Search Results

Search found 108959 results on 4359 pages for 'ado net data services'.

Page 56/4359 | < Previous Page | 52 53 54 55 56 57 58 59 60 61 62 63  | Next Page >

  • Use IIS Application Initialization for keeping ASP.NET Apps alive

    - by Rick Strahl
    I've been working quite a bit with Windows Services in the recent months, and well, it turns out that Windows Services are quite a bear to debug, deploy, update and maintain. The process of getting services set up,  debugged and updated is a major chore that has to be extensively documented and or automated specifically. On most projects when a service is built, people end up scrambling for the right 'process' to use for administration. Web app deployment and maintenance on the other hand are common and well understood today, as we are constantly dealing with Web apps. There's plenty of infrastructure and tooling built into Web Tools like Visual Studio to facilitate the process. By comparison Windows Services or anything self-hosted for that matter seems convoluted.In fact, in a recent blog post I mentioned that on a recent project I'd been using self-hosting for SignalR inside of a Windows service, because the application is in fact a 'service' that also needs to send out lots of messages via SignalR. But the reality is that it could just as well be an IIS application with a service component that runs in the background. Either way you look at it, it's either a Windows Service with a built in Web Server, or an IIS application running a Service application, neither of which follows the standard Service or Web App template.Personally I much prefer Web applications. Running inside of IIS I get all the benefits of the IIS platform including service lifetime management (crash and restart), controlled shutdowns, the whole security infrastructure including easy certificate support, hot-swapping of code and the the ability to publish directly to IIS from within Visual Studio with ease.Because of these benefits we set out to move from the self hosted service into an ASP.NET Web app instead.The Missing Link for ASP.NET as a Service: Auto-LoadingI've had moments in the past where I wanted to run a 'service like' application in ASP.NET because when you think about it, it's so much easier to control a Web application remotely. Services are locked into start/stop operations, but if you host inside of a Web app you can write your own ticket and control it from anywhere. In fact nearly 10 years ago I built a background scheduling application that ran inside of ASP.NET and it worked great and it's still running doing its job today.The tricky part for running an app as a service inside of IIS then and now, is how to get IIS and ASP.NET launched so your 'service' stays alive even after an Application Pool reset. 7 years ago I faked it by using a web monitor (my own West Wind Web Monitor app) I was running anyway to monitor my various web sites for uptime, and having the monitor ping my 'service' every 20 seconds to effectively keep ASP.NET alive or fire it back up after a reload. I used a simple scheduler class that also includes some logic for 'self-reloading'. Hacky for sure, but it worked reliably.Luckily today it's much easier and more integrated to get IIS to launch ASP.NET as soon as an Application Pool is started by using the Application Initialization Module. The Application Initialization Module basically allows you to turn on Preloading on the Application Pool and the Site/IIS App, which essentially fires a request through the IIS pipeline as soon as the Application Pool has been launched. This means that effectively your ASP.NET app becomes active immediately, Application_Start is fired making sure your app stays up and running at all times. All the other features like Application Pool recycling and auto-shutdown after idle time still work, but IIS will then always immediately re-launch the application.Getting started with Application InitializationAs of IIS 8 Application Initialization is part of the IIS feature set. For IIS 7 and 7.5 there's a separate download available via Web Platform Installer. Using IIS 8 Application Initialization is an optional install component in Windows or the Windows Server Role Manager: This is an optional component so make sure you explicitly select it.IIS Configuration for Application InitializationInitialization needs to be applied on the Application Pool as well as the IIS Application level. As of IIS 8 these settings can be made through the IIS Administration console.Start with the Application Pool:Here you need to set both the Start Automatically which is always set, and the StartMode which should be set to AlwaysRunning. Both have to be set - the Start Automatically flag is set true by default and controls the starting of the application pool itself while Always Running flag is required in order to launch the application. Without the latter flag set the site settings have no effect.Now on the Site/Application level you can specify whether the site should pre load: Set the Preload Enabled flag to true.At this point ASP.NET apps should auto-load. This is all that's needed to pre-load the site if all you want is to get your site launched automatically.If you want a little more control over the load process you can add a few more settings to your web.config file that allow you to show a static page while the App is starting up. This can be useful if startup is really slow, so rather than displaying blank screen while the user is fiddling their thumbs you can display a static HTML page instead: <system.webServer> <applicationInitialization remapManagedRequestsTo="Startup.htm" skipManagedModules="true"> <add initializationPage="ping.ashx" /> </applicationInitialization> </system.webServer>This allows you to specify a page to execute in a dry run. IIS basically fakes request and pushes it directly into the IIS pipeline without hitting the network. You specify a page and IIS will fake a request to that page in this case ping.ashx which just returns a simple OK string - ie. a fast pipeline request. This request is run immediately after Application Pool restart, and while this request is running and your app is warming up, IIS can display an alternate static page - Startup.htm above. So instead of showing users an empty loading page when clicking a link on your site you can optionally show some sort of static status page that says, "we'll be right back".  I'm not sure if that's such a brilliant idea since this can be pretty disruptive in some cases. Personally I think I prefer letting people wait, but at least get the response they were supposed to get back rather than a random page. But it's there if you need it.Note that the web.config stuff is optional. If you don't provide it IIS hits the default site link (/) and even if there's no matching request at the end of that request it'll still fire the request through the IIS pipeline. Ideally though you want to make sure that an ASP.NET endpoint is hit either with your default page, or by specify the initializationPage to ensure ASP.NET actually gets hit since it's possible for IIS fire unmanaged requests only for static pages (depending how your pipeline is configured).What about AppDomain Restarts?In addition to full Worker Process recycles at the IIS level, ASP.NET also has to deal with AppDomain shutdowns which can occur for a variety of reasons:Files are updated in the BIN folderWeb Deploy to your siteweb.config is changedHard application crashThese operations don't cause the worker process to restart, but they do cause ASP.NET to unload the current AppDomain and start up a new one. Because the features above only apply to Application Pool restarts, AppDomain restarts could also cause your 'ASP.NET service' to stop processing in the background.In order to keep the app running on AppDomain recycles, you can resort to a simple ping in the Application_End event:protected void Application_End() { var client = new WebClient(); var url = App.AdminConfiguration.MonitorHostUrl + "ping.aspx"; client.DownloadString(url); Trace.WriteLine("Application Shut Down Ping: " + url); }which fires any ASP.NET url to the current site at the very end of the pipeline shutdown which in turn ensures that the site immediately starts back up.Manual Configuration in ApplicationHost.configThe above UI corresponds to the following ApplicationHost.config settings. If you're using IIS 7, there's no UI for these flags so you'll have to manually edit them.When you install the Application Initialization component into IIS it should auto-configure the module into ApplicationHost.config. Unfortunately for me, with Mr. Murphy in his best form for me, the module registration did not occur and I had to manually add it.<globalModules> <add name="ApplicationInitializationModule" image="%windir%\System32\inetsrv\warmup.dll" /> </globalModules>Most likely you won't need ever need to add this, but if things are not working it's worth to check if the module is actually registered.Next you need to configure the ApplicationPool and the Web site. The following are the two relevant entries in ApplicationHost.config.<system.applicationHost> <applicationPools> <add name="West Wind West Wind Web Connection" autoStart="true" startMode="AlwaysRunning" managedRuntimeVersion="v4.0" managedPipelineMode="Integrated"> <processModel identityType="LocalSystem" setProfileEnvironment="true" /> </add> </applicationPools> <sites> <site name="Default Web Site" id="1"> <application path="/MPress.Workflow.WebQueueMessageManager" applicationPool="West Wind West Wind Web Connection" preloadEnabled="true"> <virtualDirectory path="/" physicalPath="C:\Clients\…" /> </application> </site> </sites> </system.applicationHost>On the Application Pool make sure to set the autoStart and startMode flags to true and AlwaysRunning respectively. On the site make sure to set the preloadEnabled flag to true.And that's all you should need. You can still set the web.config settings described above as well.ASP.NET as a Service?In the particular application I'm working on currently, we have a queue manager that runs as standalone service that polls a database queue and picks out jobs and processes them on several threads. The service can spin up any number of threads and keep these threads alive in the background while IIS is running doing its own thing. These threads are newly created threads, so they sit completely outside of the IIS thread pool. In order for this service to work all it needs is a long running reference that keeps it alive for the life time of the application.In this particular app there are two components that run in the background on their own threads: A scheduler that runs various scheduled tasks and handles things like picking up emails to send out outside of IIS's scope and the QueueManager. Here's what this looks like in global.asax:public class Global : System.Web.HttpApplication { private static ApplicationScheduler scheduler; private static ServiceLauncher launcher; protected void Application_Start(object sender, EventArgs e) { // Pings the service and ensures it stays alive scheduler = new ApplicationScheduler() { CheckFrequency = 600000 }; scheduler.Start(); launcher = new ServiceLauncher(); launcher.Start(); // register so shutdown is controlled HostingEnvironment.RegisterObject(launcher); }}By keeping these objects around as static instances that are set only once on startup, they survive the lifetime of the application. The code in these classes is essentially unchanged from the Windows Service code except that I could remove the various overrides required for the Windows Service interface (OnStart,OnStop,OnResume etc.). Otherwise the behavior and operation is very similar.In this application ASP.NET serves two purposes: It acts as the host for SignalR and provides the administration interface which allows remote management of the 'service'. I can start and stop the service remotely by shutting down the ApplicationScheduler very easily. I can also very easily feed stats from the queue out directly via a couple of Web requests or (as we do now) through the SignalR service.Registering a Background Object with ASP.NETNotice also the use of the HostingEnvironment.RegisterObject(). This function registers an object with ASP.NET to let it know that it's a background task that should be notified if the AppDomain shuts down. RegisterObject() requires an interface with a Stop() method that's fired and allows your code to respond to a shutdown request. Here's what the IRegisteredObject::Stop() method looks like on the launcher:public void Stop(bool immediate = false) { LogManager.Current.LogInfo("QueueManager Controller Stopped."); Controller.StopProcessing(); Controller.Dispose(); Thread.Sleep(1500); // give background threads some time HostingEnvironment.UnregisterObject(this); }Implementing IRegisterObject should help with reliability on AppDomain shutdowns. Thanks to Justin Van Patten for pointing this out to me on Twitter.RegisterObject() is not required but I would highly recommend implementing it on whatever object controls your background processing to all clean shutdowns when the AppDomain shuts down.Testing it outI'm still in the testing phase with this particular service to see if there are any side effects. But so far it doesn't look like it. With about 50 lines of code I was able to replace the Windows service startup to Web start up - everything else just worked as is. An honorable mention goes to SignalR 2.0's oWin hosting, because with the new oWin based hosting no code changes at all were required, merely a couple of configuration file settings and an assembly directive needed, to point at the SignalR startup class. Sweet!It also seems like SignalR is noticeably faster running inside of IIS compared to self-host. Startup feels faster because of the preload.Starting and Stopping the 'Service'Because the application is running as a Web Server, it's easy to have a Web interface for starting and stopping the services running inside of the service. For our queue manager the SignalR service and front monitoring app has a play and stop button for toggling the queue.If you want more administrative control and have it work more like a Windows Service you can also stop the application pool explicitly from the command line which would be equivalent to stopping and restarting a service.To start and stop from the command line you can use the IIS appCmd tool. To stop:> %windir%\system32\inetsrv\appcmd stop apppool /apppool.name:"Weblog"and to start> %windir%\system32\inetsrv\appcmd start apppool /apppool.name:"Weblog"Note that when you explicitly force the AppPool to stop running either in the UI (on the ApplicationPools page use Start/Stop) or via command line tools, the application pool will not auto-restart immediately. You have to manually start it back up.What's not to like?There are certainly a lot of benefits to running a background service in IIS, but… ASP.NET applications do have more overhead in terms of memory footprint and startup time is a little slower, but generally for server applications this is not a big deal. If the application is stable the service should fire up and stay running indefinitely. A lot of times this kind of service interface can simply be attached to an existing Web application, or if scalability requires be offloaded to its own Web server.Easier to work withBut the ultimate benefit here is that it's much easier to work with a Web app as opposed to a service. While developing I can simply turn off the auto-launch features and launch the service on demand through IIS simply by hitting a page on the site. If I want to shut down an IISRESET -stop will shut down the service easily enough. I can then attach a debugger anywhere I want and this works like any other ASP.NET application. Yes you end up on a background thread for debugging but Visual Studio handles that just fine and if you stay on a single thread this is no different than debugging any other code.SummaryUsing ASP.NET to run background service operations is probably not a super common scenario, but it probably should be something that is considered carefully when building services. Many applications have service like features and with the auto-start functionality of the Application Initialization module, it's easy to build this functionality into ASP.NET. Especially when combined with the notification features of SignalR it becomes very, very easy to create rich services that can also communicate their status easily to the outside world.Whether it's existing applications that need some background processing for scheduling related tasks, or whether you just create a separate site altogether just to host your service it's easy to do and you can leverage the same tool chain you're already using for other Web projects. If you have lots of service projects it's worth considering… give it some thought…© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  SignalR  IIS   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Windows Azure: Major Updates for Mobile Backend Development

    - by ScottGu
    This week we released some great updates to Windows Azure that make it significantly easier to develop mobile applications that use the cloud. These new capabilities include: Mobile Services: Custom API support Mobile Services: Git Source Control support Mobile Services: Node.js NPM Module support Mobile Services: A .NET API via NuGet Mobile Services and Web Sites: Free 20MB SQL Database Option for Mobile Services and Web Sites Mobile Notification Hubs: Android Broadcast Push Notification Support All of these improvements are now available to use immediately (note: some are still in preview).  Below are more details about them. Mobile Services: Custom APIs, Git Source Control, and NuGet Windows Azure Mobile Services provides the ability to easily stand up a mobile backend that can be used to support your Windows 8, Windows Phone, iOS, Android and HTML5 client applications.  Starting with the first preview we supported the ability to easily extend your data backend logic with server side scripting that executes as part of client-side CRUD operations against your cloud back data tables. With today’s update we are extending this support even further and introducing the ability for you to also create and expose Custom APIs from your Mobile Service backend, and easily publish them to your Mobile clients without having to associate them with a data table. This capability enables a whole set of new scenarios – including the ability to work with data sources other than SQL Databases (for example: Table Services or MongoDB), broker calls to 3rd party APIs, integrate with Windows Azure Queues or Service Bus, work with custom non-JSON payloads (e.g. Windows Periodic Notifications), route client requests to services back on-premises (e.g. with the new Windows Azure BizTalk Services), or simply implement functionality that doesn’t correspond to a database operation.  The custom APIs can be written in server-side JavaScript (using Node.js) and can use Node’s NPM packages.  We will also be adding support for custom APIs written using .NET in the future as well. Creating a Custom API Adding a custom API to an existing Mobile Service is super easy.  Using the Windows Azure Management Portal you can now simply click the new “API” tab with your Mobile Service, and then click the “Create a Custom API” button to create a new Custom API within it: Give the API whatever name you want to expose, and then choose the security permissions you’d like to apply to the HTTP methods you expose within it.  You can easily lock down the HTTP verbs to your Custom API to be available to anyone, only those who have a valid application key, only authenticated users, or administrators.  Mobile Services will then enforce these permissions without you having to write any code: When you click the ok button you’ll see the new API show up in the API list.  Selecting it will enable you to edit the default script that contains some placeholder functionality: Today’s release enables Custom APIs to be written using Node.js (we will support writing Custom APIs in .NET as well in a future release), and the Custom API programming model follows the Node.js convention for modules, which is to export functions to handle HTTP requests. The default script above exposes functionality for an HTTP POST request. To support a GET, simply change the export statement accordingly.  Below is an example of some code for reading and returning data from Windows Azure Table Storage using the Azure Node API: After saving the changes, you can now call this API from any Mobile Service client application (including Windows 8, Windows Phone, iOS, Android or HTML5 with CORS). Below is the code for how you could invoke the API asynchronously from a Windows Store application using .NET and the new InvokeApiAsync method, and data-bind the results to control within your XAML:     private async void RefreshTodoItems() {         var results = await App.MobileService.InvokeApiAsync<List<TodoItem>>("todos", HttpMethod.Get, parameters: null);         ListItems.ItemsSource = new ObservableCollection<TodoItem>(results);     }    Integrating authentication and authorization with Custom APIs is really easy with Mobile Services. Just like with data requests, custom API requests enjoy the same built-in authentication and authorization support of Mobile Services (including integration with Microsoft ID, Google, Facebook and Twitter authentication providers), and it also enables you to easily integrate your Custom API code with other Mobile Service capabilities like push notifications, logging, SQL, etc. Check out our new tutorials to learn more about to use new Custom API support, and starting adding them to your app today. Mobile Services: Git Source Control Support Today’s Mobile Services update also enables source control integration with Git.  The new source control support provides a Git repository as part your Mobile Service, and it includes all of your existing Mobile Service scripts and permissions. You can clone that git repository on your local machine, make changes to any of your scripts, and then easily deploy the mobile service to production using Git. This enables a really great developer workflow that works on any developer machine (Windows, Mac and Linux). To use the new support, navigate to the dashboard for your mobile service and select the Set up source control link: If this is your first time enabling Git within Windows Azure, you will be prompted to enter the credentials you want to use to access the repository: Once you configure this, you can switch to the configure tab of your Mobile Service and you will see a Git URL you can use to use your repository: You can use this URL to clone the repository locally from your favorite command line: > git clone https://scottgutodo.scm.azure-mobile.net/ScottGuToDo.git Below is the directory structure of the repository: As you can see, the repository contains a service folder with several subfolders. Custom API scripts and associated permissions appear under the api folder as .js and .json files respectively (the .json files persist a JSON representation of the security settings for your endpoints). Similarly, table scripts and table permissions appear as .js and .json files, but since table scripts are separate per CRUD operation, they follow the naming convention of <tablename>.<operationname>.js. Finally, scheduled job scripts appear in the scheduler folder, and the shared folder is provided as a convenient location for you to store code shared by multiple scripts and a few miscellaneous things such as the APNS feedback script. Lets modify the table script todos.js file so that we have slightly better error handling when an exception occurs when we query our Table service: todos.js tableService.queryEntities(query, function(error, todoItems){     if (error) {         console.error("Error querying table: " + error);         response.send(500);     } else {         response.send(200, todoItems);     }        }); Save these changes, and now back in the command line prompt commit the changes and push them to the Mobile Services: > git add . > git commit –m "better error handling in todos.js" > git push Once deployment of the changes is complete, they will take effect immediately, and you will also see the changes be reflected in the portal: With the new Source Control feature, we’re making it really easy for you to edit your mobile service locally and push changes in an atomic fashion without sacrificing ease of use in the Windows Azure Portal. Mobile Services: NPM Module Support The new Mobile Services source control support also allows you to add any Node.js module you need in the scripts beyond the fixed set provided by Mobile Services. For example, you can easily switch to use Mongo instead of Windows Azure table in our example above. Set up Mongo DB by either purchasing a MongoLab subscription (which provides MongoDB as a Service) via the Windows Azure Store or set it up yourself on a Virtual Machine (either Windows or Linux). Then go the service folder of your local git repository and run the following command: > npm install mongoose This will add the Mongoose module to your Mobile Service scripts.  After that you can use and reference the Mongoose module in your custom API scripts to access your Mongo database: var mongoose = require('mongoose'); var schema = mongoose.Schema({ text: String, completed: Boolean });   exports.get = function (request, response) {     mongoose.connect('<your Mongo connection string> ');     TodoItemModel = mongoose.model('todoitem', schema);     TodoItemModel.find(function (err, items) {         if (err) {             console.log('error:' + err);             return response.send(500);         }         response.send(200, items);     }); }; Don’t forget to push your changes to your mobile service once you are done > git add . > git commit –m "Switched to use Mongo Labs" > git push Now our Mobile Service app is using Mongo DB! Note, with today’s update usage of custom Node.js modules is limited to Custom API scripts only. We will enable it in all scripts (including data and custom CRON tasks) shortly. New Mobile Services NuGet package, including .NET 4.5 support A few months ago we announced a new pre-release version of the Mobile Services client SDK based on portable class libraries (PCL). Today, we are excited to announce that this new library is now a stable .NET client SDK for mobile services and is no longer a pre-release package. Today’s update includes full support for Windows Store, Windows Phone 7.x, and .NET 4.5, which allows developers to use Mobile Services from ASP.NET or WPF applications. You can install and use this package today via NuGet. Mobile Services and Web Sites: Free 20MB Database for Mobile Services and Web Sites Starting today, every customer of Windows Azure gets one Free 20MB database to use for 12 months free (for both dev/test and production) with Web Sites and Mobile Services. When creating a Mobile Service or a Web Site, simply chose the new “Create a new Free 20MB database” option to take advantage of it: You can use this free SQL Database together with the 10 free Web Sites and 10 free Mobile Services you get with your Windows Azure subscription, or from any other Windows Azure VM or Cloud Service. Notification Hubs: Android Broadcast Push Notification Support Earlier this year, we introduced a new capability in Windows Azure for sending broadcast push notifications at high scale: Notification Hubs. In the initial preview of Notification Hubs you could use this support with both iOS and Windows devices.  Today we’re excited to announce new Notification Hubs support for sending push notifications to Android devices as well. Push notifications are a vital component of mobile applications.  They are critical not only in consumer apps, where they are used to increase app engagement and usage, but also in enterprise apps where up-to-date information increases employee responsiveness to business events.  You can use Notification Hubs to send push notifications to devices from any type of app (a Mobile Service, Web Site, Cloud Service or Virtual Machine). Notification Hubs provide you with the following capabilities: Cross-platform Push Notifications Support. Notification Hubs provide a common API to send push notifications to iOS, Android, or Windows Store at once.  Your app can send notifications in platform specific formats or in a platform-independent way.  Efficient Multicast. Notification Hubs are optimized to enable push notification broadcast to thousands or millions of devices with low latency.  Your server back-end can fire one message into a Notification Hub, and millions of push notifications can automatically be delivered to your users.  Devices and apps can specify a number of per-user tags when registering with a Notification Hub. These tags do not need to be pre-provisioned or disposed, and provide a very easy way to send filtered notifications to an infinite number of users/devices with a single API call.   Extreme Scale. Notification Hubs enable you to reach millions of devices without you having to re-architect or shard your application.  The pub/sub routing mechanism allows you to broadcast notifications in a super-efficient way.  This makes it incredibly easy to route and deliver notification messages to millions of users without having to build your own routing infrastructure. Usable from any Backend App. Notification Hubs can be easily integrated into any back-end server app, whether it is a Mobile Service, a Web Site, a Cloud Service or an IAAS VM. It is easy to configure Notification Hubs to send push notifications to Android. Create a new Notification Hub within the Windows Azure Management Portal (New->App Services->Service Bus->Notification Hub): Then register for Google Cloud Messaging using https://code.google.com/apis/console and obtain your API key, then simply paste that key on the Configure tab of your Notification Hub management page under the Google Cloud Messaging Settings: Then just add code to the OnCreate method of your Android app’s MainActivity class to register the device with Notification Hubs: gcm = GoogleCloudMessaging.getInstance(this); String connectionString = "<your listen access connection string>"; hub = new NotificationHub("<your notification hub name>", connectionString, this); String regid = gcm.register(SENDER_ID); hub.register(regid, "myTag"); Now you can broadcast notification from your .NET backend (or Node, Java, or PHP) to any Windows Store, Android, or iOS device registered for “myTag” tag via a single API call (you can literally broadcast messages to millions of clients you have registered with just one API call): var hubClient = NotificationHubClient.CreateClientFromConnectionString(                   “<your connection string with full access>”,                   "<your notification hub name>"); hubClient.SendGcmNativeNotification("{ 'data' : {'msg' : 'Hello from Windows Azure!' } }", "myTag”); Notification Hubs provide an extremely scalable, cross-platform, push notification infrastructure that enables you to efficiently route push notification messages to millions of mobile users and devices.  It will make enabling your push notification logic significantly simpler and more scalable, and allow you to build even better apps with it. Learn more about Notification Hubs here on MSDN . Summary The above features are now live and available to start using immediately (note: some of the services are still in preview).  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today.  Visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • .NET framework 4 backwards compatibility.

    - by Dark.Lama
    Hi! I had installed .NET framework 4 in my system. It says that .NET framework 4 is backwards compatible with all previous versions. But an app installer still asks me to install .NET.F.W. 3.5 SP1. What should I do to make the installer aware of .NET 4's presence? Is it necessary to install .NET. 3.5 SP1 too? (It is a big setup ~250 MB)

    Read the article

  • Why are those modules being loaded in an ASP.NET project (not website)

    - by petergmagid
    I have an ASP.NET 3.5 Project (not website) and I don't understand why all these modules are being created and loaded. I thought that with a web project it would all compile to a single .DLL 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_fwtnlvuq.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_vb8hmtmg.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_v-nkuwgl.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_wn_uucrw.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_ngd_8nhu.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_8keebrhe.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_ohg9e50r.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_yhmgvhum.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_4qltywkk.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_1nml5ezc.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_cdju8bdk.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_xhugloto.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_rkqqzc0u.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_-vfyn7ik.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_cthyzgij.dll', Symbols loaded.

    Read the article

  • Accessing and Updating Data in ASP.NET: Filtering Data Using a CheckBoxList

    Filtering Database Data with Parameters, an earlier installment in this article series, showed how to filter the data returned by ASP.NET's data source controls. In a nutshell, the data source controls can include parameterized queries whose parameter values are defined via parameter controls. For example, the SqlDataSource can include a parameterized SelectCommand, such as: SELECT * FROM Books WHERE Price > @Price. Here, @Price is a parameter; the value for a parameter can be defined declaratively using a parameter control. ASP.NET offers a variety of parameter controls, including ones that use hard-coded values, ones that retrieve values from the querystring, and ones that retrieve values from session, and others. Perhaps the most useful parameter control is the ControlParameter, which retrieves its value from a Web control on the page. Using the ControlParameter we can filter the data returned by the data source control based on the end user's input. While the ControlParameter works well with most types of Web controls, it does not work as expected with the CheckBoxList control. The ControlParameter is designed to retrieve a single property value from the specified Web control, but the CheckBoxList control does not have a property that returns all of the values of its selected items in a form that the CheckBoxList control can use. Moreover, if you are using the selected CheckBoxList items to query a database you'll quickly find that SQL does not offer out of the box functionality for filtering results based on a user-supplied list of filter criteria. The good news is that with a little bit of effort it is possible to filter data based on the end user's selections in a CheckBoxList control. This article starts with a look at how to get SQL to filter data based on a user-supplied, comma-delimited list of values. Next, it shows how to programmatically construct a comma-delimited list that represents the selected CheckBoxList values and pass that list into the SQL query. Finally, we'll explore creating a custom parameter control to handle this logic declaratively. Read on to learn more! Read More >

    Read the article

  • SQLAuthority News – Fast Track Data Warehouse 3.0 Reference Guide

    - by pinaldave
    http://msdn.microsoft.com/en-us/library/gg605238.aspx I am very excited that Fast Track Data Warehouse 3.0 reference guide has been announced. As a consultant I have always enjoyed working with Fast Track Data Warehouse project as it truly expresses the potential of the SQL Server Engine. Here is few details of the enhancement of the Fast Track Data Warehouse 3.0 reference architecture. The SQL Server Fast Track Data Warehouse initiative provides a basic methodology and concrete examples for the deployment of balanced hardware and database configuration for a data warehousing workload. Balance is measured across the key components of a SQL Server installation; storage, server, application settings, and configuration settings for each component are evaluated. Description Note FTDW 3.0 Architecture Basic component architecture for FT 3.0 based systems. New Memory Guidelines Minimum and maximum tested memory configurations by server socket count. Additional Startup Options Notes for T-834 and setting for Lock Pages in Memory. Storage Configuration RAID1+0 now standard (RAID1 was used in FT 2.0). Evaluating Fragmentation Query provided for evaluating logical fragmentation. Loading Data Additional options for CI table loads. MCR Additional detail and explanation of FTDW MCR Rating. Read white paper on fast track data warehousing. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Business Intelligence, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Accessing and Updating Data in ASP.NET: Filtering Data Using a CheckBoxList

    Filtering Database Data with Parameters, an earlier installment in this article series, showed how to filter the data returned by ASP.NET's data source controls. In a nutshell, the data source controls can include parameterized queries whose parameter values are defined via parameter controls. For example, the SqlDataSource can include a parameterized SelectCommand, such as: SELECT * FROM Books WHERE Price > @Price. Here, @Price is a parameter; the value for a parameter can be defined declaratively using a parameter control. ASP.NET offers a variety of parameter controls, including ones that use hard-coded values, ones that retrieve values from the querystring, and ones that retrieve values from session, and others. Perhaps the most useful parameter control is the ControlParameter, which retrieves its value from a Web control on the page. Using the ControlParameter we can filter the data returned by the data source control based on the end user's input. While the ControlParameter works well with most types of Web controls, it does not work as expected with the CheckBoxList control. The ControlParameter is designed to retrieve a single property value from the specified Web control, but the CheckBoxList control does not have a property that returns all of the values of its selected items in a form that the CheckBoxList control can use. Moreover, if you are using the selected CheckBoxList items to query a database you'll quickly find that SQL does not offer out of the box functionality for filtering results based on a user-supplied list of filter criteria. The good news is that with a little bit of effort it is possible to filter data based on the end user's selections in a CheckBoxList control. This article starts with a look at how to get SQL to filter data based on a user-supplied, comma-delimited list of values. Next, it shows how to programmatically construct a comma-delimited list that represents the selected CheckBoxList values and pass that list into the SQL query. Finally, we'll explore creating a custom parameter control to handle this logic declaratively. Read on to learn more! Read More >

    Read the article

  • How do I properly host a WCF Data Service in IIS? Why am I getting errors?

    - by j0rd4n
    I'm playing around with WCF Data Services (ADO.NET Data Services). I have an entity framework model pointed at the AdventureWorks database. When I debug my svc file from within Visual Studio, it works great. I can say /awservice.svc/Customers and get back the ATOM feed I expect. If I publish the service (hosted in an ASP.NET web application) to IIS7, the same query string returns a 500 fault. The root svc page itself works as expected and successfully returns ATOM. The /Customers path fails. Here is what my grants look like in the svc file: public class AWService : DataService<AWEntities> { public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.SetServiceOperationAccessRule( "*", ServiceOperationRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Update: I enabled verbose errors and get the following in the XML message: <innererror> <message>The underlying provider failed on Open.</message> <type>System.Data.EntityException</type> <stacktrace> at System.Data.EntityClient.EntityConnection.OpenStoreConnectionIf( ... ... <internalexception> <message> Login failed for user 'IIS APPPOOL\DefaultAppPool'. </message> <type>System.Data.SqlClient.SqlException</type> <stacktrace> at System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, ...

    Read the article

  • Problem finding office DCOM in Component Services in Windows 7

    - by Tomas I
    I have a problem getting my word and excel to work in ASP .NET. I get the error message: {System.UnauthorizedAccessException: Retrieving the COM class factory for component with CLSID {000209FF-0000-0000-C000-000000000046} failed due to the following error: 80070005. at xxx.Utility.WordDocument..ctor(String filePath, HttpServerUtility util) at customer_communication.BuCreate_click(Object sender, EventArgs e) in This means I have access problem to the DCOM files. In Vista this isnt a problem, all I have to do there is to run "dcomcnfg" and in there find the Microsoft Excel dcom file. In Windows 7 I cant find it, and I have no idea what to do now... If anyone could help me that would be great!

    Read the article

  • Long overdue (for me) question about disposing managed objects in .Net, VB.Net, C#

    - by Jules
    I can't believe I'm still confused about this but, any way, lets finally nail it: I have a class that overrides OnPaint to do some drawing. To speed things up, I create the pens, brushes etc before hand, in the construtor, so that OnPaint does not need to keep creating and disposing them. Now, I make sure that I always dispose of such objects, but I have the feeling I don't need to because, despite the fact they implement IDisposable, they're managed objects. Is this correct?

    Read the article

  • SQL Server Reporting Services proxy timeout (ASP.NET)

    - by Philip
    Morning, We are using SSRS (2005) and have a ASP.NET frontend using the SSRS WebControl. I've boiled the problem down the time it takes for one particular report to be generated is greater than the timeout on the proxy server. It looks like the way the SSRS web control tries to do things is by performing an HTTP request for the report, however the problem with this is the request can timeout potentially before the report has generated. Looking at the HTTP traffic the response is a 504 (gateway timeout). Is there a way to increase the timeout or change SSRS WebControl to use more robust polling mechanism (which isn't dependant on the timeout of the HTTP request). I could be wrong but I don't think ServerReport.Timeout property would resolve the issue we are seeing? Any thoughts? Philip

    Read the article

  • Why is my ServiceOperation method missing from my WCF Data Services client proxy code?

    - by Kev
    I have a simple WCF Data Services service and I want to expose a Service Operation as follows: [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class ConfigurationData : DataService<ProductRepository> { // This method is called only once to initialize service-wide policies. public static void InitializeService(IDataServiceConfiguration config) { config.SetEntitySetAccessRule("*", EntitySetRights.ReadMultiple | EntitySetRights.ReadSingle); config.SetServiceOperationAccessRule("*", ServiceOperationRights.All); config.UseVerboseErrors = true; } // This operation isn't getting generated client side [WebGet] public IQueryable<Product> GetProducts() { // Simple example for testing return (new ProductRepository()).Product; } Why isn't the GetProducts method visible when I add the service reference on the client?

    Read the article

  • .NET 4.0 Fails When sending emails with attachments larger than 3MB

    - by JL
    I recently had an issue after upgrading my .net framework to 4.0 from 3.5: System.Net.Mail.SmtpException: Failure sending mail. --- System.IndexOutOfRangeException: Index was outside the bounds of the array. at System.Net.Base64Stream.EncodeBytes(Byte[] buffer, Int32 offset, Int32 count, Boolean dontDeferFinalBytes, Boolean shouldAppendSpaceToCRLF) at System.Net.Base64Stream.Write(Byte[] buffer, Int32 offset, Int32 count) at System.Net.Mime.MimePart.Send(BaseWriter writer) at System.Net.Mime.MimeMultiPart.Send(BaseWriter writer) at System.Net.Mail.Message.Send(BaseWriter writer, Boolean sendEnvelope) at System.Net.Mail.SmtpClient.Send(MailMessage message) --- End of inner exception stack trace --- I read this connect bug listing here: http://connect.microsoft.com/VisualStudio/feedback/details/544562/cannot-send-e-mails-with-large-attachments-system-net-mail-smtpclient-system-net-mail-mailmessage. If anyone cares about this issue, please vote for it on Connect, so it will be fixed sooner.

    Read the article

  • extjs data store load data on fly

    - by CKeven
    I'm trying to create a data store that will load the data schema and records on fly. Here is the current code i have and I'm not sure how to setup the array reader properly since i don't have the schema before query returns. ds = new Ext.data.Store({ url: 'http://10.10.97.83/cgi-bin/cgiip.exe/WService=wsdev/majax/jsbrdgx.p', baseParams: { cr: Ext.util.JSON.encode(omgtobxParms) }, reader: new Ext.data.ArrayReader({ //root:data.value.records }, col_names) }); {"name": "tmp_buy_book", "schema": [ { "name": "a", "type": "C"}, { "name": "b", "type": "C"} "records": [["1", ""], ["1",""]]}

    Read the article

  • How come .net 4.0 and .net 2.0 CLR's can exist in a same machine

    - by Vinni
    I have a basic doubt that, How can we have both CLR's on a same machine. If this is possible, When I refer few dll's of 4.0 and setting application pool to 2.0 why Cant I run the website(I am getting errors).When we refer the dll's from web.config it means it searches for GAC when that particular 4.0 dll is available in GAC Why dont it load (How come it is not loading).. Please clarify my doubts

    Read the article

  • How do I design a .NET (C#) for a program that needs to run as a Windows service but also have a web

    - by hjoelr
    I am designing a piece of software that needs to operate different pieces of hardware based mainly on a schedule but it also needs to have a web interface for configuring settings, configuring the schedule, and possibly even manually controlling the hardware. I'm not sure how to design the architecture of software like this. One thought that I have had was to create a Windows service that does the communication with the hardware as well as "publishing" web services through WCF and then having an ASP.NET application that then controls the Windows service through WCF. This approach seems to be a lot of work for what I'm trying to accomplish. Could someone please give me some direction whether or not this is a good approach, and even give me a better way to do it if one exists? Thanks! Joel

    Read the article

  • Export the datagrid data to text in asp.net+c#.net

    - by SRIRAM
    Problem:It will asks there is no assembly reference/namespace for Database Database db = DatabaseFactory.CreateDatabase(); DBCommandWrapper selectCommandWrapper = db.GetStoredProcCommandWrapper("sp_GetLatestArticles"); DataSet ds = db.ExecuteDataSet(selectCommandWrapper); StringBuilder str = new StringBuilder(); for(int i=0;i<=ds.Tables[0].Rows.Count - 1; i++) { for(int j=0;j<=ds.Tables[0].Columns.Count - 1; j++) { str.Append(ds.Tables[0].Rows[i][j].ToString()); } str.Append("<BR>"); } Response.Clear(); Response.AddHeader("content-disposition", "attachment;filename=FileName.txt"); Response.Charset = ""; Response.Cache.SetCacheability(HttpCacheability.NoCache); Response.ContentType = "application/vnd.text"; System.IO.StringWriter stringWrite = new System.IO.StringWriter(); System.Web.UI.HtmlTextWriter htmlWrite = new HtmlTextWriter(stringWrite); Response.Write(str.ToString()); Response.End();

    Read the article

  • Internal classes with ADO.NET Entity Framework

    - by Regent
    I'm using Entity Framework for creation of my Data Access Layer and I want for all of my classes to be internal. I know it is possible to manually assign it manually in the designer for each class. But looks like it also requires to set internal modifier for each single property in every class! I have about 30+ entities and it will be a huge work to do. Do you know any ideas how to set a 'default access' for the entire model?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Big Data – Buzz Words: What is MapReduce – Day 7 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is Hadoop. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – MapReduce. What is MapReduce? MapReduce was designed by Google as a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. Though, MapReduce was originally Google proprietary technology, it has been quite a generalized term in the recent time. MapReduce comprises a Map() and Reduce() procedures. Procedure Map() performance filtering and sorting operation on data where as procedure Reduce() performs a summary operation of the data. This model is based on modified concepts of the map and reduce functions commonly available in functional programing. The library where procedure Map() and Reduce() belongs is written in many different languages. The most popular free implementation of MapReduce is Apache Hadoop which we will explore tomorrow. Advantages of MapReduce Procedures The MapReduce Framework usually contains distributed servers and it runs various tasks in parallel to each other. There are various components which manages the communications between various nodes of the data and provides the high availability and fault tolerance. Programs written in MapReduce functional styles are automatically parallelized and executed on commodity machines. The MapReduce Framework takes care of the details of partitioning the data and executing the processes on distributed server on run time. During this process if there is any disaster the framework provides high availability and other available modes take care of the responsibility of the failed node. As you can clearly see more this entire MapReduce Frameworks provides much more than just Map() and Reduce() procedures; it provides scalability and fault tolerance as well. A typical implementation of the MapReduce Framework processes many petabytes of data and thousands of the processing machines. How do MapReduce Framework Works? A typical MapReduce Framework contains petabytes of the data and thousands of the nodes. Here is the basic explanation of the MapReduce Procedures which uses this massive commodity of the servers. Map() Procedure There is always a master node in this infrastructure which takes an input. Right after taking input master node divides it into smaller sub-inputs or sub-problems. These sub-problems are distributed to worker nodes. A worker node later processes them and does necessary analysis. Once the worker node completes the process with this sub-problem it returns it back to master node. Reduce() Procedure All the worker nodes return the answer to the sub-problem assigned to them to master node. The master node collects the answer and once again aggregate that in the form of the answer to the original big problem which was assigned master node. The MapReduce Framework does the above Map () and Reduce () procedure in the parallel and independent to each other. All the Map() procedures can run parallel to each other and once each worker node had completed their task they can send it back to master code to compile it with a single answer. This particular procedure can be very effective when it is implemented on a very large amount of data (Big Data). The MapReduce Framework has five different steps: Preparing Map() Input Executing User Provided Map() Code Shuffle Map Output to Reduce Processor Executing User Provided Reduce Code Producing the Final Output Here is the Dataflow of MapReduce Framework: Input Reader Map Function Partition Function Compare Function Reduce Function Output Writer In a future blog post of this 31 day series we will explore various components of MapReduce in Detail. MapReduce in a Single Statement MapReduce is equivalent to SELECT and GROUP BY of a relational database for a very large database. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – HDFS. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL Developer Data Modeler v3.3 Early Adopter: Search

    - by thatjeffsmith
    photo: Stuck in Customs via photopin cc The next version of Oracle SQL Developer Data Modeler is now available as an Early Adopter (read, beta) release. There are many new major feature enhancements to talk about, but today’s focus will be on the brand new Search mechanism. Data, data, data – SO MUCH data Google has made countless billions of dollars around a very efficient and intelligent search business. People have become accustomed to having their data accessible AND searchable. Data models can have thousands of entities or tables, each having dozens of attributes or columns. Imagine how hard it could be to find what you’re looking for here. This is the challenge we have tackled head-on in v3.3. Same location as the Search toolbar in Oracle SQL Developer (and most web browsers) Here’s how it works: Search as you type – wicked fast as the entire model is loaded into memory Supports regular expressions (regex) Results loaded to a new panel below Search across designs, models Search EVERYTHING, or filter by type Save your frequent searches Save your search results as a report Open common properties of object in search results and edit basic properties on-the-fly Want to just watch the video? We have a new Oracle Learning Library resource available now which introduces the new and improved Search mechanism in SQL Developer Data Modeler. Go watch the video and then come back. Some Screenshots This will be a pretty easy feature to pick up. Search is intuitive – we’ve already learned how to do search. Now we just have a better interface for it in SQL Developer Data Modeler. But just in case you need a couple of pointers… The SYS data dictionary in model form with Search Results If I type ‘translation’ in the search dialog, then the results will come up as hits are ‘resolved.’ By default, everything is searched, although I can filter the results after-the-fact. You can see where the search finds a match in the ‘Content’ column Save the Results as a Report If you limit the search results to a category and a model, then you can save the results as a report. All of the usual suspects You can optionally include the search string, which displays in the top of of the report as ‘PATTERN.’ You can save you common reporting setups as a template and reuse those as well. Here’s a sample HTML report: Yes, I like to search my search results report! Two More Ways to Search You can search ‘in context’ by opening the ‘Find’ dialog from an active design. You can do this using the ‘Search’ toolbar button or from a model context menu. Searching a specific model Instead of bringing up the old modal Find dialog, you now get to use the new and improved Search panel. Notice there’s no ‘Model’ drop-down to select and that the active Search form is now in the Search panel versus the search toolbar up top. What else is new in SQL Developer Data Modeler version 3.3? All kinds of goodies. You can send your model to Excel for quick edits/reviews and suck the changes back into your model, you can share objects between models, and much much more. You’ll find new videos and blog posts on the subject in the new few days and weeks. Enjoy! If you have any feedback or want to report bugs, please visit our forums.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • BING Search using ASP.NET and jQuery Ajax

    - by hajan
    The BING API provides extremely simple way to make search queries using BING. It provides nice way to get the search results as XML or JSON. In this blog post I will show one simple example on how to query BING and get the results as JSON in an ASP.NET website with help of jQuery’s getJSON ajax method. Basically we submit an HTTP GET request with the AppID which you can get in the BING Developer Center. To create new AppID, click here. Once you fill the form, submit it and you will get your AppID. Now, lets make this work in several steps. 1. Open VS.NET or Visual Web Developer.NET, create new sample project (or use existing one) and create new ASPX Web Form with name of your choice. 2. Add the following ASPX in your page body <body>     <form id="form1" runat="server">     <asp:TextBox ID="txtSearch" runat="server" /> <asp:Button ID="btnSearch" runat="server" Text="BING Search" />     <div id="result">          </div>     </form> </body> We have text box for search, button for firing the search event and div where we will place the results. 3. Next, I have created simple CSS style for the search result: <style type="text/css">             .item { width:600px; padding-top:10px; }             .title { background-color:#4196CE; color:White; font-size:18px;              font-family:Calibri, Verdana, Tahoma, Sans-Serif; padding:2px 2px 2px 2px; }     .title a { text-decoration:none; color:white}     .date { font-style:italic; font-size:10px; font-family:Verdana, Arial, Sans-Serif;}             .description { font-family:Verdana, Arial, Sans-Serif; padding:2px 2px 2px 2px; font-size:12px; }     .url { font-size: 10px; font-style:italic; font-weight:bold; color:Gray;}     .url a { text-decoration:none; color:gray;}     #txtSearch { width:450px; border:2px solid #4196CE; } </style> 4. The needed jQuery Scripts (v1.4.4 core jQuery and jQuery template plugin) <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js" type="text/javascript"></script> <script src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.min.js" type="text/javascript"></script> Note: I use jQuery Templates plugin in order to avoid foreach loop in the jQuery callback function. JQuery Templates also simplifies the code and allows us to create nice template for the end result. You can read more about jQuery Templates here. 5. Now, lets create another script tag where we will write our BING search script <script language="javascript" type="text/javascript">     $(document).ready(function () {         var bingAPIKey = "<Your-BING-AppID-KEY-HERE>";                  //the rest of the script goes here              }); </script> 6. Before we do any searching, we need to take a look at the search URL that we will call from our Ajax function BING Search URL : http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&AppId={appId}&query={query}&sources={sourceType} The URL in our example is as follows: http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&Appid=" + bingAPIKey + "&query=" + keyWords + "&sources=web Lets split it up with brief explanation on each part of the URL http://api.search.live.net/json.aspx – is the main part of the URL which is used to call when we need to retrieve json result set. JsonType=callback&JsonCallback=? – using JsonType, we can control the format of the response. For more info about this, refer here. Appid=” + bingAPIKey +” – the AppID we’ve got from the BING website, explained previously query=” + keyWords + “ – the search query keywords sources=web – the type of source. Possible source types can be found here. 7. Before we continue with writing the last part of the script, lets see what search result BING will send us back: {"SearchResponse":     {         "Version":"2.2",         "Query":             {                 "SearchTerms":"hajan selmani aspnet weblog"             },         "Web":             {                 "Total":16,                 "Offset":0,                 "Results":[                     {                         "Title":"Hajan's Blog",                         "Description":"microsoft asp.net development blog ... Create nice animation on your ASP.NET Menu control using jQuery by hajan",                         "Url":"http:\/\/weblogs.asp.net\/hajan\/",                         "CacheUrl":"http:\/\/cc.bingj.com\/cache.aspx?q=hajan+selmani+aspnet+weblog&d=4760941354158132&w=c9535fb0,d1d66baa",                         "DisplayUrl":"weblogs.asp.net\/hajan",                         "DateTime":"2011-03-03T18:24:00Z"                     },                     {                         "Title":"codeasp.net",                         "Description":"... social community for ASP.NET bloggers - we are one of                                         the largest ASP.NET blog ... 2\/5\/2011 1:41:00 AM by Hajan Selmani - Comments ...",                         "Url":"http:\/\/codeasp.net\/blogs\/hajan",                         "CacheUrl":"http:\/\/cc.bingj.com\/cache.aspx?q=hajan+selmani+aspnet+weblog&d=4826710187311653&w=5b41c930,676a37f8",                         "DisplayUrl":"codeasp.net\/blogs\/hajan",                         "DateTime":"2011-03-03T07:40:00Z"                     }                     ...                         ]             }     } }  To get to the result of the search response, the path is: SearchResponse.Web.Results, where we have array of objects returned back from BING. 8. The final part of the code that performs the search is $("#<%= btnSearch.ClientID %>").click(function (event) {     event.preventDefault();     var keyWords = $("#<%= txtSearch.ClientID %>").val();     var encodedKeyWords = encodeURIComponent(keyWords);     //alert(keyWords);     var url = "http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&Appid="+ bingAPIKey              + "&query=" + encodedKeyWords              + "&sources=web";     $.getJSON(url, function (data) {         $("#result").html("");         $("#bingSearchTemplate").tmpl(data.SearchResponse.Web.Results).appendTo("#result");     }); }); The search happens once we click the Search Button with id btnSearch. We get the keywords from the Text Box with id txtSearch and then we use encodeURIComponent. The encodeURIComponent is used to encode the special characters such as: , / ? : @ & = + $ #, which might be part of the search query string. Then we construct the URL and call it using HTTP GET. The callback function returns the data, where we first clear the html inside div with id result and after that we render the data.SearchResponse.Web.Results array of objects using template with id bingSearchTemplate and append the result into div with id result. 9. The bingSearchTemplate Template <script id="bingSearchTemplate" type="text/html">     <div class="item">         <div class="title"><a href="${Url}" target="_blank">${Title}</a></div>         <div class="date">${DateTime}</div>         <div class="searchresult">             <div class="description">             ${Description}             </div>             <div class="url">                 <a href="${Url}" target="_blank">${Url}</a>             </div>         </div>     </div> </script> If you paid attention on the search result structure that BING creates for us, you have seen properties like Url, Title, Description, DateTime etc. In the above defined template, you see the same wrapped into template tags. Some are combined to create hyperlinked URLs. 10. THE END RESULT   As you see, it’s quite simple to use BING API and make search queries with ASP.NET and jQuery. In addition, if you want to make instant search, replace this line: $(“#<%= btnSearch.ClientID %>”).click(function(event) {        event.preventDefault(); with $(“#<%= txtSearch.ClientID %>”).keyup(function() { This will trigger search on each key up in your keyboard, so if you use this approach, you won’t event need a search button. If it’s your first time working with BING API, it’s very recommended to read the following API Basics PDF document. Hope this was helpful blog post for you.

    Read the article

  • ASP.NET MVC : AJAX ActionLink - Persist Data

    - by Mio
    Hi guys, I'm really new at this and I was searching the web for an answer to my question and I couldn't find it, so here I am posting my question :) I'm trying to create a new record in my table Facility. For my goreign keys I'm displaying the choices in tables instead of a dropdowns. When the user clicks on the select link which is an Ajax.ActionLink(), I wanna retrieve the right record from the DB and set the foreign key of my object Facility to the one slected and replace the Div by a new Partial View. The problem is when I try to submit the form, the Facility object doesnt seem to have the foreign key that I've just set in my ajax fuction in my controller. And if the user has enter some data in the other fields of the create form, I don't them to lose what they already entered. Here's my code. Model only contains a Facility. public ActionResult Create() { Model.Facility = new Facility(); return View(Model); } This is part of my Create View <div id="FacilityTypePartialView"> <% Html.RenderPartial("FacilityType"); %> </div> This is my Partial View FacilityType <% if (Model.IsNewFacility()) { %> <p> Id: <%= Html.Encode(Model.Facility.FacilityType.FId)%> </p> <p> Type: <%= Html.Encode(Model.Facility.FacilityType.FType)%> </p> <p> Description: <%= Html.Encode(Model.Facility.FacilityType.FDescription) %> </p> <% } %> <p> <%= Html.ActionLink("Manage Facility Type", "Index","FacilityType") %> </p> <table id="FacilityTypesList"> <tr> <th> Select </th> <th> FId </th> <th> FType </th> <th> FDescription </th> </tr> <% foreach (var item in Model.GetFacilityTypes()) { %> <tr> <td> <%=Ajax.ActionLink("Select", "FacilityTypeSelect", new { id = item.FId}, new AjaxOptions { UpdateTargetId = "FacilityTypePartialView" })%> </td> <td> <%= Html.Encode(item.FId) %> </td> <td> <%= Html.Encode(item.FType) %> </td> <td> <%= Html.Encode(item.FDescription) %> </td> </tr> <% } %> </table> Here's y Ajax Funcion public PartialViewResult FacilityTypeSelect(int id) { Facility facility = new Facility(); facility.FacilityType = _repository.GetFacilityType(id); Model.Facility = facility; if (this.Request.IsAjaxRequest() == false) { return PartialView("FacilityType/FacilityType", Model); } else { return PartialView("FacilityType/FacilityTypeSelected", Model); } } Finally, my Post method [AcceptVerbs(HttpVerbs.Post)] public ActionResult Create( Facility facility) { Model.Facility = facility; if (ModelState.IsValid) { try { _repository.AddEntity(facility); _repository.Save(); return RedirectToAction("Details", new { id = facility.Id }); } catch { } } return View("Create", Model); } My Faciliy object coming from the View have the Facility.FacilityType set to nothing.

    Read the article

< Previous Page | 52 53 54 55 56 57 58 59 60 61 62 63  | Next Page >