Search Results

Search found 3340 results on 134 pages for 'comma operator'.

Page 55/134 | < Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >

  • Templates, Function Pointers and C++0x

    - by user328543
    One of my personal experiments to understand some of the C++0x features: I'm trying to pass a function pointer to a template function to execute. Eventually the execution is supposed to happen in a different thread. But with all the different types of functions, I can't get the templates to work. #include `<functional`> int foo(void) {return 2;} class bar { public: int operator() (void) {return 4;}; int something(int a) {return a;}; }; template <class C> int func(C&& c) { //typedef typename std::result_of< C() >::type result_type; typedef typename std::conditional< std::is_pointer< C >::value, std::result_of< C() >::type, std::conditional< std::is_object< C >::value, std::result_of< typename C::operator() >::type, void> >::type result_type; result_type result = c(); return result; } int main(int argc, char* argv[]) { // call with a function pointer func(foo); // call with a member function bar b; func(b); // call with a bind expression func(std::bind(&bar::something, b, 42)); // call with a lambda expression func( [](void)->int {return 12;} ); return 0; } The result_of template alone doesn't seem to be able to find the operator() in class bar and the clunky conditional I created doesn't compile. Any ideas? Will I have additional problems with const functions?

    Read the article

  • F# How to tokenise user input: separating numbers, units, words?

    - by David White
    I am fairly new to F#, but have spent the last few weeks reading reference materials. I wish to process a user-supplied input string, identifying and separating the constituent elements. For example, for this input: XYZ Hotel: 6 nights at 220EUR / night plus 17.5% tax the output should resemble something like a list of tuples: [ ("XYZ", Word); ("Hotel:", Word); ("6", Number); ("nights", Word); ("at", Operator); ("220", Number); ("EUR", CurrencyCode); ("/", Operator); ("night", Word); ("plus", Operator); ("17.5", Number); ("%", PerCent); ("tax", Word) ] Since I'm dealing with user input, it could be anything. Thus, expecting users to comply with a grammar is out of the question. I want to identify the numbers (could be integers, floats, negative...), the units of measure (optional, but could include SI or Imperial physical units, currency codes, counts such as "night/s" in my example), mathematical operators (as math symbols or as words including "at" "per", "of", "discount", etc), and all other words. I have the impression that I should use active pattern matching -- is that correct? -- but I'm not exactly sure how to start. Any pointers to appropriate reference material or similar examples would be great.

    Read the article

  • Checked and Unchecked operators don't seem to be working when...

    - by flockofcode
    1) Is UNCHECKED operator in effect only when expression inside UNCHECKED context uses an explicit cast ( such as byte b1=unchecked((byte)2000); ) and when conversion to particular type can happen implicitly? I’m assuming this since the following expression throws a compile time error: byte b1=unchecked(2000); //compile time error 2) a) Do CHECKED and UNCHECKED operators work only when resulting value of an expression or conversion is of an integer type? I’m assuming this since in the first example ( where double type is being converted to integer type ) CHECKED operator works as expected: double m = double.MaxValue; b=checked((byte)m); // reports an exception , while in second example ( where double type is being converted to a float type ) CHECKED operator doesn’t seem to be working. since it doesn't throw an exception: double m = double.MaxValue; float f = checked((float)m); // no exception thrown b) Why don’t the two operators also work with expressions where type of a resulting value is of floating-point type? 2) Next quote is from Microsoft’s site: The unchecked keyword is used to control the overflow-checking context for integral-type arithmetic operations and conversions I’m not sure I understand what exactly have expressions and conversions such as unchecked((byte)(100+200)); in common with integrals? Thank you

    Read the article

  • short-cutting equality checking in F#?

    - by John Clements
    In F#, the equality operator (=) is generally extensional, rather than intensional. That's great! Unfortunately, it appears to me that F# does not use pointer equality to short-cut these extensional comparisons. For instance, this code: type Z = MT | NMT of Z ref // create a Z: let a = ref MT // make it point to itself: a := NMT a // check to see whether it's equal to itself: printf "a = a: %A\n" (a = a) ... gives me a big fat segmentation fault[*], despite the fact that 'a' and 'a' both evaluate to the same reference. That's not so great. Other functional languages (e.g. PLT Scheme) get this right, using pointer comparisons conservatively, to return 'true' when it can be determined using a pointer comparison. So: I'll accept the fact that F#'s equality operator doesn't use short-cutting; is there some way to perform an intensional (pointer-based) equality check? The (==) operator is not defined on my types, and I'd love it if someone could tell me that it's available somehow. Or tell me that I'm wrong in my analysis of the situation: I'd love that, too... [*] That would probably be a stack overflow on Windows; there are things about Mono that I'm not that fond of...

    Read the article

  • Another boost error

    - by user1676605
    On this code I get the enourmous error static void ParseTheCommandLine(int argc, char *argv[]) { int count; int seqNumber; namespace po = boost::program_options; std::string appName = boost::filesystem::basename(argv[0]); po::options_description desc("Generic options"); desc.add_options() ("version,v", "print version string") ("help", "produce help message") ("sequence-number", po::value<int>(&seqNumber)->default_value(0), "sequence number") ("pem-file", po::value< vector<string> >(), "pem file") ; po::positional_options_description p; p.add("pem-file", -1); po::variables_map vm; po::store(po::command_line_parser(argc, argv). options(desc).positional(p).run(), vm); po::notify(vm); if (vm.count("pem file")) { cout << "Pem files are: " << vm["pem-file"].as< vector<string> >() << "\n"; } cout << "Sequence number is " << seqNumber << "\n"; exit(1); ../../../FIXMarketDataCommandLineParameters/FIXMarketDataCommandLineParameters.hpp|98|error: no match for ‘operator<<’ in ‘std::operator<< [with _Traits = std::char_traits](((std::basic_ostream &)(& std::cout)), ((const char*)"Pem files are: ")) << ((const boost::program_options::variable_value*)vm.boost::program_options::variables_map::operator[](((const std::string&)(& std::basic_string, std::allocator (((const char*)"pem-file"), ((const std::allocator&)((const std::allocator*)(& std::allocator()))))))))-boost::program_options::variable_value::as with T = std::vector, std::allocator , std::allocator, std::allocator ’|

    Read the article

  • SSIS Design Pattern: Loading Variable-Length Rows

    - by andyleonard
    Introduction I encounter flat file sources with variable-length rows on occassion. Here, I supply one SSIS Design Pattern for loading them. What's a Variable-Length Row Flat File? Great question - let's start with a definition. A variable-length row flat file is a text source of some flavor - comma-separated values (CSV), tab-delimited file (TDF), or even fixed-length, positional-, or ordinal-based (where the location of the data on the row defines its field). The major difference between a "normal"...(read more)

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 25 (sys.dm_db_missing_index_details)

    - by Tamarick Hill
    The sys.dm_db_missing_index_details Dynamic Management View is used to return information about missing indexes on your SQL Server instances. These indexes are ones that the optimizer has identified as indexes it would like to use but did not have. You may also see these same indexes indicated in other tools such as query execution plans or the Database tuning advisor. Let’s execute this DMV so we can review the information it provides us. I do not have any missing index information for my AdventureWorks2012 database, but for the purposes of illustrating the result set of this DMV, I will present the results from my msdb database. SELECT * FROM sys.dm_db_missing_index_details The first column presented is the index_handle which uniquely identifies a particular missing index. The next two columns represent the database_id and the object_id for the particular table in question. Next is the ‘equality_columns’ column which gives you a list of columns (comma separated) that would be beneficial to the optimizer for equality operations. By equality operation I mean for any queries that would use a filter or join condition such as WHERE A = B. The next column, ‘inequality_columns’, gives you a comma separated list of columns that would be beneficial to the optimizer for inequality operations. An inequality operation is anything other than A = B. For example, “WHERE A != B”, “WHERE A > B”, “WHERE A < B”, and “WHERE A <> B” would all qualify as inequality. Next is the ‘included_columns’ column which list all columns that would be beneficial to the optimizer for purposes of providing a covering index and preventing key/bookmark lookups. Lastly is the ‘statement’ column which lists the name of the table where the index is missing. This DMV can help you identify potential indexes that could be added to improve the performance of your system. However, I will advise you not to just take the output of this DMV and create an index for everything you see. Everything listed here should be analyzed and then tested on a Development or Test system before implementing into a Production environment. For more information on this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms345434.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • T-SQL Tuesday # 16 : This is not the aggregate you're looking for

    - by AaronBertrand
    This week, T-SQL Tuesday is being hosted by Jes Borland ( blog | twitter ), and the theme is " Aggregate Functions ." When people think of aggregates, they tend to think of MAX(), SUM() and COUNT(). And occasionally, less common functions such as AVG() and STDEV(). I thought I would write a quick post about a different type of aggregate: string concatenation. Even going back to my classic ASP days, one of the more common questions out in the community has been, "how do I turn a column into a comma-separated...(read more)

    Read the article

  • I want to install and get to building a personal MySQL DB

    - by Ari Hall
    So how do I go from installing MySQL from the Software Center to inputing data into fields and bringing in a comma delimited file? I've only had brief experience with MSAccess and OOo Base a long time ago, so details are appreciated, I just want to get up and running. I have Ubuntu 10.10, 64 bit, if that affects much. If you can link me to a howto that does exactly what I'm looking for, that would work. Again, Thanks!

    Read the article

  • 3 SEO Secrets to Rocket Above the Competition in Just 10 Days!

    Correct Title Tags - That's right, the original and best way to outrank the website above you is to tweak the title tags on every single page on your website, and make sure they 100% different! Another great tip - don't just use one keyword, but: 'Keyword 1 & Keyword 2' on each of the pages, and note the pipe separator in the middle, not the comma or dots.

    Read the article

  • How To Deal With Terrible Design Decisions

    - by splatto
    I'm a consultant at one company. There is another consultant who is a year older than me and has been here 3 months longer than I have, and a full time developer. The full-time developer is great. My concern is that I see the consultant making absolutely terrible design decisions. For example, M:M relationships are being stored in the database as a comma-delimited string rather than using a conjunction table to hold the relationships. For example, consider two tables, Car and Property: Car records: Camry Volvo Mercedes Property records: Spare Tire Satellite Radio Ipod Support Standard Rather than making a table CarProperties to represent this, he has made a "Property" attribute on the Car table whose data looks like "1,3,7,13,19,25," I hate how this decision and others are affecting the quality of my code. We have butted heads over this design three times in the past two months since I've been here. He asked me why my suggestion was better, and I responded that our database would be eliminating redundant data by converting to a higher normal form. I explained that this design flaw in particular is discussed and discouraged in entry level college programs, and he responded with a shot at me saying that these comma-separated-value database properties are taught when you do your masters (which neither of us have). Needless to say, he became very upset and demanded I apologize for criticizing his work, which I did in the interest of not wanting to be the consultant to create office drama. Our project manager is focused on delivering a product ASAP and is a very strong personality - Suggesting to him at this point that we spend some time to do this right will set him off. There is a strong likelihood that both of our contracts will be extended to work on a second project coming up. How will I be able to exert dominant influence over the design of the system and the data model to ensure that such terrible mistakes are not repeated in the next project? A glimpse at the dynamics: I can be a strong personality if I don't measure myself. The other consultant is not a strong personality, is a poor communicator, is quite stubborn and thinks he is better than everyone else. The project manager is an extremely strong personality who is focused on releasing tomorrow's product yesterday. The full-time developer is very laid back and easy going, a very effective communicator, but is someone who will accept bad design if it means not rocking the boat. Code reviews or anything else that takes "time" will be out of the question - there is no way our PM will be sold on such a thing by anybody.

    Read the article

  • Sub-Select to Delimited List in T-SQL

    - by Doug Lampe
    The following transact-SQL statement can be used with Microsoft SQL Server to create a delimited list from a sub-query.  In this case the delimiter is a comma. SELECT Left(item,LEN(item)-1)as delimited_list FROM (     select       CAST       (          (               select original_item + ','               from TABLE             where condition_field = 'value'             for xml path ('')           )   as varchar(max)      ) as item ) as temp

    Read the article

  • A strong component keeps everything together

    - by Justin Paul-Oracle
    Most of the times you implement a WebCenter Content based system, you require some sort of customization. Sometimes these customizations need a Java class or two, or libraries (for example, the JavaMail API), or Database Objects (like new tables, views, indexes, etc). I have seen that libraries and Database Objects are usually put in place using manual steps. This means that the library jar files are copied to one of the common classes directory (set in the Content CLASSPATH variable) and/or the database scripts are executed manually. I have also seen people place the custom Java classes in the common classes directory. While this may seem like an easy solution, think about a scenario where you need to disable or uninstall the component or if you have to upgrade or migrate the system. You have to keep these manual steps documented and execute them every time you encounter the above scenarios. It is very common that some of these manual steps are missed when you have multiple teams and people working on the system. Here are a few points to ponder upon: Place all your custom Java classes within your component. Create a new directory, say ${COMPONENT_DIR}/classes, and place your code there. You can choose to bundle all your classes into a jar or you can place the entire class directory structure. Add a path entry to the Build Settings so that it is bundled with the component when you build it. You also need to update the Custom Class Path and the Custom Class Path Load Order under the Advanced Build Settings. This will ensure that the system CLASSPATH is updated to add this new directory. Create a new component for any new library that you want to add. Add the appropriate path entries to the Build Settings so that it is bundled with the component when you build it. You also need to update the Custom Class Path, Custom Class Path Load Order and/or the Custom Library Path under the Advanced Build Settings. Enter a comma separated list of features that this component will provide. When you create other components that will use the features exposed by this component, make sure that you specify a dependency to this library component by specifying the comma separated list of features in the Advanced Build Settings. The component wizard allows you to create custom install/uninstall Java code. The wizard will create a install filter class when you check the “Has Install” checkbox on the “Install/Uninstall Settings” tab. Consider using this filter class to create database objects when you install the component and drop the objects when you uninstall the component. If you do a lot of custom component development, consider creating a install/uninstall Java class, which can execute queries defined within the component. To sum up, whenever you write a new custom component, make sure that you bundle everything within the component.

    Read the article

  • how to execute for loop with sed in terminal

    - by vipin8169
    I want to execute the for loop with sed command, and is getting an error for the same for i in <comma-separated server name list>;do "command";echo $i;done where command=sed '/^$/d' /home/nextag/instance.properties|grep -vc '#' I'm getting the following error :- -bash: sed "/^$/d" /home/nextag/instance.properties|grep -vc#: No such file or directory lu1 What is the correct way to execute this command to get the perfect output I tried this as well for i in lu1;do 'sed \'/^$/d\' /home/nextag/instance.properties|grep -vc \'#\'';echo $i;done Also, can some explain the part '/^$/d'in sed '/^$/d' /home/nextag/instance.properties|grep -vc '#'

    Read the article

  • Checking if %Y exists in current file in VimScript [closed]

    - by Eduan
    Like the title says. I would love to know how, with VimScript, I can do an if statement, that checks if %Y (for statusline) exists in the current file. This is what I have so far: if expand('%:Y') != "" let filetype=extend('%:Y') let filetype+= ",\ " else let filetype="" endif This is, of course, for my statusline, for which I don't want to show the filetype comma and space if the filetype doesn't exist. BTW, this is a direct copy of this StackOverflow question: http://stackoverflow.com/questions/13314264/checking-if-y-exists-in-current-file-in-vimscript

    Read the article

  • Serialized values or separate table, which is more efficient?

    - by Aravind
    I have a Rails model email_condition_string with a word column in it. Now I have another model called request_creation_email_config with the following columns admin_filter_group:references vendor_service:references email_condition_string:references email_condition_string has many request_creation_email_config and request_creation_email_config belongs to email_condition_string. Instead of this model a colleague of mine is suggesting that strong the word inside the same model as comma separated values is efficient than storing as a separate model. Is that alright?

    Read the article

  • A simple T-SQL statement to create a list of lookup values

    In this article, we provide a simple way to get a comma delimited list from a table of entries without having to use a CURSOR or a WHILE loop to read through the table. Are you sure you can restore your backups? Run full restore + DBCC CHECKDB quickly and easily with SQL Backup Pro's new automated verification. Check for corruption and prepare for when disaster strikes. Try it now.

    Read the article

  • Parsing Parameters in a Stored Procedure

    This article shows a clean non-looping method to parse comma separated values from a parameter passed to a stored procedure. NEW! Deployment Manager Early Access ReleaseDeploy SQL Server changes and .NET applications fast, frequently, and without fuss, using Deployment Manager, the new tool from Red Gate. Try the Early Access Release to get a 20% discount on Version 1. Download the Early Access Release.

    Read the article

  • Modify registry for Internet Connection Sharing?

    - by Tim
    My OS is Windows XP. Quoted from How to Change the IP Range for the Internet Connection Sharing DHCP service Use Registry Editor to modify the data value of the IntranetInfo value in the following registry key: Hkey_Local_Machine\System\CurrentControlSet\Services\ICSharing\Settings\General The first number listed is the IP address of the internal IP address of the Connection Sharing host. The second number is the subnet IP address separated by a comma. Enter the first IP address of the new range followed by the subnet mask, separated by a comma. (For example, 169.254.0.1,255.255.0.0.). Modify the data value of the Start value in the following registry key: Hkey_Local_Machine\System\CurrentControlSet\Services\ICSharing\Addressing\Settings Change the value to the second address of the selected IP range. This address cannot be the same or a lower value than the IP address used for the IntranetInfo key. Modify the data value for the Stop value in the same registry key. Enter the last the IP address of the selected IP range. My registry table does not have Hkey_Local_Machine\System\CurrentControlSet\Services\ICSharing, and I don't know how to do with my registry table following the above three steps. Can someone guide me through it step by step?

    Read the article

  • MSDeploy - possible to call setAcl on multiple destinations in one go?

    - by growse
    I'm building a nice little continuous integration environment for our development team, based on TeamCity. It's working rather nicely, as it can build a mix of .NET and PHP projects, and push them to our internal and external platforms. I'm primarily using MsDeploy to push everything to the internal platform, as that's all IIS based. However, there's a number of builds where I need to set directory permissions on the destination directory. I can use the setAcl operator just fine, but that only seems to take a single destination as an argument. Therefore, if I need to alter the permissions on 5 destination directories, I need to call MsDeploy 5 times, which seems a lot of overhead. Is there a sensible way around this? Reading the documentation, I don't think MsDeploy takes more than a single argument for the setAcl operator, but could be wrong. Is there a better way for a build server to set multiple directory permissions in one go?

    Read the article

  • One-To-Many Powershell Scripts

    - by Matt
    I'm trying to create a script to run as a scheduled task, which will run against multiple servers and retrieve some information. To start with, I populate the list of servers by querying AD for all servers that match a certain set of criteria, using Get-ADComputer. The problem is, the list is returned as an object, which I can't then pass to the New-PSSession list. I have tried converting it to a comma-seperated string by doing the following: foreach ($server in $serverlist) {$newlist += $server.Name + ","} but this still doesn't work. the alternative is to iterate through the list and run the various commands against each server one at a time, but my preference would be to avoid this and run them using one-to-many remoting. UPDATE: To clarify what I want to end up being able to do is using -ComputerName $serverlist, so I want $serverlist to be a string rather than an object. UPDATE 2: Thanks for all the suggestions. Between them and my original method I'm starting to wonder whether -ComputerName can accept a string variable? I've got varying degrees of success getting the list of computers converted to a comma separated string, but no matter how I do it I always get invalid network address.

    Read the article

  • Random keyboard malfunction - happens in Vista and XP

    - by Stupefy101
    For some weird reason, some of my keyboard keys of my deskop are acting very strangely. I don't remember a certain time when it started and I can't recognize any pattern as to when it happens and when it doesn't. The problem occurs in Windows XP, XP Safe Mode, Vista, and Vista Safe mode (I have a dual boot system) Here's what's happening: When I push the I, K, comma, or 8 keys (notice how they are all in the same column), instead of just getting that character, I get extra characters afterwards. For example, I'll push the k key and it will print "ksfda", pushing "I" gives me "IWREQ", comma gives me ", xvcz", pushing 8 gives me "82431". There are a couple things that I have noticed: It does not happen every time I push the key It happens in all OS and applications I have tested The characters coming after the desired ones are in the same pattern (column order: 2, 4, 3, 1 from the left of the keyboard in the same row as the key pressed. Pressing "]" will sometimes give me "]t", and if done in Notepad, will bring up the "Find" dialog window I cannot seem to remember a specific time the problem started, although I have been defragging, using TuneUp Utilities + CCleaner, and installing lots of new programs lately.

    Read the article

  • Dropbox.py on RHEL 6

    - by Timothy R. Butler
    I'm trying to run a headless install of Dropbox on RHEL 6. The daemon seems to be running, but when I try to use Dropbox's associated dropbox.py tool to control the daemon, it fails to run with the following error: Traceback (most recent call last): File "./dropbox.py", line 26, in <module> import locale File "/usr/lib64/python2.6/locale.py", line 202, in <module> import re, operator ImportError: /home/dropbox/.dropbox-dist/operator.so: undefined symbol: _PyUnicodeUCS2_AsDefaultEncodedString I'm running the current RHEL build of Python 2.6: root@cedar [/home/dropbox/.dropbox-dist]# rpm -qv python python-2.6.6-29.el6_3.3.x86_64 (I'm not sure if this would be better suited to Stack Overflow since it is on the verge of being a programming issue, but since I'm trying to use a program straight from Dropbox, I placed it here.)

    Read the article

  • Mutt: apply command to all tagged messages

    - by mrucci
    From the mutt manual: Once you have tagged the desired messages, you can use the tag-prefix operator, which is the ; (semicolon) key by default. When the tag-prefix operator is used, the next operation will be applied to all tagged messages if that operation can be used in that manner. But it seems that I can only execute commands that are already bound to a specific keyboard shortcut. For example I can use ;d to delete all selected messages. What if I want to apply an "unbound" command (such as purge-message)? I have also tried using something based on :exec tag-prefix or :push tag-prefix without success.

    Read the article

< Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >