Search Results

Search found 27001 results on 1081 pages for 'oracle applications strat'.

Page 563/1081 | < Previous Page | 559 560 561 562 563 564 565 566 567 568 569 570  | Next Page >

  • What's up with LDoms: Part 4 - Virtual Networking Explained

    - by Stefan Hinker
    I'm back from my summer break (and some pressing business that kept me away from this), ready to continue with Oracle VM Server for SPARC ;-) In this article, we'll have a closer look at virtual networking.  Basic connectivity as we've seen it in the first, simple example, is easy enough.  But there are numerous options for the virtual switches and virtual network ports, which we will discuss in more detail now.   In this section, we will concentrate on virtual networking - the capabilities of virtual switches and virtual network ports - only.  Other options involving hardware assignment or redundancy will be covered in separate sections later on. There are two basic components involved in virtual networking for LDoms: Virtual switches and virtual network devices.  The virtual switch should be seen just like a real ethernet switch.  It "runs" in the service domain and moves ethernet packets back and forth.  A virtual network device is plumbed in the guest domain.  It corresponds to a physical network device in the real world.  There, you'd be plugging a cable into the network port, and plug the other end of that cable into a switch.  In the virtual world, you do the same:  You create a virtual network device for your guest and connect it to a virtual switch in a service domain.  The result works just like in the physical world, the network device sends and receives ethernet packets, and the switch does all those things ethernet switches tend to do. If you look at the reference manual of Oracle VM Server for SPARC, there are numerous options for virtual switches and network devices.  Don't be confused, it's rather straight forward, really.  Let's start with the simple case, and work our way to some more sophisticated options later on.  In many cases, you'll want to have several guests that communicate with the outside world on the same ethernet segment.  In the real world, you'd connect each of these systems to the same ethernet switch.  So, let's do the same thing in the virtual world: root@sun # ldm add-vsw net-dev=nxge2 admin-vsw primary root@sun # ldm add-vnet admin-net admin-vsw mars root@sun # ldm add-vnet admin-net admin-vsw venus We've just created a virtual switch called "admin-vsw" and connected it to the physical device nxge2.  In the physical world, we'd have powered up our ethernet switch and installed a cable between it and our big enterprise datacenter switch.  We then created a virtual network interface for each one of the two guest systems "mars" and "venus" and connected both to that virtual switch.  They can now communicate with each other and with any system reachable via nxge2.  If primary were running Solaris 10, communication with the guests would not be possible.  This is different with Solaris 11, please see the Admin Guide for details.  Note that I've given both the vswitch and the vnet devices some sensible names, something I always recommend. Unless told otherwise, the LDoms Manager software will automatically assign MAC addresses to all network elements that need one.  It will also make sure that these MAC addresses are unique and reuse MAC addresses to play nice with all those friendly DHCP servers out there.  However, if we want to do this manually, we can also do that.  (One reason might be firewall rules that work on MAC addresses.)  So let's give mars a manually assigned MAC address: root@sun # ldm set-vnet mac-addr=0:14:4f:f9:c4:13 admin-net mars Within the guest, these virtual network devices have their own device driver.  In Solaris 10, they'd appear as "vnet0".  Solaris 11 would apply it's usual vanity naming scheme.  We can configure these interfaces just like any normal interface, give it an IP-address and configure sophisticated routing rules, just like on bare metal.  In many cases, using Jumbo Frames helps increase throughput performance.  By default, these interfaces will run with the standard ethernet MTU of 1500 bytes.  To change this,  it is usually sufficient to set the desired MTU for the virtual switch.  This will automatically set the same MTU for all vnet devices attached to that switch.  Let's change the MTU size of our admin-vsw from the example above: root@sun # ldm set-vsw mtu=9000 admin-vsw primary Note that that you can set the MTU to any value between 1500 and 16000.  Of course, whatever you set needs to be supported by the physical network, too. Another very common area of network configuration is VLAN tagging. This can be a little confusing - my advise here is to be very clear on what you want, and perhaps draw a little diagram the first few times.  As always, keeping a configuration simple will help avoid errors of all kind.  Nevertheless, VLAN tagging is very usefull to consolidate different networks onto one physical cable.  And as such, this concept needs to be carried over into the virtual world.  Enough of the introduction, here's a little diagram to help in explaining how VLANs work in LDoms: Let's remember that any VLANs not explicitly tagged have the default VLAN ID of 1. In this example, we have a vswitch connected to a physical network that carries untagged traffic (VLAN ID 1) as well as VLANs 11, 22, 33 and 44.  There might also be other VLANs on the wire, but the vswitch will ignore all those packets.  We also have two vnet devices, one for mars and one for venus.  Venus will see traffic from VLANs 33 and 44 only.  For VLAN 44, venus will need to configure a tagged interface "vnet44000".  For VLAN 33, the vswitch will untag all incoming traffic for venus, so that venus will see this as "normal" or untagged ethernet traffic.  This is very useful to simplify guest configuration and also allows venus to perform Jumpstart or AI installations over this network even if the Jumpstart or AI server is connected via VLAN 33.  Mars, on the other hand, has full access to untagged traffic from the outside world, and also to VLANs 11,22 and 33, but not 44.  On the command line, we'd do this like this: root@sun # ldm add-vsw net-dev=nxge2 pvid=1 vid=11,22,33,44 admin-vsw primary root@sun # ldm add-vnet admin-net pvid=1 vid=11,22,33 admin-vsw mars root@sun # ldm add-vnet admin-net pvid=33 vid=44 admin-vsw venus Finally, I'd like to point to a neat little option that will make your live easier in all those cases where configurations tend to change over the live of a guest system.  It's the "id=<somenumber>" option available for both vswitches and vnet devices.  Normally, Solaris in the guest would enumerate network devices sequentially.  However, it has ways of remembering this initial numbering.  This is good in the physical world.  In the virtual world, whenever you unbind (aka power off and disassemble) a guest system, remove and/or add network devices and bind the system again, chances are this numbering will change.  Configuration confusion will follow suit.  To avoid this, nail down the initial numbering by assigning each vnet device it's device-id explicitly: root@sun # ldm add-vnet admin-net id=1 admin-vsw venus Please consult the Admin Guide for details on this, and how to decipher these network ids from Solaris running in the guest. Thanks for reading this far.  Links for further reading are essentially only the Admin Guide and Reference Manual and can be found above.  I hope this is useful and, as always, I welcome any comments.

    Read the article

  • Complex type support in process flow &ndash; XMLTYPE

    - by shawn
        Before OWB 11.2 release, there are only 5 simple data types supported in process flow: DATE, BOOLEAN, INTEGER, FLOAT and STRING. A new complex data type – XMLTYPE is added in 11.2, in order to support complex data being passed between the process flow activities. In this article we will give a simple example to illustrate the usage of the new type and some related editors.     Suppose there is a bookstore that uses XML format orders as shown below (we use the simplest form for the illustration purpose), then we can create a process flow to handle the order, take the order as the input, then extract necessary information, and generate a confirmation email to the customer automatically. <order id=’0001’>     <customer>         <name>Tom</name>         <email>[email protected]</email>     </customer>     <book id=’Java_001’>         <quantity>3</quantity>     </book> </order>     Considering a simple user case here: we use an input parameter/variable with XMLTYPE to hold the XML content of the order; then we can use an Assign activity to retrieve the email info from the order; after that, we can create an email activity to send the email (Other activities might be added in practical case, but will not be described here). 1) Set XML content value     For testing purpose, we will create a variable to hold the sample order, and then this will be used among the process flow activities. When the variable is of XMLTYPE and the “Literal” value is set the true, the advance editor will be enabled.     Click the “Advance Editor” shown as above, a simple xml editor will popup. The editor has basic features like syntax highlight and check as shown below:     We can also do the basic validation or validation against schema with the editor by selecting the normalized schema. With this, it will be easier to provide the value for XMLTYPE variables. 2) Extract information from XML content     After setting the value, we need to extract the email information with the Assign activity. In process flow, an enhanced expression builder is used to help users construct the XPath for extracting values from XML content. When the variable’s literal value is set the false, the advance editor is enabled.     Click the button, the advance editor will popup, as shown below:     The editor is based on the expression builder (which is often used in mapping etc), an XPath lib panel is appended which provides some help information on how to write the XPath. The expression used here is: “XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/email/text()').getStringVal()”, which uses ‘/order/customer/email/text()’ as the XPath to extract the email info from the XML document.     A variable called “EMAIL_ADDR” is created with String data type to hold the value extracted.     Then we bind the “VARIABLE” parameter of Assign activity to “EMAIL_ADDR” variable, which means the value of the “EMAIL_ADDR” activity will be set to the result of the “VALUE” parameter of Assign activity. 3) Use the extracted information in Email activity     We bind the “TO_ADDRESS” parameter of the email activity to the “EMAIL_ADDR” variable created in above step.     We can also extract other information from the xml order directly through the expression, for example, we can set the “MESSAGE_BODY” with value “'Dear '||XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/name/text()').getStringVal()||chr(13)||chr(10)||'   You have ordered '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/quantity/text()').getStringVal()||' '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/@id').getStringVal()”. This expression will extract the customer name, the quantity and the book id from the order to compose the message body.     To make the email activity work, we need provide some other necessary information, Such as “SMTP_SERVER” (which is the SMTP server used to send the emails, like “mail.bookstore.com”. The default PORT number is set to 25. You need to change the value accordingly), “FROM_ADDRESS” and “SUBJECT”. Then the process flow is ready to go.     After deploying the process flow package, we can simply run the process flow to check if the result is as expected (An email will be sent to the specified email address with proper subject and message body).     Note: In oracle 11g, there is an enhanced security feature - ACL (Access Control List), which restrict the network access within db, so we need to edit the list to allow UTL_SMTP work if you are using oracle 11g. Refer to chapter “Access Control Lists for UTL_TCP/HTTP/SMTP” and “Managing Fine-Grained Access to External Network Services” for more details.       In previous releases, XMLTYPE already exists in other OWB objects, like mapping/transformation etc. When the mapping/transformation is dragged into a process flow, the parameters with XMLTYPE are mapped to STRING. Now with the XMLTYPE support in process flow, the XMLTYPE will map to XMLTYPE in a more natural way, and we can leverage the new data type for the design.

    Read the article

  • DTracing a PHPUnit Test: Looking at Functional Programming

    - by cj
    Here's a quick example of using DTrace Dynamic Tracing to work out what a PHP code base does. I was reading the article Functional Programming in PHP by Patkos Csaba and wondering how efficient this stype of programming is. I thought this would be a good time to fire up DTrace and see what is going on. Since DTrace is "always available" even in production machines (once PHP is compiled with --enable-dtrace), this was easy to do. I have Oracle Linux with the UEK3 kernel and PHP 5.5 with DTrace static probes enabled, as described in DTrace PHP Using Oracle Linux 'playground' Pre-Built Packages I installed the Functional Programming sample code and Sebastian Bergmann's PHPUnit. Although PHPUnit is included in the Functional Programming example, I found it easier to separately download and use its phar file: cd ~/Desktop wget -O master.zip https://github.com/tutsplus/functional-programming-in-php/archive/master.zip wget https://phar.phpunit.de/phpunit.phar unzip master.zip I created a DTrace D script functree.d: #pragma D option quiet self int indent; BEGIN { topfunc = $1; } php$target:::function-entry /copyinstr(arg0) == topfunc/ { self->follow = 1; } php$target:::function-entry /self->follow/ { self->indent += 2; printf("%*s %s%s%s\n", self->indent, "->", arg3?copyinstr(arg3):"", arg4?copyinstr(arg4):"", copyinstr(arg0)); } php$target:::function-return /self->follow/ { printf("%*s %s%s%s\n", self->indent, "<-", arg3?copyinstr(arg3):"", arg4?copyinstr(arg4):"", copyinstr(arg0)); self->indent -= 2; } php$target:::function-return /copyinstr(arg0) == topfunc/ { self->follow = 0; } This prints a PHP script function call tree starting from a given PHP function name. This name is passed as a parameter to DTrace, and assigned to the variable topfunc when the DTrace script starts. With this D script, choose a PHP function that isn't recursive, or modify the script to set self->follow = 0 only when all calls to that function have unwound. From looking at the sample FunSets.php code and its PHPUnit test driver FunSetsTest.php, I settled on one test function to trace: function testUnionContainsAllElements() { ... } I invoked DTrace to trace function calls invoked by this test with # dtrace -s ./functree.d -c 'php phpunit.phar \ /home/cjones/Desktop/functional-programming-in-php-master/FunSets/Tests/FunSetsTest.php' \ '"testUnionContainsAllElements"' The core of this command is a call to PHP to run PHPUnit on the FunSetsTest.php script. Outside that, DTrace is called and the PID of PHP is passed to the D script $target variable so the probes fire just for this invocation of PHP. Note the quoting around the PHP function name passed to DTrace. The parameter must have double quotes included so DTrace knows it is a string. The output is: PHPUnit 3.7.28 by Sebastian Bergmann. ......-> FunSetsTest::testUnionContainsAllElements -> FunSets::singletonSet <- FunSets::singletonSet -> FunSets::singletonSet <- FunSets::singletonSet -> FunSets::union <- FunSets::union -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertTrue -> PHPUnit_Framework_Assert::isTrue <- PHPUnit_Framework_Assert::isTrue -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertTrue -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertTrue -> PHPUnit_Framework_Assert::isTrue <- PHPUnit_Framework_Assert::isTrue -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint_IsTrue::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertTrue -> FunSets::contains -> FunSets::{closure} -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains -> FunSets::contains -> FunSets::{closure} <- FunSets::{closure} <- FunSets::contains <- FunSets::{closure} <- FunSets::contains -> PHPUnit_Framework_Assert::assertFalse -> PHPUnit_Framework_Assert::isFalse -> {closure} -> main <- main <- {closure} <- PHPUnit_Framework_Assert::isFalse -> PHPUnit_Framework_Assert::assertThat -> PHPUnit_Framework_Constraint::count <- PHPUnit_Framework_Constraint::count -> PHPUnit_Framework_Constraint::evaluate -> PHPUnit_Framework_Constraint_IsFalse::matches <- PHPUnit_Framework_Constraint_IsFalse::matches <- PHPUnit_Framework_Constraint::evaluate <- PHPUnit_Framework_Assert::assertThat <- PHPUnit_Framework_Assert::assertFalse <- FunSetsTest::testUnionContainsAllElements ... Time: 1.85 seconds, Memory: 3.75Mb OK (9 tests, 23 assertions) The periods correspond to the successful tests before and after (and from) the test I was tracing. You can see the function entry ("->") and return ("<-") points. Cross checking with the testUnionContainsAllElements() source code confirms the two singletonSet() calls, one union() call, two assertTrue() calls and finally an assertFalse() call. These assertions have a contains() call as a parameter, so contains() is called before the PHPUnit assertion functions are run. You can see contains() being called recursively, and how the closures are invoked. If you want to focus on the application logic and suppress the PHPUnit function trace, you could turn off tracing when assertions are being checked by adding D clauses checking the entry and exit of assertFalse() and assertTrue(). But if you want to see all of PHPUnit's code flow, you can modify the functree.d code that sets and unsets self-follow, and instead change it to toggle the variable in request-startup and request-shutdown probes: php$target:::request-startup { self->follow = 1 } php$target:::request-shutdown { self->follow = 0 } Be prepared for a large amount of output!

    Read the article

  • How to ensure custom serverListener events fires before action events

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Using JavaScript in ADF Faces you can queue custom events defined by an af:serverListener tag. If the custom event however is queued from an af:clientListener on a command component, then the command component's action and action listener methods fire before the queued custom event. If you have a use case, for example in combination with client side integration of 3rd party technologies like HTML, Applets or similar, then you want to change the order of execution. The way to change the execution order is to invoke the command item action from the client event method that handles the custom event propagated by the af:serverListener tag. The following four steps ensure your successful doing this 1.       Call cancel() on the event object passed to the client JavaScript function invoked by the af:clientListener tag 2.       Call the custom event as an immediate action by setting the last argument in the custom event call to true function invokeCustomEvent(evt){   evt.cancel();          var custEvent = new AdfCustomEvent(                         evt.getSource(),                         "mycustomevent",                                                                                                                    {message:"Hello World"},                         true);    custEvent.queue(); } 3.       When handling the custom event on the server, lookup the command item, for example a button, to queue its action event. This way you simulate a user clicking the button. Use the following code ActionEvent event = new ActionEvent(component); event.setPhaseId(PhaseId.INVOKE_APPLICATION); event.queue(); The component reference needs to be changed with the handle to the command item which action method you want to execute. 4.       If the command component has behavior tags, like af:fileDownloadActionListener, or af:setPropertyListener, defined, then these are also executed when the action event is queued. However, behavior tags, like the file download action listener, may require a full page refresh to be issued to work, in which case the custom event cannot be issued as a partial refresh. File download action tag: http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_fileDownloadActionListener.html " Since file downloads must be processed with an ordinary request - not XMLHttp AJAX requests - this tag forces partialSubmit to be false on the parent component, if it supports that attribute." To issue a custom event as a non-partial submit, the previously shown sample code would need to be changed as shown below function invokeCustomEvent(evt){   evt.cancel();          var custEvent = new AdfCustomEvent(                         evt.getSource(),                         "mycustomevent",                                                                                                                    {message:"Hello World"},                         true);    custEvent.queue(false); } To learn more about custom events and the af:serverListener, please refer to the tag documentation: http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

    Read the article

  • Benchmarking MySQL Replication with Multi-Threaded Slaves

    - by Mat Keep
    0 0 1 1145 6530 Homework 54 15 7660 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} The objective of this benchmark is to measure the performance improvement achieved when enabling the Multi-Threaded Slave enhancement delivered as a part MySQL 5.6. As the results demonstrate, Multi-Threaded Slaves delivers 5x higher replication performance based on a configuration with 10 databases/schemas. For real-world deployments, higher replication performance directly translates to: · Improved consistency of reads from slaves (i.e. reduced risk of reading "stale" data) · Reduced risk of data loss should the master fail before replicating all events in its binary log (binlog) The multi-threaded slave splits processing between worker threads based on schema, allowing updates to be applied in parallel, rather than sequentially. This delivers benefits to those workloads that isolate application data using databases - e.g. multi-tenant systems deployed in cloud environments. Multi-Threaded Slaves are just one of many enhancements to replication previewed as part of the MySQL 5.6 Development Release, which include: · Global Transaction Identifiers coupled with MySQL utilities for automatic failover / switchover and slave promotion · Crash Safe Slaves and Binlog · Optimized Row Based Replication · Replication Event Checksums · Time Delayed Replication These and many more are discussed in the “MySQL 5.6 Replication: Enabling the Next Generation of Web & Cloud Services” Developer Zone article  Back to the benchmark - details are as follows. Environment The test environment consisted of two Linux servers: · one running the replication master · one running the replication slave. Only the slave was involved in the actual measurements, and was based on the following configuration: - Hardware: Oracle Sun Fire X4170 M2 Server - CPU: 2 sockets, 6 cores with hyper-threading, 2930 MHz. - OS: 64-bit Oracle Enterprise Linux 6.1 - Memory: 48 GB Test Procedure Initial Setup: Two MySQL servers were started on two different hosts, configured as replication master and slave. 10 sysbench schemas were created, each with a single table: CREATE TABLE `sbtest` (    `id` int(10) unsigned NOT NULL AUTO_INCREMENT,    `k` int(10) unsigned NOT NULL DEFAULT '0',    `c` char(120) NOT NULL DEFAULT '',    `pad` char(60) NOT NULL DEFAULT '',    PRIMARY KEY (`id`),    KEY `k` (`k`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 10,000 rows were inserted in each of the 10 tables, for a total of 100,000 rows. When the inserts had replicated to the slave, the slave threads were stopped. The slave data directory was copied to a backup location and the slave threads position in the master binlog noted. 10 sysbench clients, each configured with 10 threads, were spawned at the same time to generate a random schema load against each of the 10 schemas on the master. Each sysbench client executed 10,000 "update key" statements: UPDATE sbtest set k=k+1 WHERE id = <random row> In total, this generated 100,000 update statements to later replicate during the test itself. Test Methodology: The number of slave workers to test with was configured using: SET GLOBAL slave_parallel_workers=<workers> Then the slave IO thread was started and the test waited for all the update queries to be copied over to the relay log on the slave. The benchmark clock was started and then the slave SQL thread was started. The test waited for the slave SQL thread to finish executing the 100k update queries, doing "select master_pos_wait()". When master_pos_wait() returned, the benchmark clock was stopped and the duration calculated. The calculated duration from the benchmark clock should be close to the time it took for the SQL thread to execute the 100,000 update queries. The 100k queries divided by this duration gave the benchmark metric, reported as Queries Per Second (QPS). Test Reset: The test-reset cycle was implemented as follows: · the slave was stopped · the slave data directory replaced with the previous backup · the slave restarted with the slave threads replication pointer repositioned to the point before the update queries in the binlog. The test could then be repeated with identical set of queries but a different number of slave worker threads, enabling a fair comparison. The Test-Reset cycle was repeated 3 times for 0-24 number of workers and the QPS metric calculated and averaged for each worker count. MySQL Configuration The relevant configuration settings used for MySQL are as follows: binlog-format=STATEMENT relay-log-info-repository=TABLE master-info-repository=TABLE As described in the test procedure, the slave_parallel_workers setting was modified as part of the test logic. The consequence of changing this setting is: 0 worker threads:    - current (i.e. single threaded) sequential mode    - 1 x IO thread and 1 x SQL thread    - SQL thread both reads and executes the events 1 worker thread:    - sequential mode    - 1 x IO thread, 1 x Coordinator SQL thread and 1 x Worker thread    - coordinator reads the event and hands it to the worker who executes 2+ worker threads:    - parallel execution    - 1 x IO thread, 1 x Coordinator SQL thread and 2+ Worker threads    - coordinator reads events and hands them to the workers who execute them Results Figure 1 below shows that Multi-Threaded Slaves deliver ~5x higher replication performance when configured with 10 worker threads, with the load evenly distributed across our 10 x schemas. This result is compared to the current replication implementation which is based on a single SQL thread only (i.e. zero worker threads). Figure 1: 5x Higher Performance with Multi-Threaded Slaves The following figure shows more detailed results, with QPS sampled and reported as the worker threads are incremented. The raw numbers behind this graph are reported in the Appendix section of this post. Figure 2: Detailed Results As the results above show, the configuration does not scale noticably from 5 to 9 worker threads. When configured with 10 worker threads however, scalability increases significantly. The conclusion therefore is that it is desirable to configure the same number of worker threads as schemas. Other conclusions from the results: · Running with 1 worker compared to zero workers just introduces overhead without the benefit of parallel execution. · As expected, having more workers than schemas adds no visible benefit. Aside from what is shown in the results above, testing also demonstrated that the following settings had a very positive effect on slave performance: relay-log-info-repository=TABLE master-info-repository=TABLE For 5+ workers, it was up to 2.3 times as fast to run with TABLE compared to FILE. Conclusion As the results demonstrate, Multi-Threaded Slaves deliver significant performance increases to MySQL replication when handling multiple schemas. This, and the other replication enhancements introduced in MySQL 5.6 are fully available for you to download and evaluate now from the MySQL Developer site (select Development Release tab). You can learn more about MySQL 5.6 from the documentation  Please don’t hesitate to comment on this or other replication blogs with feedback and questions. Appendix – Detailed Results

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

  • ???? ????? ????? ?????? ????? 10.2.0.4

    - by gadi.chen
    Normal 0 false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} DBA's ?????? ?????? ???? ??? ????? ??? ?????? ???? ????? ????? ??? ?????. ??? ????? ???? ????? ???? ??????? 30-Apr-2011  ???? ???? ?????? ????? ???? ??????? 10.2.0.4. ?????? ????? EBS ?? ????? ????? ????? ????? ??? ??? ???? ????? ?????? extended support, ???? ???? 11.5.10.2 ??? ???? ? 01-Dec-2011 . ) ????? ?????? ????  Minimum Baseline For Extended Support ????? ?????: 883202.1) ???? ????? ????? ?????? ?????? ?? ????? ????? ????? ????????? ???? ?? :   # ATG.RUP6 # Forms6i Patchset 19 # JRE 1.6.0_03       ???? ???? ?????? EBS ?? ????? ?????? ?????? ????? ???? ?????? ?? ,?? ??? ????? ?? ???? ??????.   ????? ???? 10.2.0.4 ?? ???? ?patches ????? ????  30-Apr-2011 . ???? ????  patches ????? ?? ????? ????? 10.2.0.5   .   ???? ????? EBS ????? 3 ?????? ?????? ?? ???: 1.      ????? ????? 11.2.0.2 - ??? ???? ????? ??????? ?????? ??? EBS ??????? 11i   ? R12 2.      ????? ????? 11.1.0.7 -  ??? ???? ????? ?????? ????? ????? 11.1 ??? ?????. 3.      ?????/????? patch 10.2.0.5 -   ???? ????? ?????? ????? ?????? ????? 10gR2 . v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}   ?????? ??????? ???? ??????:     http://blogs.oracle.com/stevenChan/2011/01/ecs_10gr2_10204.html On Database Patching and Support: A Primer for E-Business Suite Users Oracle Database 10.2 End of Premier Support -- Frequently Asked Questions (Note 1130327.1)        

    Read the article

  • ATG Live Webcast Feb. 24th: Using the EBS 12 SOA Adapter

    - by Bill Sawyer
    Our next ATG Live Webcast is now open for registration. The event is titled:E-Business Suite R12.x SOA Using the E-Business Suite AdapterThis live one-hour webcast will offer a review of the Service Oriented Architecture (SOA) capabilities within E-Business Suite R12 focusing on the E-Business Suite Adapter. While primarily focused on integrators and developers, understanding SOA capabilities is important for all E-Business Suite technologists and superusers.ATG Live Webcast Logistics The one-hour event will be webcast live with a dial-in access for Q&A with the Applications Technology Group (ATG) Development experts presenting the event. The basic information for the event is as follows:E-Business Suite R12.x SOA Using the E-Business Suite AdapterDate: Thursday, February 24, 2011Time: 8:00 AM - 9:00 AM Pacific Standard TimePresenters:  Neeraj Chauhan, Product Manager, ATG DevelopmentNOTE: When you register for the event, the confirmation will show the event starting at 7:30 AM Pacific Standard Time. This is to allow you time to connect to the conference call and web conference. The presentation will start at 8:00 AM Pacfic Standard Time.

    Read the article

  • JPA/EclipseLink multitenancy screencast

    - by alexismp
    I find JPA and in particular EclipseLink 2.3 to be particularly well suited to illustrate the concept of multitenancy, one of the key PaaS features en route for Java EE 7. Here's a short (5-minute) screencast showing GlassFish 3.1.1 (due out real soon now) and its EclipseLink 2.3 JPA provider showing multitenancy in action. In short, it adds EclipseLink annotations to a JPA entity and deploys two identical applications with different tenant-id properties defined in the persistence.xml descriptor. Each application only sees its own data, yet everything is stored in the same table which was augmented with a discriminator column. For more advanced uses such as tenant property being set on the @PersistenceContext, XML configuration of multitenant JPA entities, and more check out the nicely written wiki page.

    Read the article

  • Verizon Wireless Supports its Mission-Critical Employee Portal with MySQL

    - by Bertrand Matthelié
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} Verizon Wireless, the #1 mobile carrier in the United States, operates the nation’s largest 3G and 4G LTE network, with the most subscribers (109 millions) and the highest revenue ($70.2 Billion in 2011). Verizon Wireless built the first wide-area wireless broadband network and delivered the first wireless consumer 3G multimedia service in the US, and offers global voice and data services in more than 200 destinations around the world. To support 4.2 million daily wireless transactions and 493,000 calls and emails transactions produced by 94.2 million retail customers, Verizon Wireless employs over 78,000 employees with area headquarters across the United States. The Business Challenge Seeing the stupendous rise in social media, video streaming, live broadcasting…etc which redefined the scope of technology, Verizon Wireless, as a technology savvy company, wanted to provide a platform to its employees where they could network socially, view and host microsites, stream live videos, blog and provide the latest news. The IT team at Verizon Wireless had abundant experience with various technology platforms to support the huge number of applications in the company. However, open-source products weren’t yet widely used in the organization and the team had the ambition to adopt such technologies and see if the architecture could meet Verizon Wireless’ rigid requirements. After evaluating a few solutions, the IT team decided to use the LAMP stack for Vzweb, its mission-critical, 24x7 employee portal, with Drupal as the front end and MySQL on Linux as the backend, and for a few other internal websites also on MySQL. The MySQL Solution Verizon Wireless started to support its employee portal, Vzweb, its online streaming website, Vztube, and internal wiki pages, Vzwiki, with MySQL 5.1 in 2010. Vzweb is the main internal communication channel for Verizon Wireless, while Vztube hosts important company-wide webcasts regularly for executive-level announcements, so both channels have to be live and accessible all the time for its 78,000 employees across the United States. However during the initial deployment of the MySQL based Intranet, the application experienced performance issues. High connection spikes occurred causing slow user response time, and the IT team applied workarounds to continue the service. A number of key performance indexes (KPI) for the infrastructure were identified and the operational framework redesigned to support a more robust website and conform to the 99.985% uptime SLA (Service-Level Agreement). The MySQL DBA team made a series of upgrades in MySQL: Step 1: Moved from MyISAM to InnoDB storage engine in 2010 Step 2: Upgraded to the latest MySQL 5.1.54 release in 2010 Step 3: Upgraded from MySQL 5.1 to the latest GA release MySQL 5.5 in 2011, and leveraging MySQL Thread Pool as part of MySQL Enterprise Edition to scale better After making those changes, the team saw a much better response time during high concurrency use cases, and achieved an amazing performance improvement of 1400%! In January 2011, Verizon CEO, Ivan Seidenberg, announced the iPhone launch during the opening keynote at Consumer Electronic Show (CES) in Las Vegas, and that presentation was streamed live to its 78,000 employees. The event was broadcasted flawlessly with MySQL as the database. Later in 2011, Hurricane Irene attacked the East Coast of United States and caused major life and financial damages. During the hurricane, the team directed more traffic to its west coast data center to avoid potential infrastructure damage in the East Coast. Such transition was executed smoothly and even though the geographical distance became longer for the East Coast users, there was no impact in the performance of Vzweb and Vztube, and the SLA goal was achieved. “MySQL is the key component of Verizon Wireless’ mission-critical employee portal application,” said Shivinder Singh, senior DBA at Verizon Wireless. “We achieved 1400% performance improvement by moving from the MyISAM storage engine to InnoDB, upgrading to the latest GA release MySQL 5.5, and using the MySQL Thread Pool to support high concurrent user connections. MySQL has become part of our IT infrastructure, on which potentially more future applications will be built.” To learn more about MySQL Enterprise Edition, Get our Product Guide.

    Read the article

  • Using the af:poll to refresh parts of the page periodically

    - by shay.shmeltzer
    Just a quick sample of using the af:poll components. A component that enables you to do things in a periodic fashion. For example check if something has changed on the server and update the UI. A more "modern" approach is to actually use push instead of pull, and ADF Faces will allow you to do that with ADS (here, and here). But the poll still has its place. It's quite useful for dashboard type of applications where you want periodic updates of the graphs shown on the page. As you can see it's quite simple to use the tag. I also show my lazy approach to invoking declarative operations on a data control from a backing bean without manually writing code.

    Read the article

  • The JRockit Book is Now in Print!

    - by Marcus Hirt
    Yes. I know. It’s been in print for some days already, but I haven’t found time to write about it until now. The book is a good guide for JVM’s in general, and for JRockit in particular. If you’ve ever wondered how the innards of the Java Virtual Machine works, or how to use the JRockit Mission Control to hunt down problems in your Java applications, this book is for you. The book is written for intermediate to advanced Java Developers. These are the chapters: Getting Started Adaptive Code Generation Adaptive Memory Management Threads and Synchronization Benchmarking and Tuning JRockit Mission Control The Management Console The Runtime Analyzer The Flight Recorder The Memory Leak Detector JRCMD Using the JRockit Management APIs JRockit Virtual Edition Appendix A: Bibliography Appendix B: Glossary Index The book is 588 pages long. For more information about the book, see the book page at Packt.

    Read the article

  • Protect Data and Save Money? Learn How Best-in-Class Organizations do Both

    - by roxana.bradescu
    Databases contain nearly two-thirds of the sensitive information that must be protected as part of any organization's overall approach to security, risk management, and compliance. Solutions for protecting data housed in databases vary from encrypting data at the application level to defense-in-depth protection of the database itself. So is there a difference? Absolutely! According to new research from the Aberdeen Group, Best-in-Class organizations experience fewer data breaches and audit deficiencies - at lower cost -- by deploying database security solutions. And the results are dramatic: Aberdeen found that organizations encrypting data within their databases achieved 30% fewer data breaches and 15% greater audit efficiency with 34% less total cost when compared to organizations encrypting data within applications. Join us for a live webcast with Derek Brink, Vice President and Research Fellow at the Aberdeen Group, next week to learn how your organization can become Best-in-Class.

    Read the article

  • Java EE 7 Launch Replay

    - by arungupta
    Java EE 7 was released final on Jun 12, 2013. A complete replay of Strategy and Technical Keynote can be seen below: All the Technical Breakout sessions are now available on GlassFishVideos@YouTube and can be viewed in the following playlist: Ready to try out Java EE 7 ? Download Binaries Java EE 7 SDK GlassFish Server Open Source Edition 4.0 Tools NetBeans 7.3.1 Eclipse Kepler Maven Coordinates Docs Java EE 7 Whitepaper Java EE 7 Tutorial (html pdf) First Cup Sample Application Java EE 7 Hands-on Lab Javadocs (online download) Specifications All-in-one GlassFish Documentation Bundle Do you feel enabled and empowered to start building Java EE 7 applications ? Just download Java EE 7 SDK that contains GlassFish Server Open Source Edition 4.0, tutorial, samples, documentation and much more. Enjoy!

    Read the article

  • Top 10 Reasons to Use MySQL and MySQL Cluster as an Embedded Database

    - by Rob Young
    If you are considering using MySQL and/or MySQL Cluster as the embedded database solution for your application, you should join us for today's webcast where we will discuss how you can cut costs, add flexibility and benefit from new performance and scalability enhancements that are now available in MySQL 5.6 and MySQL Cluster 7.2.  We will cover the top 10 reasons that make MySQL and MySQL Cluster the best solutions for embedding in both shrink wrapped and SaaS provided applications, how industry leaders leverage MySQL products and how you can get started with the latest innovations and support offerings across the MySQL product line. You can learn more and reserve your seat here. As always, thanks for your support of MySQL!

    Read the article

  • Great Example of Community How-To Doc

    - by ultan o'broin
    Always on the lookout for examples of community doc, and here's a great one: Chet Justice (@oraclenerd) just launched an eBook version (PDF actually) of John Piwowar's (@jpiwowar) very popular multi-part E-Business Suite Installation Guide. You can obtain it using the PayPal buttons here. All in a good cause too. Creation of how-to information like this for functional or technical tasks, along with working examples about post-install steps, configurations and customizations, is what an applications community value-add is all about. Each community is different of course, an Adobe PhotoShop community might be more interested in templates. Great to see the needs of the community being met like this. If you have other examples you'd like to share, then find the comments.

    Read the article

  • maintaining a growing, diverse codebase with continuous integration

    - by Nate
    I am in need of some help with philosophy and design of a continuous integration setup. Our current CI setup uses buildbot. When I started out designing it, I inherited (well, not strictly, as I was involved in its design a year earlier) a bespoke CI builder that was tailored to run the entire build at once, overnight. After a while, we decided that this was insufficient, and started exploring different CI frameworks, eventually choosing buildbot. One of my goals in transitioning to buildbot (besides getting to enjoy all the whiz-bang extras) was to overcome some of the inadequacies of our bespoke nightly builder. Humor me for a moment, and let me explain what I have inherited. The codebase for my company is almost 150 unique c++ Windows applications, each of which has dependencies on one or more of a dozen internal libraries (and many on 3rd party libraries as well). Some of these libraries are interdependent, and have depending applications that (while they have nothing to do with each other) have to be built with the same build of that library. Half of these applications and libraries are considered "legacy" and unportable, and must be built with several distinct configurations of the IBM compiler (for which I have written unique subclasses of Compile), and the other half are built with visual studio. The code for each compiler is stored in two separate Visual SourceSafe repositories (which I am simply handling using a bunch of ShellCommands, as there is no support for VSS). Our original nightly builder simply took down the source for everything, and built stuff in a certain order. There was no way to build only a single application, or pick a revision, or to group things. It would launched virtual machines to build a number of the applications. It wasn't very robust, it wasn't distributable. It wasn't terribly extensible. I wanted to be able to overcame all of these limitations in buildbot. The way I did this originally was to create entries for each of the applications we wanted to build (all 150ish of them), then create triggered schedulers that could build various applications as groups, and then subsume those groups under an overall nightly build scheduler. These could run on dedicated slaves (no more virtual machine chicanery), and if I wanted I could simply add new slaves. Now, if we want to do a full build out of schedule, it's one click, but we can also build just one application should we so desire. There are four weaknesses of this approach, however. One is our source tree's complex web of dependencies. In order to simplify config maintenace, all builders are generated from a large dictionary. The dependencies are retrieved and built in a not-terribly robust fashion (namely, keying off of certain things in my build-target dictionary). The second is that each build has between 15 and 21 build steps, which is hard to browse and look at in the web interface, and since there are around 150 columns, takes forever to load (think from 30 seconds to multiple minutes). Thirdly, we no longer have autodiscovery of build targets (although, as much as one of my coworkers harps on me about this, I don't see what it got us in the first place). Finally, aformentioned coworker likes to constantly bring up the fact that we can no longer perform a full build on our local machine (though I never saw what that got us, either, considering that it took three times as long as the distributed build; I think he is just paranoically phobic of ever breaking the build). Now, moving to new development, we are starting to use g++ and subversion (not porting the old repository, mind you - just for the new stuff). Also, we are starting to do more unit testing ("more" might give the wrong picture... it's more like any), and integration testing (using python). I'm having a hard time figuring out how to fit these into my existing configuration. So, where have I gone wrong philosophically here? How can I best proceed forward (with buildbot - it's the only piece of the puzzle I have license to work on) so that my configuration is actually maintainable? How do I address some of my design's weaknesses? What really works in terms of CI strategies for large, (possibly over-)complex codebases?

    Read the article

  • iPack -The iOS Application Packager

    - by user13277780
    iOS applications are distributed in .ipa archive files. These files are regular zip files which contain application resources and executable-s. To protect them from unauthorized modifications and to provide identification of their sources, the content of the archives is signed. The signature is included in the application executable of an.ipa archive and protects the executable file itself and the associated resource files. Apple provides native Mac OS tools for signing iOS executable-s (which are actually generic Mach-O code signing tools), but these tools are not generally available on other platforms. To provide a multi-platform development environment for JavaFX based iOS applications, we ported iOS signing and packaging to Java and created a dedicated ipack tool for it. The iPack tool can be used as a last step of creating .ipa package on various operating systems. Prototype has been tested by creating a final distributable for JavaFX application that runs on iPad, all done on Windows 7. Source Code The source code of iPac tool is in OpenJFX project repository. You can find it in: <openjfx root>/rt/tools/ios/Maven/ipack To build the iPack tool use: rt/tools/ios/Maven/ipack$ mvn package After building, you can run the tool: java -jar <path to ipack.jar> <arguments>  Signing keystore The tool uses a java key store to read the signing certificate and the associated private key. To prepare such keystore users can use keytool from JDK. One possible scenario is to import an existing private key and the certificate from a key store used on Mac OS: To list the content of an existing key store and identify the source alias: keytool -list -keystore <src keystore>.p12 -storetype pkcs12 -storepass <src keystore password> To create Java key store and import the private key with its certificate to the keys store: keytool -importkeystore \ -destkeystore <dst keystore> -deststorepass <dst keystore password> \ -srckeystore <src keystore>.p12 -srcstorepass <src keystore password> -srcstoretype pkcs12 \ -srcalias <src alias> -destalias <dst alias> -destkeypass <dst key password> Another scenario would be to generate a private / public key pair directly in a Java key store and create a certificate request from it. After sending the request to Apple one can then import the certificate response back to the Java key store and complete the signing certificate entry. In both scenarios the resulting alias in the Java key store will contain only a single (leaf) certificate. This can be verified with the following command: keytool -list -v -keystore <ipack keystore> -storepass <keystore password> When looking at the Certificate chain length entry, the number next to it is 1. When an executable file is signed on Mac OS, the resulting signature (in CMS format) includes the whole certificate chain up to the Apple Root CA. The ipack tool includes only the chain which is stored under the alias specified on the command line. So to have the whole chain in the signature we need to replace the single certificate entry under the alias with the corresponding full certificate chain. To do that we need first to create the chain in a separate file. It is easy to create such chain when working with certificates in Base-64 encoded PEM format. A certificate chain can be created by concatenating PEM certificates, which should form the chain, into a single file. For iOS signing we need the following certificates in our chain: Apple Root CA Apple Worldwide Developer Relations CA Our signing leaf certificate To convert a certificate from the binary DER format (.der, .cer) to PEM format: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert -file <certificate>.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert -rfc -file <certificate>.pem To export the signing certificate into PEM format: keytool -exportcert -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -rfc -file SigningCert.pem After constructing a chain from AppleIncRootCertificate.pem, AppleWWDRCA.pem andSigningCert.pem, it can be imported back into the keystore with: keytool -importcert -noprompt -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -keypass <key password> -file SigningCertChain.pem To summarize, the following example shows the full certificate chain replacement process: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert1 -file AppleIncRootCertificate.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert1 -rfc -file AppleIncRootCertificate.pem keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert2 -file AppleWWDRCA.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert2 -rfc -file AppleWWDRCA.pem keytool -exportcert -keystore ipack.ks -storepass keystorepwd -alias mycert -rfc -file SigningCert.pem cat SigningCert.pem AppleWWDRCA.pem AppleIncRootCertificate.pem >SigningCertChain.pem keytool -importcert -noprompt -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -file SigningCertChain.pem keytool -list -v -keystore ipack.ks -storepass keystorepwd Usage When the ipack tool is started with no arguments it prints the following usage information: -appname MyApplication -appid com.myorg.MyApplication     Usage: ipack <archive> <signing opts> <application opts> [ <application opts> ... ] Signing options: -keystore <keystore> keystore to use for signing -storepass <password> keystore password -alias <alias> alias for the signing certificate chain and the associated private key -keypass <password> password for the private key Application options: -basedir <directory> base directory from which to derive relative paths -appdir <directory> directory with the application executable and resources -appname <file> name of the application executable -appid <id> application identifier Example: ipack MyApplication.ipa -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -basedir mysources/MyApplication/dist -appdir Payload/MyApplication.app -appname MyApplication -appid com.myorg.MyApplication    

    Read the article

  • WebCenter Content shared folders for clustering

    - by Kyle Hatlestad
    When configuring a WebCenter Content (WCC) cluster, one of the things which makes it unique from some other WebLogic Server applications is its requirement for a shared file system.  This is actually not any different then 10g and previous versions of UCM when it ran directly on a JVM.  And while it is simple enough to say it needs a shared file system, there are some crucial details in how those directories are configured. And if they aren't followed, you may result in some unwanted behavior. This blog post will go into the details on how exactly the file systems should be split and what options are required. [Read More]

    Read the article

  • The JavaOne 2012 Sunday Technical Keynote

    - by Janice J. Heiss
    At the JavaOne 2012 Sunday Technical Keynote, held at the Masonic Auditorium, Mark Reinhold, Chief Architect, Java Platform Group, stated that they were going to do things a bit differently--"rather than 20 minutes of SE, and 20 minutes of FX, and 20 minutes of EE, we're going to mix it up a little," he said. "For much of it, we're going to be showing a single application, to show off some of the great work that's been done in the last year, and how Java can scale well--from the cloud all the way down to some very small embedded devices, and how JavaFX scales right along with it."Richard Bair and Jasper Potts from the JavaFX team demonstrated a JavaOne schedule builder application with impressive navigation, animation, pop-overs, and transitions. They noted that the application runs seamlessly on either Windows or Macs, running Java 7. They then ran the same application on an Ubuntu Linux machine--"it just works," said Blair.The JavaFX duo next put the recently released JavaFX Scene Builder through its paces -- dragging and dropping various image assets to build the application's UI, then fine tuning a CSS file for the finished look and feel. Among many other new features, in the past six months, JavaFX has released support for H.264 and HTTP live streaming, "so you can get all the real media playing inside your JavaFX application," said Bair. And in their developer preview builds of JavaFX 8, they've now split the rendering thread from the UI thread, to better take advantage of multi-core architectures.Next, Brian Goetz, Java Language Architect, explored language and library features planned for Java SE 8, including Lambda expressions and better parallel libraries. These feature changes both simplify code and free-up libraries to more effectively use parallelism. "It's currently still a lot of work to convert an application from serial to parallel," noted Goetz.Reinhold had previously boasted of Java scaling down to "small embedded devices," so Blair and Potts next ran their schedule builder application on a small embedded PandaBoard system with an OMAP4 chip set. Connected to a touch screen, the embedded board ran the same JavaFX application previously seen on the desktop systems, but now running on Java SE Embedded. (The systems can be seen and tried at four of the nearby JavaOne hotels.) Bob Vandette, Java Embedded Architect, then displayed a $25 Rasberry Pi ARM-based system running Java SE Embedded, noting the even greater need for the platform independence of Java in such highly varied embedded processor spaces. Reinhold and Vandetta discussed Project Jigsaw, the planned modularization of the Java SE platform, and its deferral from the Java 8 release to Java 9. Reinhold demonstrated the promise of Jigsaw by running a modularized demo version of the earlier schedule builder application on the resource constrained Rasberry Pi system--although the demo gods were not smiling down, and the application ultimately crashed.Reinhold urged developers to become involved in the Java 8 development process--getting the weekly builds, trying out their current code, and trying out the new features:http://openjdk.java.net/projects/jdk8http://openjdk.java.net/projects/jdk8/spechttp://jdk8.java.netFrom there, Arun Gupta explored Java EE. The primary themes of Java EE 7, Gupta stated, will be greater productivity, and HTML 5 functionality (WebSocket, JSON, and HTML 5 forms). Part of the planned productivity increase of the release will come from a reduction in writing boilerplate code--through the widespread use of dependency injection in the platform, along with default data sources and default connection factories. Gupta noted the inclusion of JAX-RS in the web profile, the changes and improvements found in JMS 2.0, as well as enhancements to Java EE 7 in terms of JPA 2.1 and EJB 3.2. GlassFish 4 is the reference implementation of Java EE 7, and currently includes WebSocket, JSON, JAX-RS 2.0, JMS 2.0, and more. The final release is targeted for Q2, 2013. Looking forward to Java EE 8, Gupta explored how the platform will provide multi-tenancy for applications, modularity based on Jigsaw, and cloud architecture. Meanwhile, Project Avatar is the group's incubator project for designing an end-to-end framework for building HTML 5 applications. Santiago Pericas-Geertsen joined Gupta to demonstrate their "Angry Bids" auction/live-bid/chat application using many of the enhancements of Java EE 7, along with an Avatar HTML 5 infrastructure, and running on the GlassFish reference implementation.Finally, Gupta covered Project Easel, an advanced tooling capability in NetBeans for HTML5. John Ceccarelli, NetBeans Engineering Director, joined Gupta to demonstrate creating an HTML 5 project from within NetBeans--formatting the project for both desktop and smartphone implementations. Ceccarelli noted that NetBeans 7.3 beta will be released later this week, and will include support for creating such HTML 5 project types. Gupta directed conference attendees to: http://glassfish.org/javaone2012 for everything about Java EE and GlassFish at JavaOne 2012.

    Read the article

  • Top Innovations for Sales Managers

    - by divya.malik
    Sales managers are always looking for ways to motivate their troops as well as make themselves more effective and productive. Here is a small X’mas present for those folks that are looking for some effective tips. Our friends at Selling Power magazine recently wrote an interesting blog post with top 10 best practices for sales managers. Here we go: Harness social media Strategically align marketing campaigns with sales efforts Establish a customer-centric sales process Realize ROI with CRM Embrace online collaboration Improve accuracy in sales forecasting and pipeline metrics Coach for sales success Leverage mobile technology Focus on sales enablement Improve sales performance and compensation management We have a complete suite of sales applications, to help increase sales revenues, sales productivity as well as to improve your sales execution. You can find more details here. For more details on the SellingPower blog post click here. Happy Holidays to you and your family.

    Read the article

  • Murali Papana Blogs About Date Effectivity

    - by steve.muench
    Murali Papana from our Human Capital Management (HCM) Fusion Applications team has posted a series of blogs on a lesser-known, but quite powerful feature of ADF called "date effectivity". This is a feature that allows the framework to simplify managing records whose data values are effective for a given period of time. Imagine an employee's job title or salary that changes over time, which as well might be entered today by an HR reprepsentative but go into effect at some time in the future. Check out these articles if you're curious to learn more: Learning basics of Date Effectivity in ADFADF Model: Creating Date Effective EOADF Model: Creating Date Effective Association and Date Effective VOADF UI - Implementing Date Effective Search with Example

    Read the article

  • JavaOne San Francisco 2013 Content Catalog Live!

    - by Yolande Poirier
    There will be over 500 technical sessions, BOFs, tutorials, and hands-on labs offered. Note that "Securing Java" is a new track this year. The tracks are:  Client and Embedded Development with JavaFX Core Java Platform Edge Computing with Java in Embedded, Smart Card, and IoT Applications Emerging Languages on the Java Virtual Machine Securing Java Java Development Tools and Techniques Java EE Web Profile and Platform Technologies Java Web Services and the Cloud In the Content Catalog you can search on tracks, session types, session categories, keywords, and tags. Or, you can search for your favorite speakers to see what they’re presenting this year. And, directly from the catalog, you can share sessions you’re interested in with friends and colleagues through a broad array of social media channels. Start checking out JavaOne content now to plan your week at the conference. Then, you’ll be ready to sign up for all of your sessions when the scheduling tool goes live.

    Read the article

  • EclipseLink Moxy Provider for JAX-RS and JAX-WS

    - by arungupta
    EclipseLink MOXy is a JAXB provider bundled in GlassFish 3.1.2. In addition to JAXB RI, it provides XPath Based Mapping, better support for JPA entities, native JSON binding and many other features. Learn more about MOXy and JAXB examples on their wiki. Blaise blogged about how MOXy can be leveraged to create a JAX-WS service.You just need to provide data-binding attribute in sun-jaxws.xml and then all the XPath-based mapping can be specified on JAXB beans. MOXy can also be used as JAX-RS JSON provider on server-side and client-side. How are you using MOXy in your applications ?

    Read the article

< Previous Page | 559 560 561 562 563 564 565 566 567 568 569 570  | Next Page >