800 MB to play with. Because Team builds by default build your application in ‘Compile as any mode’ it means the application is build such that it will run in x86 bit mode if run on a x86 bit processor and run in a x64 bit mode if run on a x64 but processor. The problem with this is not all applications are really x64 bit compatible specially if you are using com objects or external libraries. So, as a quick win if you compiled your application in x86 bit mode by changing the compile as any selection to compile as x86 in the team build, you will be able to run your application on a x64 bit machine in x86 bit mode (WOW – By running Windows on Windows) and what that means is, you could use 8GB+ worth of RAM, if you take away everything else your application will roughly get a heap size of at least 4 GB to play with, which is immense. If you need a heap size of more than 4 GB you have either build a software for NASA or there is something fundamentally wrong in your application. 2. Solution – Now that you have put a workaround in place the IIS will not restart the worker process that regularly, which means you can take a breather and start working to get to the root cause of this memory leak. But this begs a question “How do I Identify possible memory leaks in my application?” Well i won’t say that there is one single tool that can tell you where the memory leak is, but trust me, ‘Performance Profiling’ is a great start point, it definitely gets you started in the right direction, let’s have a look at how. Performance Wizard - Start the Performance Wizard and select Instrumentation, this lets you measure function call counts and timings. Before running the performance session right click the performance session settings and chose properties from the context menu to bring up the Performance session properties page and as shown in the screen shot below, check the check boxes in the group ‘.NET memory profiling collection’ namely ‘Collect .NET object allocation information’ and ‘Also collect the .NET Object lifetime information’.    Now if you fire off the profiling session on your pages you will notice that the results allows you to view ‘Object Lifetime’ which shows you the number of objects that made it to Gen-0, Gen-1, Gen-2, Large heap, etc. Another great feature about the profile is that if your application has > 5% cases where objects die right after making to the Gen-2 storage a threshold alert is generated to alert you. Since you have the option to also view the most expensive methods and by capturing the IntelliTrace data you can drill in to narrow down to the line of code that is the root cause of the problem. Well now that we have seen how crucial memory management is and how easy Visual Studio Ultimate 2010 makes it for us to identify and reproduce the problem with the best of breed tools in the product. Caching One of the main ways to improve performance is Caching. Which basically means you tell the web server that instead of going to the database for each request you keep the data in the webserver and when the user asks for it you serve it from the webserver itself. BUT that can have consequences! Let’s look at some code, trust me caching code is not very intuitive, I define a cache key for almost all searches made through the common search page and cache the results. The approach works fine, first time i get the data from the database and second time data is served from the cache, significant performance improvement, EXCEPT when two users try to do the same operation and run into each other. But it is easy to handle this by adding the lock as you can see in the snippet below. So, as long as a user comes in and finds that the cache is empty, the user locks and starts to get the cache no more concurrency issues. But lets say you are processing 10 requests per second, by the time i have locked the operation to get the results from the database, 9 other users came in and found that the cache key is null so after i have come out and populated the cache they will still go in to get the results again. The application will still be faster because the next set of 10 users and so on would continue to get data from the cache. BUT if we added another null check after locking to build the cache and before actual call to the db then the 9 users who follow me would not make the extra trip to the database at all and that would really increase the performance, but didn’t i say that the code won’t be very intuitive, may be you should leave a comment you don’t want another developer to come in and think what a fresher why is he checking for the cache key null twice !!! The downside of caching is, you are storing the data outside of the database and the data could be wrong because the updates applied to the database would make the data cached at the web server out of sync. So, how do you invalidate the cache? Well if you only had one way of updating the data lets say only one entry point to the data update you can write some logic to say that every time new data is entered set the cache object to null. But this approach will not work as soon as you have several ways of feeding data to the system or your system is scaled out across a farm of web servers. The perfect solution to this is Micro Caching which means you cache the query for a set time duration and invalidate the cache after that set duration. The advantage is every time the user queries for that data with in the time span for which you have cached the results there are no calls made to the database and the data is served right from the server which makes the response immensely quick. Now figuring out the appropriate time span for which you micro cache the query results really depends on the application. Lets say your website gets 10 requests per second, if you retain the cache results for even 1 minute you will have immense performance gains. You would reduce 90% hits to the database for searching. Ever wondered why when you go to e-bookers.com or xpedia.com or yatra.com to book a flight and you click on the book button because the fare seems too exciting and you get an error message telling you that the fare is not valid any more. Yes, exactly => That is a cache failure! These travel sites or price compare engines are not going to hit the database every time you hit the compare button instead the results will be served from the cache, because the query results are micro cached, its a perfect trade-off, by micro caching the results the site gains 100% performance benefits but every once in a while annoys a customer because the fare has expired. But the trade off works in the favour of these sites as they are still able to process up to 30+ page requests per second which means cater to the site traffic by may be losing 1 customer every once in a while to a competitor who is also using a similar caching technique what are the odds that the user will not come back to their site sooner or later? Recap   Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN. You can always make use of Fiddler to debug Web Performance Tests. Some community test extensions and plug ins available on Codeplex might also be of interest to you. The Road Ahead Thank you for taking the time out and reading this blog post, you may also want to read Part I and Part II if you haven’t so far. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. Next ‘Load Testing in the cloud’, I’ll be working on exploring the possibilities of running Test controller/Agents in the Cloud. See you on the other side! Thank You!   Share this post : CodeProject

    Read the article

  • From Bluehost to WP Engine, My WordPress Story

    - by thatjeffsmith
    This is probably the longest blog post I’ve written in a LONG time. And if you’re used to coming here for the Oracle stuff, this post is not about that. It’s about my blog, and the stuff under the hood that makes it run, AKA WordPress. If you want to skip to the juicy stuff, then use these shortcuts: My Site Slowed Down How I Moved to WP Engine How WP Engine ‘Hooked’ Me Why WP Engine? I started thatJeffSmith.com on May 28th, 2010. I had been already been blogging for several years, but a couple of really smart people I respected (Andy, Brent – thanks again!) suggested that I take ownership of my content and begin building my personal brand. I thought that was a good idea, and so I signed up for service with bluehost. Bluehost makes setting up a WordPress site very, very easy. And, they continued to be easy to work with for the past 2 years. I would even recommend them to anyone looking to host their own WordPress install/site. For $83.40, I purchased a year’s worth of service and my domain name registration – a very good value. And then last year I paid $107.40 for another year’s services. And when that year expired I paid another $190.80 for an additional two year’s service in advance. I had been up to that point, getting my money’s worth. And then, just a few weeks ago… My Site Slowed to a Crawl That spike was from an April Fool's Day Post, I think Why? Well, when I first started blogging, I had the same problem that most beginner bloggers have – not many readers. In my first year of blogging, I think the highest number of readers on a single day was about 125. I remember that day as I was very excited to break 100! Bluehost was very reliable, serving up my content with maybe a total of 3-4 outages in the past 2 years. Support was usually very prompt with answers and solutions, and I love their ‘Chat now’ technology – much nicer than message boards only or pay-to-talk phone support. In the past 6 months however, I noticed a couple of things: daily traffic was increasing – woohoo! my service was experiencing severe CPU throttling – doh! To be honest, I wasn’t aware the throttling was occuring, but I did know that the response time of my blog was starting to lag. Average load times were approaching 20-30 seconds. Not good when good sites are loading in 5 seconds or less. And just this past week, in getting ready to launch a new website for work that sucked in an RSS feed from my blog, the new page was left waiting for more than a minute. Not good! In fact my boss asked, why aren’t you blogging on Blogger? Ugh. I tried a few things to fix the problem: I paid for a premium WordPress theme – Themify’s Grido (thanks to @SQLRockstar for the heads-up) I installed a couple of WP caching plugins I read every WP optimization blog post I could get my greedy little eyes on However, at the same time I was also getting addicted to WordPress bloggers talking about all the cool things you could do with your blog. As a result I had at one point about 30 different plugins installed. WordPress runs on MySQL, and certain queries running via these plugins were starving for CPU. Plugins that would be called every page load meant that as more people clicked on my site, the more CPU I needed. I’m not stupid, so I eventually figured out that maybe less plugins was better, and was able to go down to just 20. But still, the site was running like a dog. CPU Throttling, makes MySQL wait to run a query Bluehost runs shared servers. Your site runs on the same box that several hundred (or thousand?) other services are running on. If you take more CPU than they think you should have, they will limit your service by making you stand in line for CPU, AKA ‘throttling.’ This is not bad. This business model allows them to serve many, many users for a very fair price. It works great until, well, until it doesn’t. I noticed in the last week that for every minute of service, I was being throttled between 60 and 300 seconds. If there were 5 MySQL processes running, then every single one of them were being held in check. The blog visitor notice this as their page requests would take a minute or more to be answered. Bluehost unfortunately doesn’t offer dedicated server hosting, so there was no real upgrade path for me follow and remain one of their customers. So what was I to do? Uninstall every plugin and hope the site sped up? Ask for people to take turns on my blog? I decided to spend my way out of the problem. I signed up for service with WP Engine and moved ThatJeffSmith.com The first 2 months are free, and after that it’s about $29/month to run my site on their system. My math tells me that’s a good bit more expensive than what Bluehost was charging me – to the tune of about 300% more a month. Oh, and I should just say that my blog is a personal blog even though I talk about work stuff here. I don’t get paid for blogging, I don’t sell ads, and I don’t expense the service fees – this is my personal passion. So is it worth it? In the first 4 days, it seems to be totally worth it. Load times have gone from 20-30 seconds to less than 5 seconds. A few folks have told me via Twitter that they notice faster page loads. I anticipate this will indirectly lead to more traffic as Google penalizes you in search results if your site is too slow, and of course some folks won’t even bother waiting more than 5-10 seconds. I noticed right away that writing posts, uploading pictures, and just using the WordPress dashboard in general was much more responsive. So writing is less of a chore now, which means I won’t have a good reason not to write How I Moved to WP Engine I signed up for the service and registered my domain. I then took a full export of my ‘old’ site by doing a FTP GET of all my files, then did a MySQL database backup, exported my WordPress Theme settings to a .zip file, and then finally used the WordPress ‘Export’ feature. I then used the WordPress ‘Import’ on the new site to load up my posts. Then I uploaded the theme .zip package from Themify. Then I FTP’d the ‘wp-content’ directory up to my new server using SFTP (WP Engine only supports secure FTP – good on them!) Using a temporary URL to see my new site, I was able to confirm that everything looked mostly OK – I’ll detail the challenges and issues of fixing the content next – but then it was time to ‘flip the switch.’ I updated the IP address that the DNS lookup tables use to route traffic to my new server. In a matter of minutes the DNS servers around the world were updated and it was time to see the new site! But It Was ‘Broken’ I had never moved a website before, and in my rush to update the DNS, I had changed the records without really finding out what I was supposed to do first. After re-reading the directions provided by WP Engine and following the guidance of their support engineer, I realized I had needed to set the CNAME (Alias) ‘www’ record to point to a different URL than the ‘www.thatjeffsmith.com’ entry I had set. Once corrected the site was up and running in less than a minute. Then It Was Only Mostly Broken Many of my plugins weren’t working. Apparently just ftp’ing the wp-content directory up wasn’t the proper way to re-install the plugin. I suspect file permissions or file ownership wasn’t proper. Some plug-ins were working, many had their settings wiped to the defaults, and a few just didn’t work again. I had to delete the directory of the plug-in manually via SFTP, and then use the WP Dashboard to install it from scratch. And here was my first ‘lesson’ – don’t switch the DNS records until you’ve completely tested your new site. I wasn’t able to navigate the old WP console to review my plug-in settings. Thankfully I was able to use the Wayback Machine to reverse engineer some things, and of course most plug-ins aren’t that complicated to setup to begin with. An example of one that I had to redo from scratch is the ‘Twitter @Anywhere Plus’ plugin that I use to create the form that allows folks to tweet a post they enjoyed at the end of each story. How WP Engine ‘Hooked’ Me I actually signed up with another provider first. They ranked highly in Google searches and a few Tweeps recommended them to me. But hours after signing up and I still didn’t have sever reyady, I was ready to give up on them. They offered no chat or phone support – only mail and message boards. And the message boards were rife with posts about how the service had gone downhill in the past 6 months. To their credit, they did make it easy to cancel, although I did have to do so via email as their website ‘cancel’ button was non-existent. Within minutes of activating my WP Engine account I had received my welcome message and directions on how to get started. I was able to see my staged website right away. They also did something very cool before I even got started – they looked at my existing site and told me by how much they could improve its performance. The proof is in the web pudding. I like this for a few reasons, but primarily I liked their business model. It told me they knew what they were doing, and that they were willing to put their money where their mouth was. This was further evident by their 60-day money back guarantee. And if I understand it correctly, they don’t even take your money until after that 60 day period is over. After a day, I was welcomed by the WP Engine social media team, and was given the opportunity to subscribe to their newsletter and follow their account on Twitter. I noticed their Twitter team is sure to post regular WordPress tips several times a day. It’s not just an account that’s setup for the sake of having a Twitter presence. These little things add up and give me confidence in my decision to choose them as my hosting partner. ‘Partner’ – that’s a lot nicer word than just ‘service provider,’ isn’t it? Oh, and they offered me a t-shirt. Don’t ever doubt the power of a ‘free’ t-shirt! How awesome is this e-mail, from a customer perspective? I wasn’t really expecting any of this. Exceeding expectations before I have even handed over a single dollar seems like a pretty good business plan. This is how you treat customers. Love them to death, and they reward you with loyalty. But Jeff, You Skipped a Piece Here, Why WP Engine? I found them on one of those ‘Top 10′ list posts, and pulled up their webpage. I noticed they offered a specialized service – they host WordPress installs, and that’s it. Their servers are tuned specifically for running WordPress. They had in bolded text, things like ‘INSANELY FAST. INFINITELY SCALABLE.’ and ‘LIGHTNING SPEED.’ And then they offered insurance against hackers and they took care of automatic backups and restores. The only drawbacks I have noticed so far relate to plugins I used that have been ‘blacklisted.’ In order to guarantee that ‘lightning’ speed, they have banned the use of the CPU-suckiest plugins. One of those is the ‘Related Posts’ plugin. So if you are a subscriber and are reading this in your email, you’ll notice there’s no links back to my blog to continue reading other related stories. Since that referral traffic is very small single-digit for my site, I decided that I’m OK with that. I’d rather have the warp-speed page loads. Again, I think that will lead to higher traffic down the road. In 50+ days I will need to decide if WP Engine is a permanent solution. I’ll be sure to update this post when that time comes and let y’all know how it turns out.

    Read the article

  • C#/.NET Little Wonders: ConcurrentBag and BlockingCollection

    - by James Michael Hare
    In the first week of concurrent collections, began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  The last post discussed the ConcurrentDictionary<T> .  Finally this week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see C#/.NET Little Wonders: A Redux. Recap As you'll recall from the previous posts, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  With .NET 4.0, a new breed of collections was born in the System.Collections.Concurrent namespace.  Of these, the final concurrent collection we will examine is the ConcurrentBag and a very useful wrapper class called the BlockingCollection. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this informative whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentBag<T> – Thread-safe unordered collection. Unlike the other concurrent collections, the ConcurrentBag<T> has no non-concurrent counterpart in the .NET collections libraries.  Items can be added and removed from a bag just like any other collection, but unlike the other collections, the items are not maintained in any order.  This makes the bag handy for those cases when all you care about is that the data be consumed eventually, without regard for order of consumption or even fairness – that is, it’s possible new items could be consumed before older items given the right circumstances for a period of time. So why would you ever want a container that can be unfair?  Well, to look at it another way, you can use a ConcurrentQueue and get the fairness, but it comes at a cost in that the ordering rules and synchronization required to maintain that ordering can affect scalability a bit.  Thus sometimes the bag is great when you want the fastest way to get the next item to process, and don’t care what item it is or how long its been waiting. The way that the ConcurrentBag works is to take advantage of the new ThreadLocal<T> type (new in System.Threading for .NET 4.0) so that each thread using the bag has a list local to just that thread.  This means that adding or removing to a thread-local list requires very low synchronization.  The problem comes in where a thread goes to consume an item but it’s local list is empty.  In this case the bag performs “work-stealing” where it will rob an item from another thread that has items in its list.  This requires a higher level of synchronization which adds a bit of overhead to the take operation. So, as you can imagine, this makes the ConcurrentBag good for situations where each thread both produces and consumes items from the bag, but it would be less-than-idea in situations where some threads are dedicated producers and the other threads are dedicated consumers because the work-stealing synchronization would outweigh the thread-local optimization for a thread taking its own items. Like the other concurrent collections, there are some curiosities to keep in mind: IsEmpty(), Count, ToArray(), and GetEnumerator() lock collection Each of these needs to take a snapshot of whole bag to determine if empty, thus they tend to be more expensive and cause Add() and Take() operations to block. ToArray() and GetEnumerator() are static snapshots Because it is based on a snapshot, will not show subsequent updates after snapshot. Add() is lightweight Since adding to the thread-local list, there is very little overhead on Add. TryTake() is lightweight if items in thread-local list As long as items are in the thread-local list, TryTake() is very lightweight, much more so than ConcurrentStack() and ConcurrentQueue(), however if the local thread list is empty, it must steal work from another thread, which is more expensive. Remember, a bag is not ideal for all situations, it is mainly ideal for situations where a process consumes an item and either decomposes it into more items to be processed, or handles the item partially and places it back to be processed again until some point when it will complete.  The main point is that the bag works best when each thread both takes and adds items. For example, we could create a totally contrived example where perhaps we want to see the largest power of a number before it crosses a certain threshold.  Yes, obviously we could easily do this with a log function, but bare with me while I use this contrived example for simplicity. So let’s say we have a work function that will take a Tuple out of a bag, this Tuple will contain two ints.  The first int is the original number, and the second int is the last multiple of that number.  So we could load our bag with the initial values (let’s say we want to know the last multiple of each of 2, 3, 5, and 7 under 100. 1: var bag = new ConcurrentBag<Tuple<int, int>> 2: { 3: Tuple.Create(2, 1), 4: Tuple.Create(3, 1), 5: Tuple.Create(5, 1), 6: Tuple.Create(7, 1) 7: }; Then we can create a method that given the bag, will take out an item, apply the multiplier again, 1: public static void FindHighestPowerUnder(ConcurrentBag<Tuple<int,int>> bag, int threshold) 2: { 3: Tuple<int,int> pair; 4:  5: // while there are items to take, this will prefer local first, then steal if no local 6: while (bag.TryTake(out pair)) 7: { 8: // look at next power 9: var result = Math.Pow(pair.Item1, pair.Item2 + 1); 10:  11: if (result < threshold) 12: { 13: // if smaller than threshold bump power by 1 14: bag.Add(Tuple.Create(pair.Item1, pair.Item2 + 1)); 15: } 16: else 17: { 18: // otherwise, we're done 19: Console.WriteLine("Highest power of {0} under {3} is {0}^{1} = {2}.", 20: pair.Item1, pair.Item2, Math.Pow(pair.Item1, pair.Item2), threshold); 21: } 22: } 23: } Now that we have this, we can load up this method as an Action into our Tasks and run it: 1: // create array of tasks, start all, wait for all 2: var tasks = new[] 3: { 4: new Task(() => FindHighestPowerUnder(bag, 100)), 5: new Task(() => FindHighestPowerUnder(bag, 100)), 6: }; 7:  8: Array.ForEach(tasks, t => t.Start()); 9:  10: Task.WaitAll(tasks); Totally contrived, I know, but keep in mind the main point!  When you have a thread or task that operates on an item, and then puts it back for further consumption – or decomposes an item into further sub-items to be processed – you should consider a ConcurrentBag as the thread-local lists will allow for quick processing.  However, if you need ordering or if your processes are dedicated producers or consumers, this collection is not ideal.  As with anything, you should performance test as your mileage will vary depending on your situation! BlockingCollection<T> – A producers & consumers pattern collection The BlockingCollection<T> can be treated like a collection in its own right, but in reality it adds a producers and consumers paradigm to any collection that implements the interface IProducerConsumerCollection<T>.  If you don’t specify one at the time of construction, it will use a ConcurrentQueue<T> as its underlying store. If you don’t want to use the ConcurrentQueue, the ConcurrentStack and ConcurrentBag also implement the interface (though ConcurrentDictionary does not).  In addition, you are of course free to create your own implementation of the interface. So, for those who don’t remember the producers and consumers classical computer-science problem, the gist of it is that you have one (or more) processes that are creating items (producers) and one (or more) processes that are consuming these items (consumers).  Now, the crux of the problem is that there is a bin (queue) where the produced items are placed, and typically that bin has a limited size.  Thus if a producer creates an item, but there is no space to store it, it must wait until an item is consumed.  Also if a consumer goes to consume an item and none exists, it must wait until an item is produced. The BlockingCollection makes it trivial to implement any standard producers/consumers process set by providing that “bin” where the items can be produced into and consumed from with the appropriate blocking operations.  In addition, you can specify whether the bin should have a limited size or can be (theoretically) unbounded, and you can specify timeouts on the blocking operations. As far as your choice of “bin”, for the most part the ConcurrentQueue is the right choice because it is fairly light and maximizes fairness by ordering items so that they are consumed in the same order they are produced.  You can use the concurrent bag or stack, of course, but your ordering would be random-ish in the case of the former and LIFO in the case of the latter. So let’s look at some of the methods of note in BlockingCollection: BoundedCapacity returns capacity of the “bin” If the bin is unbounded, the capacity is int.MaxValue. Count returns an internally-kept count of items This makes it O(1), but if you modify underlying collection directly (not recommended) it is unreliable. CompleteAdding() is used to cut off further adds. This sets IsAddingCompleted and begins to wind down consumers once empty. IsAddingCompleted is true when producers are “done”. Once you are done producing, should complete the add process to alert consumers. IsCompleted is true when producers are “done” and “bin” is empty. Once you mark the producers done, and all items removed, this will be true. Add() is a blocking add to collection. If bin is full, will wait till space frees up Take() is a blocking remove from collection. If bin is empty, will wait until item is produced or adding is completed. GetConsumingEnumerable() is used to iterate and consume items. Unlike the standard enumerator, this one consumes the items instead of iteration. TryAdd() attempts add but does not block completely If adding would block, returns false instead, can specify TimeSpan to wait before stopping. TryTake() attempts to take but does not block completely Like TryAdd(), if taking would block, returns false instead, can specify TimeSpan to wait. Note the use of CompleteAdding() to signal the BlockingCollection that nothing else should be added.  This means that any attempts to TryAdd() or Add() after marked completed will throw an InvalidOperationException.  In addition, once adding is complete you can still continue to TryTake() and Take() until the bin is empty, and then Take() will throw the InvalidOperationException and TryTake() will return false. So let’s create a simple program to try this out.  Let’s say that you have one process that will be producing items, but a slower consumer process that handles them.  This gives us a chance to peek inside what happens when the bin is bounded (by default, the bin is NOT bounded). 1: var bin = new BlockingCollection<int>(5); Now, we create a method to produce items: 1: public static void ProduceItems(BlockingCollection<int> bin, int numToProduce) 2: { 3: for (int i = 0; i < numToProduce; i++) 4: { 5: // try for 10 ms to add an item 6: while (!bin.TryAdd(i, TimeSpan.FromMilliseconds(10))) 7: { 8: Console.WriteLine("Bin is full, retrying..."); 9: } 10: } 11:  12: // once done producing, call CompleteAdding() 13: Console.WriteLine("Adding is completed."); 14: bin.CompleteAdding(); 15: } And one to consume them: 1: public static void ConsumeItems(BlockingCollection<int> bin) 2: { 3: // This will only be true if CompleteAdding() was called AND the bin is empty. 4: while (!bin.IsCompleted) 5: { 6: int item; 7:  8: if (!bin.TryTake(out item, TimeSpan.FromMilliseconds(10))) 9: { 10: Console.WriteLine("Bin is empty, retrying..."); 11: } 12: else 13: { 14: Console.WriteLine("Consuming item {0}.", item); 15: Thread.Sleep(TimeSpan.FromMilliseconds(20)); 16: } 17: } 18: } Then we can fire them off: 1: // create one producer and two consumers 2: var tasks = new[] 3: { 4: new Task(() => ProduceItems(bin, 20)), 5: new Task(() => ConsumeItems(bin)), 6: new Task(() => ConsumeItems(bin)), 7: }; 8:  9: Array.ForEach(tasks, t => t.Start()); 10:  11: Task.WaitAll(tasks); Notice that the producer is faster than the consumer, thus it should be hitting a full bin often and displaying the message after it times out on TryAdd(). 1: Consuming item 0. 2: Consuming item 1. 3: Bin is full, retrying... 4: Bin is full, retrying... 5: Consuming item 3. 6: Consuming item 2. 7: Bin is full, retrying... 8: Consuming item 4. 9: Consuming item 5. 10: Bin is full, retrying... 11: Consuming item 6. 12: Consuming item 7. 13: Bin is full, retrying... 14: Consuming item 8. 15: Consuming item 9. 16: Bin is full, retrying... 17: Consuming item 10. 18: Consuming item 11. 19: Bin is full, retrying... 20: Consuming item 12. 21: Consuming item 13. 22: Bin is full, retrying... 23: Bin is full, retrying... 24: Consuming item 14. 25: Adding is completed. 26: Consuming item 15. 27: Consuming item 16. 28: Consuming item 17. 29: Consuming item 19. 30: Consuming item 18. Also notice that once CompleteAdding() is called and the bin is empty, the IsCompleted property returns true, and the consumers will exit. Summary The ConcurrentBag is an interesting collection that can be used to optimize concurrency scenarios where tasks or threads both produce and consume items.  In this way, it will choose to consume its own work if available, and then steal if not.  However, in situations where you want fair consumption or ordering, or in situations where the producers and consumers are distinct processes, the bag is not optimal. The BlockingCollection is a great wrapper around all of the concurrent queue, stack, and bag that allows you to add producer and consumer semantics easily including waiting when the bin is full or empty. That’s the end of my dive into the concurrent collections.  I’d also strongly recommend, once again, you read this excellent Microsoft white paper that goes into much greater detail on the efficiencies you can gain using these collections judiciously (here). Tweet Technorati Tags: C#,.NET,Concurrent Collections,Little Wonders

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • How to reduce iOS AVPlayer start delay

    - by Bernt Habermeier
    Note, for the below question: All assets are local on the device -- no network streaming is taking place. The videos contain audio tracks. I'm working on an iOS application that requires playing video files with minimum delay to start the video clip in question. Unfortunately we do not know what specific video clip is next until we actually need to start it up. Specifically: When one video clip is playing, we will know what the next set of (roughly) 10 video clips are, but we don't know which one exactly, until it comes time to 'immediately' play the next clip. What I've done to look at actual start delays is to call addBoundaryTimeObserverForTimes on the video player, with a time period of one millisecond to see when the video actually started to play, and I take the difference of that time stamp with the first place in the code that indicates which asset to start playing. From what I've seen thus-far, I have found that using the combination of AVAsset loading, and then creating an AVPlayerItem from that once it's ready, and then waiting for AVPlayerStatusReadyToPlay before I call play, tends to take between 1 and 3 seconds to start the clip. I've since switched to what I think is roughly equivalent: calling [AVPlayerItem playerItemWithURL:] and waiting for AVPlayerItemStatusReadyToPlay to play. Roughly same performance. One thing I'm observing is that the first AVPlayer item load is slower than the rest. Seems one idea is to pre-flight the AVPlayer with a short / empty asset before trying to play the first video might be of good general practice. [http://stackoverflow.com/questions/900461/slow-start-for-avaudioplayer-the-first-time-a-sound-is-played] I'd love to get the video start times down as much as possible, and have some ideas of things to experiment with, but would like some guidance from anyone that might be able to help. Update: idea 7, below, as-implemented yields switching times of around 500 ms. This is an improvement, but it it'd be nice to get this even faster. Idea 1: Use N AVPlayers (won't work) Using ~ 10 AVPPlayer objects and start-and-pause all ~ 10 clips, and once we know which one we really need, switch to, and un-pause the correct AVPlayer, and start all over again for the next cycle. I don't think this works, because I've read there is roughly a limit of 4 active AVPlayer's in iOS. There was someone asking about this on StackOverflow here, and found out about the 4 AVPlayer limit: fast-switching-between-videos-using-avfoundation Idea 2: Use AVQueuePlayer (won't work) I don't believe that shoving 10 AVPlayerItems into an AVQueuePlayer would pre-load them all for seamless start. AVQueuePlayer is a queue, and I think it really only makes the next video in the queue ready for immediate playback. I don't know which one out of ~10 videos we do want to play back, until it's time to start that one. ios-avplayer-video-preloading Idea 3: Load, Play, and retain AVPlayerItems in background (not 100% sure yet -- but not looking good) I'm looking at if there is any benefit to load and play the first second of each video clip in the background (suppress video and audio output), and keep a reference to each AVPlayerItem, and when we know which item needs to be played for real, swap that one in, and swap the background AVPlayer with the active one. Rinse and Repeat. The theory would be that recently played AVPlayer/AVPlayerItem's may still hold some prepared resources which would make subsequent playback faster. So far, I have not seen benefits from this, but I might not have the AVPlayerLayer setup correctly for the background. I doubt this will really improve things from what I've seen. Idea 4: Use a different file format -- maybe one that is faster to load? I'm currently using .m4v's (video-MPEG4) H.264 format. I have not played around with other formats, but it may well be that some formats are faster to decode / get ready than others. Possible still using video-MPEG4 but with a different codec, or maybe quicktime? Maybe a lossless video format where decoding / setup is faster? Idea 5: Combination of lossless video format + AVQueuePlayer If there is a video format that is fast to load, but maybe where the file size is insane, one idea might be to pre-prepare the first 10 seconds of each video clip with a version that is boated but faster to load, but back that up with an asset that is encoded in H.264. Use an AVQueuePlayer, and add the first 10 seconds in the uncompressed file format, and follow that up with one that is in H.264 which gets up to 10 seconds of prepare/preload time. So I'd get 'the best' of both worlds: fast start times, but also benefits from a more compact format. Idea 6: Use a non-standard AVPlayer / write my own / use someone else's Given my needs, maybe I can't use AVPlayer, but have to resort to AVAssetReader, and decode the first few seconds (possibly write raw file to disk), and when it comes to playback, make use of the raw format to play it back fast. Seems like a huge project to me, and if I go about it in a naive way, it's unclear / unlikely to even work better. Each decoded and uncompressed video frame is 2.25 MB. Naively speaking -- if we go with ~ 30 fps for the video, I'd end up with ~60 MB/s read-from-disk requirement, which is probably impossible / pushing it. Obviously we'd have to do some level of image compression (perhaps native openGL/es compression formats via PVRTC)... but that's kind crazy. Maybe there is a library out there that I can use? Idea 7: Combine everything into a single movie asset, and seekToTime One idea that might be easier than some of the above, is to combine everything into a single movie, and use seekToTime. The thing is that we'd be jumping all around the place. Essentially random access into the movie. I think this may actually work out okay: avplayer-movie-playing-lag-in-ios5 Which approach do you think would be best? So far, I've not made that much progress in terms of reducing the lag.

    Read the article

  • view .doc, .docx, .rtf, .ppt file in iphone using Webview

    - by Ekra
    Hi friends I want to view .doc, .docx, .rtf, .ppt file in iphone. But I guess something is going wrong at my side and its not working for the above formats but my code is working fine for .txt and .pdf files. I have the read the document regarding Webview it states it supports viewing of the above document. below is my snippet for .doc [webView loadData:requestData MIMEType:@"application/msword" textEncodingName:@"UTF-8" baseURL:nil]; for .ppt I am using MIME type as "application/vnd.ms-powerpoint" Note: If I am making MIME type as "text/html" for .doc then it displays some garbage data So I think there is something missing in MIME type from my side. Any help is highly appreciated. Waiting for your reply.

    Read the article

  • make folder structure at device side in iphone

    - by Ekra
    Hi friends, I have a folder structure at server side. Inside the folders there are files of all format like .txt, .pdf. I get the structure in XML format. Now I want to create the same folder structure that is present in server side at my iphone documents folder with only the names of files inside it and not the content of the files. eg: folder1 1.text(it is inside folder1) folder2 2.pdf(it is inside folder2) folder3 subFolder3 (it is inside folder3) 3.txt (it is inside subFolder3) folder4 4.txt How I need to handle the overall approach. Any help would be highly appreciated. Waiting for your reply

    Read the article

  • Error TF31004 when connecting to TFS2008

    - by Ben
    I'm trying to connect to a TFS2008 server through Visual Studio 2008 (Tools\Connect to Team Foundation Server) and get this error when trying to add our server: TF31004: Team Foundation encountered an unexpected error while connecting to Team Foundation Server . Wait a few minutes and try again. If the problem persists, contact your Team Foundation Server administrator. Needless to say, waiting doesn't help. I've tried using the ip address instead of the hostname but get the same error. I can log in via a browser, in fact IE and Chrome both SSO me straight in. The server is only used for testing one of our TFS plugins, so doesn't get much real use.

    Read the article

  • How To debug Android app on Emulator using NetBeans IDE

    - by tobrien
    I recently downloaded the latest NetBeans IDE (for MACOSX) and imported/migrated a project over from the ECLIPSE environment. Everything looks, and works well... except that EMULATOR gets stuck "waiting for the debugger to attach." I tried "Attaching Debugger..." and set the PORT value to every case I've ever read about (8200, 8700, 5555, etc.) but the connection is refused. I am of the opinion that this is not the preferred way to start a debugging session in NetBeans for Android. What am I missing?

    Read the article

  • What is the advantage of WSDualHttpBinding in WCF?

    - by schmoopy
    How much benefit would there be to using WSDualHttpBinding with IIS hosted service vs. a client poll that calls the WCF service, assuming in the latter the service cached the data in question? This scenerio would be for a notify type of service where the clients need to be notified by the service when an event occurs. Specifically, what advantages would WSDualHttpBinding provide over polling? ie: Less network traffic, faster to design, easier to maintain, more control ??? From what i understand, WSDualHttpBinding is less scalable than client polling, so why use it at all? Edit: As Matt supplied, time critical can be one reason for the duplex binding. Here is what i have so far: WSDualHttpBinding adv: can get immediate response w/o waiting on polling timer dis: less scalable than WsHttpBinding dis: less firewall friendly I'll add to this based on comments, please let me know if i state anything incorrectly. thanks for you input :-)

    Read the article

  • Perl, waitpid() exit code returning wrong value?

    - by Mike
    Consder this trivial example of fork()ing then waiting for a child to die in Perl #!/usr/bin/perl use strict; use warnings; if (fork() == 0) { exit(1); } waitpid(-1,0); print $?; $perl test.pl 256 I suspect the values of are being shifted upwards because when I do exit(2) in the child, the output becomes 512 I can't seem to find this documented in perl's waitpid. Is this a bug on my system or am I doing something wrong? (btw, my OS is solaris 10)

    Read the article

  • Ndk-build: CreateProcess: make (e=87): The parameter is incorrect

    - by user1514958
    I get an error when build static lib with NDK on Windows platform: process_begin: CreateProcess( "PATH"\android-ndk-r8b\toolchains\arm-linux-androideabi-4.6\prebuilt\windows\bin\arm-linux-androideabi-ar.exe, "some other commands" ) failed. make (e=87): The parameter is incorrect. make: *** [obj/local/armeabi-v7a/staticlib.a] Error 87 make: *** Waiting for unfinished jobs.... All source files build successfully, and this error occur when compose object files. I don't get this error when build this project in Ubuntu, it occur only on Windows. I suppose I found the issue: second parameter of CreateProcess Win API function lpCommandLine has max length 32,768 characters. But in my case it is more than 32,768 characters. How I can solve this issue?

    Read the article

  • Wait for a single RabbitMQ message with a timeout

    - by Evgeny
    I'd like to send a message to a RabbitMQ server and then wait for a reply message (on a "reply-to" queue). Of course, I don't want to wait forever in case the application processing these messages is down - there needs to be a timeout. It sounds like a very basic task, yet I can't find a way to do this. I've now run into this problem with both py-amqplib and the RabbitMQ .NET client. The best solution I've got so far is to poll using basic_get with sleep in-between, but this is pretty ugly: def _wait_for_message_with_timeout(channel, queue_name, timeout): slept = 0 sleep_interval = 0.1 while slept < timeout: reply = channel.basic_get(queue_name) if reply is not None: return reply time.sleep(sleep_interval) slept += sleep_interval raise Exception('Timeout (%g seconds) expired while waiting for an MQ response.' % timeout) Surely there is some better way?

    Read the article

  • SQLite on C# Cross-Platform Applications

    - by alienv
    Can someone help/guide me with using SQLite lib on Linux (MONO) and Windows (.NET) On linux i use native mono sqlite client, and on windows i use http://sqlite.phxsoftware.com/ is there a way to define 'using' directives like this : #if (linux) using Mono.Data.Sqlite; #else using System.Data.SQLite; Another problem is small differencies on both implementations, like : cmd = new SqliteCommand(); // mono cmd = new SQLiteCommand(); // sqlite.phxsoftware.com Waiting for any help If you know better or simplier way to do this it'll very thankfull for info. Thanks

    Read the article

  • asp.net connection reset with long running process

    - by Ronnie Overby
    In an asp.net web form, I keep getting a connection reset error message. The page is doing a some long running processing (about 2-5 minutes). I have no problem when the web request comes from the same machine as the web server. But when the request originates across the network, I get a connection reset error about 1:30 or 2 minutes into waiting for a response. I have set the in web.config for this application and put the application it's own application pool. What else can I try?

    Read the article

  • I am a beginner to C and this is the dumbest question..Confused about getchar() function

    - by happysoul
    Sorry if I am not supposed to post beginner level questions here..I am new to this site Please read the code below first I am confused about getchar() 's role in the following code.. I mean I know its helping me see the output window which will only be closed when I press enter key So getchar() is basically waiting for me to press enter and then reads a single character .. Now my question.. what is that single character this function is reading ?? I did not press any key from the keyboard for it to read Now when its not reading anything..why it does not give an error saying hey u didn't enter anything for me to read ..lol...(told u its a dumb question) #include <stdio.h> int main() { printf( "blah \n" ); getchar(); return 0; }

    Read the article

  • Monitor files similar to System Internal's/Microsoft's FileMon/Process Monitor

    - by Tom1952
    I need to generate an event when a file is closed by another app. Unfortunately, ReadDirectoryChangesW doesn't report the close event. It would be possible for me to poll (with a TTimer) any file that reported by ReadDirectoryChangesW as modified, waiting for it to be closed (using CreateFile to detect this). However, what I'd prefer is a completely event driven solution. Is there a way to hook system calls and detect all file closing events? I simply want to know the path & name of any file that has just been closed.

    Read the article

< Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >