Search Results

Search found 15646 results on 626 pages for 'port 80'.

Page 574/626 | < Previous Page | 570 571 572 573 574 575 576 577 578 579 580 581  | Next Page >

  • File using sockets .net, tranfering problem

    - by Sergei
    I have a client and server, client sending file to server. When i transfer files on my computer(in local) everything is ok(try to sen file over 700mb). When i try to sent file use Internet to my friend in the end of sending appears error on server "Input string is not in correct format".This error appears in this expression fSize = Convert::ToUInt64(tokenes[0]); - and i don't mind wht it's appear. File should be transfered and wait other transferring ps: sorry for too much code, but i want to find solution private: void CreateServer() { try{ IPAddress ^ipAddres = IPAddress::Parse(ipAdress); listener = gcnew System::Net::Sockets::TcpListener(ipAddres, port); listener->Start(); clientsocket =listener->AcceptSocket(); bool keepalive = true; array<wchar_t,1> ^split = gcnew array<wchar_t>(1){ '\0' }; array<wchar_t,1> ^split2 = gcnew array<wchar_t>(1){ '|' }; statusBar1->Text = "Connected" ; // while (keepalive) { array<Byte>^ size1 = gcnew array<Byte>(1024); clientsocket->Receive(size1); System::String ^notSplited = System::Text::Encoding::GetEncoding(1251)->GetString(size1); array<String^> ^ tokenes = notSplited->Split(split2); System::String ^fileName = tokenes[1]->ToString(); statusBar1->Text = "Receiving file" ; unsigned long fSize = 0; //IN THIS EXPRESSIN APPEARS ERROR fSize = Convert::ToUInt64(tokenes[0]); if (!Directory::Exists("Received")) Directory::CreateDirectory("Received"); System::String ^path = "Received\\"+ fileName; while (File::Exists(path)) { int dotPos = path->LastIndexOf('.'); if (dotPos == -1) { path += "[1]"; } else { path = path->Insert(dotPos, "[1]"); } } FileStream ^fs = gcnew FileStream(path, FileMode::CreateNew, FileAccess::Write); BinaryWriter ^f = gcnew BinaryWriter(fs); //bytes received unsigned long processed = 0; pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; // Set the initial value of the ProgressBar. pBarFilesTr->Value = 0; pBarFilesTr->Step = 1024; //loop for receive file array<Byte>^ buffer = gcnew array<Byte>(1024); while (processed < fSize) { if ((fSize - processed) < 1024) { int bytes ; array<Byte>^ buf = gcnew array<Byte>(1024); bytes = clientsocket->Receive(buf); if (bytes != 0) { f->Write(buf, 0, bytes); processed = processed + (unsigned long)bytes; pBarFilesTr->PerformStep(); } break; } else { int bytes = clientsocket->Receive(buffer); if (bytes != 0) { f->Write(buffer, 0, 1024); processed = processed + 1024; pBarFilesTr->PerformStep(); } else break; } } statusBar1->Text = "File was received" ; array<Byte>^ buf = gcnew array<Byte>(1); clientsocket->Send(buf,buf->Length,SocketFlags::None); f->Close(); fs->Close(); SystemSounds::Beep->Play(); } }catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } catch(System::Exception ^es) { MessageBox::Show(es->ToString()); } } private: void CreateClient() { clientsock = gcnew System::Net::Sockets::TcpClient(ipAdress, port); ns = clientsock->GetStream(); sr = gcnew StreamReader(ns); statusBar1->Text = "Connected" ; } private:void Send() { try{ OpenFileDialog ^openFileDialog1 = gcnew OpenFileDialog(); System::String ^filePath = ""; System::String ^fileName = ""; //file choose dialog if (openFileDialog1->ShowDialog() == System::Windows::Forms::DialogResult::OK) { filePath = openFileDialog1->FileName; fileName = openFileDialog1->SafeFileName; } else { MessageBox::Show("You must select a file", "Error", MessageBoxButtons::OK, MessageBoxIcon::Exclamation); return; } statusBar1->Text = "Sending file" ; NetworkStream ^writerStream = clientsock->GetStream(); System::Runtime::Serialization::Formatters::Binary::BinaryFormatter ^format = gcnew System::Runtime::Serialization::Formatters::Binary::BinaryFormatter(); array<Byte>^ buffer = gcnew array<Byte>(1024); FileStream ^fs = gcnew FileStream(filePath, FileMode::Open); BinaryReader ^br = gcnew BinaryReader(fs); //file size unsigned long fSize = (unsigned long)fs->Length; //transfer file size + name bFSize = Encoding::GetEncoding(1251)->GetBytes(Convert::ToString(fs->Length+"|"+fileName+"|")); writerStream->Write(bFSize, 0, bFSize->Length); //status bar pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; pBarFilesTr->Value = 0; // Set the initial value of the ProgressBar. pBarFilesTr->Step = 1024; //bytes transfered unsigned long processed = 0; int bytes = 1024; //loop for transfer while (processed < fSize) { if ((fSize - processed) < 1024) { bytes = (int)(fSize - processed); array<Byte>^ buf = gcnew array<Byte>(bytes); br->Read(buf, 0, bytes); writerStream->Write(buf, 0, buf->Length); pBarFilesTr->PerformStep(); processed = processed + (unsigned long)bytes; break; } else { br->Read(buffer, 0, 1024); writerStream->Write(buffer, 0, buffer->Length); pBarFilesTr->PerformStep(); processed = processed + 1024; } } array<Byte>^ bufsss = gcnew array<Byte>(100); writerStream->Read(bufsss,0,bufsss->Length); statusBar1->Text = "File was sent" ; btnSend->Enabled = true; fs->Close(); br->Close(); SystemSounds::Beep->Play(); newThread->Abort(); } catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } }

    Read the article

  • C socket programming: select() is returning 0 despite messages sent from server

    - by Fantastic Fourier
    Hey all, I'm using select() to recv() messages from server, using TCP/IP. When I send() messages from the server, it returns a reasonable number of bytes, saying it's sent successful. And it does get to the client successfully when I use while loop to just recv(). Everything is fine and dandy. while(1) recv() // obviously pseudocode However, when I try to use select(), select() returns 0 from timeout (which is set to 1 second) and for the life of me I cannot figure out why it doesn't see the messages sent from the server. I should also mention that when the server disconnects, select() doesn't see that either, where as if I were to use recv(), it would return 0 to indicate that the connection using the socket has been closed. Any inputs or thoughts are deeply appreciated. #include <arpa/inet.h> #include <errno.h> #include <fcntl.h> #include <netdb.h> #include <netinet/in.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <strings.h> #include <sys/select.h> #include <sys/socket.h> #include <sys/time.h> #include <sys/types.h> #include <time.h> #include <unistd.h> #define SERVER_PORT 10000 #define MAX_CONNECTION 20 #define MAX_MSG 50 struct client { char c_name[MAX_MSG]; char g_name[MAX_MSG]; int csock; int host; // 0 = not host of a multicast group struct sockaddr_in client_address; struct client * next_host; struct client * next_client; }; struct fd_info { char c_name[MAX_MSG]; int socks_inuse[MAX_CONNECTION]; int sock_fd, max_fd; int exit; struct client * c_sys; struct sockaddr_in c_address[MAX_CONNECTION]; struct sockaddr_in server_address; struct sockaddr_in client_address; fd_set read_set; }; struct message { char c_name[MAX_MSG]; char g_name[MAX_MSG]; char _command[3][MAX_MSG]; char _payload[MAX_MSG]; struct sockaddr_in client_address; struct client peer; }; int main(int argc, char * argv[]) { char * host; char * temp; int i, sockfd; int msg_len, rv, ready; int connection, management, socketread; int sockfds[MAX_CONNECTION]; // for three threads that handle new connections, user inputs and select() for sockets pthread_t connection_handler, manager, socket_reader; struct sockaddr_in server_address, client_address; struct hostent * hserver, cserver; struct timeval timeout; struct message msg; struct fd_info info; info.exit = 0; // exit information: if exit = 1, threads quit info.c_sys = NULL; // looking up from the host database if (argc == 3) { host = argv[1]; // server address strncpy(info.c_name, argv[2], strlen(argv[2])); // client name } else { printf("plz read the manual, kthxbai\n"); exit(1); } printf("host is %s and hp is %p\n", host, hserver); hserver = gethostbyname(host); if (hserver) { printf("host found: %s\n", hserver->h_name ); } else { printf("host not found\n"); exit(1); } // setting up address and port structure information on serverside bzero((char * ) &server_address, sizeof(server_address)); // copy zeroes into string server_address.sin_family = AF_INET; memcpy(&server_address.sin_addr, hserver->h_addr, hserver->h_length); server_address.sin_port = htons(SERVER_PORT); bzero((char * ) &client_address, sizeof(client_address)); // copy zeroes into string client_address.sin_family = AF_INET; client_address.sin_addr.s_addr = htonl(INADDR_ANY); client_address.sin_port = htons(SERVER_PORT); // opening up socket sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) exit(1); else { printf("socket is opened: %i \n", sockfd); info.sock_fd = sockfd; } // sets up time out option for the bound socket timeout.tv_sec = 1; // seconds timeout.tv_usec = 0; // micro seconds ( 0.5 seconds) setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof(struct timeval)); // binding socket to a port rv = bind(sockfd, (struct sockaddr *) &client_address, sizeof(client_address)); if (rv < 0) { printf("MAIN: ERROR bind() %i: %s\n", errno, strerror(errno)); exit(1); } else printf("socket is bound\n"); printf("MAIN: %li \n", client_address.sin_addr.s_addr); // connecting rv = connect(sockfd, (struct sockaddr *) &server_address, sizeof(server_address)); info.server_address = server_address; info.client_address = client_address; info.sock_fd = sockfd; info.max_fd = sockfd; printf("rv = %i\n", rv); if (rv < 0) { printf("MAIN: ERROR connect() %i: %s\n", errno, strerror(errno)); exit(1); } else printf("connected\n"); fd_set readset; FD_ZERO(&readset); FD_ZERO(&info.read_set); FD_SET(info.sock_fd, &info.read_set); while(1) { readset = info.read_set; printf("MAIN: %i \n", readset); ready = select((info.max_fd)+1, &readset, NULL, NULL, &timeout); if(ready == -1) { sleep(2); printf("TEST: MAIN: ready = -1. %s \n", strerror(errno)); } else if (ready == 0) { sleep(2); printf("TEST: MAIN: ready = 0. %s \n", strerror(errno)); } else if (ready > 0) { printf("TEST: MAIN: ready = %i. %s at socket %i \n", ready, strerror(errno), i); for(i = 0; i < ((info.max_fd)+1); i++) { if(FD_ISSET(i, &readset)) { rv = recv(sockfd, &msg, 500, 0); if(rv < 0) continue; else if(rv > 0) printf("MAIN: TEST: %s %s \n", msg._command[0], msg._payload); else if (rv == 0) { sleep(3); printf("MAIN: TEST: SOCKET CLOSEDDDDDD \n"); } FD_CLR(i, &readset); } } } info.read_set = readset; } // close connection close(sockfd); printf("socket closed. BYE! \n"); return(0); }

    Read the article

  • PHP Using session variables in array(s)

    - by Chris
    Hello, My question is how do i put these session variables into a array? I have tried countless ways but none of them work. Not really sure what to put in a array and what no and how to adress them. Currently when i fill in the form the data gets displayed in a table. Next when i press the hyperlink that takes me back to the same form, i wish to enter data again. This data should be added in a new row in the same display table. Best Regards. The code below (pardon me that it is not english). <?php session_start(); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-Strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title>ExpoFormulier</title> <body> <?php if (!empty($_POST)) { $standnaam = $_POST["standnaam"]; $oppervlakte = $_POST["oppervlakte"]; //value in the form van checkboxes op 1 zetten! $verdieping = isset($_POST["verdieping"]) ? $_POST["verdieping"] : 0; $telefoon = isset($_POST["telefoon"]) ? $_POST["telefoon"] : 0; $netwerk = isset($_POST["netwerk"]) ? $_POST["netwerk"] : 0; if (is_numeric($oppervlakte)) { $_SESSION["standnaam"]=$standnaam; $_SESSION["oppervlakte"]=$oppervlakte; $_SESSION["verdieping"]=$verdieping; $_SESSION["telefoon"]=$telefoon; $_SESSION["netwerk"]=$netwerk; header("Location:ExpoOverzicht.php"); } else { echo "<h1>Foute gegevens, Opnieuw invullen a.u.b</h1>"; } } ?> <form action="<?php echo $_SERVER["PHP_SELF"]; ?>" method="post" id="form1"> <h1>Vul de gegevens in</h1> <table> <tr> <td>Standnaam:</td> <td><input type="text" name="standnaam" size="18"/></td> </tr> <tr> <td>Oppervlakte (in m^2):</td> <td><input type="text" name="oppervlakte" size="6"/></td> </tr> <tr> <td>Verdieping:</td> <td><input type="checkbox" name="verdieping" value="1"/></td> </tr> <tr> <td>Telefoon:</td> <td><input type="checkbox" name="telefoon" value="1"/></td> </tr> <tr> <td>Netwerk:</td> <td><input type="checkbox" name="netwerk" value="1"/></td> </tr> <tr> <td><input type="submit" name="verzenden" value="Verzenden"/></td> </tr> </table> </form> Second File: <?php session_start(); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-Strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title>ExpoOverzicht</title> <meta http-equiv="content-type" content="text/html; charset=utf-8" /> <link href="StyleSheetExpo.css" rel="stylesheet" type="text/css" /> </head> <body> <h1>Overzicht van de ingegeven standen in deze sessie</h1> <?php $standnaam = $_SESSION["standnaam"]; $oppervlakte = $_SESSION["oppervlakte"]; $verdieping = $_SESSION["verdieping"]; $telefoon = $_SESSION["telefoon"]; $netwerk = $_SESSION["netwerk"]; $result1 = 0; $result2 = 0; $result3 = 0; $prijsCom = 0; $prijsVerdieping = 0; for ($i=1; $i <= $oppervlakte; $i++) { if($i <= 10) { $tarief1 = 1 * 100; $result1 += $tarief1; } if($i > 10 && $i <= 30) { $tarief2 = 1 * 90; $result2 += $tarief2; } if($i > 30) { $tarief3 = 1 * 80; $result3 += $tarief3; } } $prijsOpp = $result1 + $result2 + $result3; if($verdieping == 1) { $prijsVerdieping = $oppervlakte * 120; } if(($telefoon == 1) || ($netwerk == 1)) { $prijsCom = 20; } if(($telefoon == 1) && ($netwerk == 1)) { $prijsCom = 30; } $totalePrijs = $prijsOpp + $prijsVerdieping + $prijsCom; echo "<table class=\"tableExpo\">"; echo "<th>Standnaam</th>"; echo "<th>Oppervlakte</th>"; echo "<th>Verdieping</th>"; echo "<th>Telefoon</th>"; echo "<th>Netwerk</th>"; echo "<th>Totale prijs</th>"; echo "<tr>"; echo "<td>".$standnaam."</td>"; echo "<td>".$oppervlakte."</td>"; echo "<td>".$verdieping."</td>"; echo "<td>".$telefoon."</td>"; echo "<td>".$netwerk."</td>"; echo "<td>".$totalePrijs."</td>"; echo "</tr>"; echo "</table>"; ?> <a href="ExpoFormulier.php">Terug naar het formulier</a> </body> </html> </body> </html>

    Read the article

  • java.lang.NullPointerException exception in my controller file (using Spring Hibernate Maven)

    - by mrjayviper
    The problem doesn't seemed to have anything to do with Hibernate. As I've commented the Hibernate stuff but I'm still getting it. If I comment out this line message = staffDAO.searchForStaff(search); in my controller file, it goes through ok. But I don't see anything wrong with searchForStaff function. It's a very simple function that just returns the string "test" and run system.out.println("test"). Can you please help? thanks But this is the error that I'm getting: SEVERE: Servlet.service() for servlet [spring] in context with path [/directorymaven] threw exception [Request processing failed; nested exception is java.lang.NullPointerException] with root cause java.lang.NullPointerException at org.flinders.staffdirectory.controllers.SearchController.showSearchResults(SearchController.java:25) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:601) at org.springframework.web.method.support.InvocableHandlerMethod.invoke(InvocableHandlerMethod.java:219) at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:132) at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:100) at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandlerMethod(RequestMappingHandlerAdapter.java:604) at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal(RequestMappingHandlerAdapter.java:565) at org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:80) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:923) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:852) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:882) at org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:778) at javax.servlet.http.HttpServlet.service(HttpServlet.java:621) at javax.servlet.http.HttpServlet.service(HttpServlet.java:728) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:305) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:222) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:123) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:472) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:171) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:99) at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:931) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:118) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:407) at org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1004) at org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:589) at org.apache.tomcat.util.net.JIoEndpoint$SocketProcessor.run(JIoEndpoint.java:310) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:722) My spring-servlet xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:p="http://www.springframework.org/schema/p" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd"> <context:component-scan base-package="org.flinders.staffdirectory.controllers" /> <mvc:annotation-driven /> <mvc:resources mapping="/resources/**" location="/resources/" /> <tx:annotation-driven /> <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer" p:location="/WEB-INF/spring.properties" /> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close" p:driverClassName="${jdbc.driverClassName}" p:url="${jdbc.databaseurl}" p:username="${jdbc.username}" p:password="${jdbc.password}" /> <bean id="sessionFactory" class="org.springframework.orm.hibernate4.LocalSessionFactoryBean" p:dataSource-ref="dataSource" p:configLocation="${hibernate.config}" p:packagesToScan="org.flinders.staffdirectory"/> <bean id="transactionManager" class="org.springframework.orm.hibernate4.HibernateTransactionManager" p:sessionFactory-ref="sessionFactory" /> <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver" p:viewClass="org.springframework.web.servlet.view.tiles2.TilesView" /> <bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer" p:definitions="/WEB-INF/tiles.xml" /> <bean id="staffDAO" class="org.flinders.staffdirectory.dao.StaffDAO" p:sessionFactory-ref="sessionFactory" /> <!-- <bean id="staffService" class="org.flinders.staffdirectory.services.StaffServiceImpl" p:staffDAO-ref="staffDAO" />--> </beans> This is my controller file package org.flinders.staffdirectory.controllers; import java.util.List; //import org.flinders.staffdirectory.models.database.SearchResult; import org.flinders.staffdirectory.models.misc.Search; import org.flinders.staffdirectory.dao.StaffDAO; //import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.ModelAttribute; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.servlet.ModelAndView; @Controller public class SearchController { //@Autowired private StaffDAO staffDAO; private String message; @RequestMapping("/SearchStaff") public ModelAndView showSearchResults(@ModelAttribute Search search) { //List<SearchResult> searchResults = message = staffDAO.searchForStaff(search); //System.out.println(search.getSurname()); return new ModelAndView("search/SearchForm", "Search", new Search()); //return new ModelAndView("search/SearchResults", "searchResults", searchResults); } @RequestMapping("/SearchForm") public ModelAndView showSearchForm() { return new ModelAndView("search/SearchForm", "search", new Search()); } } my dao class package org.flinders.staffdirectory.dao; import java.util.List; import org.hibernate.SessionFactory; //import org.springframework.beans.factory.annotation.Autowired; import org.flinders.staffdirectory.models.database.SearchResult; import org.flinders.staffdirectory.models.misc.Search; public class StaffDAO { //@Autowired private SessionFactory sessionFactory; public void setSessionFactory(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } public String searchForStaff(Search search) { /*String SQL = "select distinct telsumm_id as id, telsumm_parent_id as parentId, telsumm_name_title as title, (case when substr(telsumm_surname, length(telsumm_surname) - 1, 1) = ',' then substr(telsumm_surname, 1, length(telsumm_surname) - 1) else telsumm_surname end) as surname, telsumm_preferred_name as firstname, nvl(telsumm_tele_number, '-') as telephoneNumber, nvl(telsumm_role, '-') as role, telsumm_display_department as department, lower(telsumm_entity_type) as entityType from teldirt.teld_summary where (telsumm_search_surname is not null) and not (nvl(telsumm_tele_directory,'xxx') IN ('N','S','D')) and not (telsumm_tele_number IS NULL AND telsumm_alias IS NULL) and (telsumm_alias_list = 'Y' OR (telsumm_tele_directory IN ('A','B'))) and ((nvl(telsumm_system_id_end,sysdate+1) > SYSDATE and telsumm_entity_type = 'P') or (telsumm_entity_type = 'N')) and (telsumm_search_department NOT like 'SPONSOR%')"; if (search.getSurname().length() > 0) { SQL += " and (telsumm_search_surname like '" + search.getSurname().toUpperCase() + "%')"; } if (search.getSurnameLike().length() > 0) { SQL += " and (telsumm_search_soundex like soundex(('%" + search.getSurnameLike().toUpperCase() + "%'))"; } if (search.getFirstname().length() > 0) { SQL += " and (telsumm_search_preferred_name like '" + search.getFirstname().toUpperCase() + "%' or telsumm_search_first_name like '" + search.getFirstname() + "%')"; } if (search.getTelephoneNumber().length() > 0) { SQL += " and (telsumm_tele_number like '" + search.getTelephoneNumber() + "%')"; } if (search.getDepartment().length() > 0) { SQL += " and (telsumm_search_department like '" + search.getDepartment().toUpperCase() + "%')"; } if (search.getRole().length() > 0) { SQL += " and (telsumm_search_role like '" + search.getRole().toUpperCase() + "%')"; } SQL += " order by surname, firstname"; List<Object[]> list = (List<Object[]>) sessionFactory.getCurrentSession().createQuery(SQL).list(); for(int j=0;j<list.size();j++){ Object [] obj= (Object[])list.get(j); for(int i=0;i<obj.length;i++) System.out.println(obj[i]); }*/ System.out.println("test"); return "test"; } }

    Read the article

  • Atmospheric scattering OpenGL 3.3

    - by user1419305
    Im currently trying to convert a shader by Sean O'Neil to version 330 so i can try it out in a application im writing. Im having some issues with deprecated functions, so i replaced them, but im almost completely new to glsl, so i probably did a mistake somewhere. Original shaders can be found here: http://www.gamedev.net/topic/592043-solved-trying-to-use-atmospheric-scattering-oneill-2004-but-get-black-sphere/ My horrible attempt at converting them: Vertex Shader: #version 330 core layout(location = 0) in vec3 vertexPosition_modelspace; //layout(location = 1) in vec2 vertexUV; layout(location = 2) in vec3 vertexNormal_modelspace; uniform vec3 v3CameraPos; uniform vec3 v3LightPos; uniform vec3 v3InvWavelength; uniform float fCameraHeight; uniform float fCameraHeight2; uniform float fOuterRadius; uniform float fOuterRadius2; uniform float fInnerRadius; uniform float fInnerRadius2; uniform float fKrESun; uniform float fKmESun; uniform float fKr4PI; uniform float fKm4PI; uniform float fScale; uniform float fScaleDepth; uniform float fScaleOverScaleDepth; // passing in matrixes for transformations uniform mat4 MVP; uniform mat4 V; uniform mat4 M; const int nSamples = 4; const float fSamples = 4.0; out vec3 v3Direction; out vec4 gg_FrontColor; out vec4 gg_FrontSecondaryColor; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { vec3 v3Pos = vertexPosition_modelspace; vec3 v3Ray = v3Pos - v3CameraPos; float fFar = length(v3Ray); v3Ray /= fFar; vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight; float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle))); vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } gg_FrontSecondaryColor.rgb = v3FrontColor * fKmESun; gg_FrontColor.rgb = v3FrontColor * (v3InvWavelength * fKrESun); gl_Position = MVP * vec4(vertexPosition_modelspace,1); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: #version 330 core uniform vec3 v3LightPos; uniform float g; uniform float g2; in vec3 v3Direction; out vec4 FragColor; in vec4 gg_FrontColor; in vec4 gg_FrontSecondaryColor; void main (void) { float fCos = dot(v3LightPos, v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); FragColor = gg_FrontColor + fMiePhase * gg_FrontSecondaryColor; FragColor.a = FragColor.b; } I wrote a function to render a sphere, and im trying to render this shader onto a inverted version of it, the sphere works completely fine, with normals and all. My problem is that the sphere gets rendered all black, so the shader is not working. This is how i'm trying to render the atmosphere inside my main rendering loop. glUseProgram(programAtmosphere); glBindTexture(GL_TEXTURE_2D, 0); //###################### glUniform3f(v3CameraPos, getPlayerPos().x, getPlayerPos().y, getPlayerPos().z); glUniform3f(v3LightPos, lightPos.x / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), lightPos.y / sqrt(lightPos.x * lightPos.x + lightPos.y * lightPos.y), 0); glUniform3f(v3InvWavelength, 1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0)); glUniform1fARB(fCameraHeight, 1); glUniform1fARB(fCameraHeight2, 1); glUniform1fARB(fInnerRadius, 6350); glUniform1fARB(fInnerRadius2, 6350 * 6350); glUniform1fARB(fOuterRadius, 6450); glUniform1fARB(fOuterRadius2, 6450 * 6450); glUniform1fARB(fKrESun, 0.0025 * 20.0); glUniform1fARB(fKmESun, 0.0015 * 20.0); glUniform1fARB(fKr4PI, 0.0025 * 4.0 * 3.141592653); glUniform1fARB(fKm4PI, 0.0015 * 4.0 * 3.141592653); glUniform1fARB(fScale, 1.0 / (6450 - 6350)); glUniform1fARB(fScaleDepth, 0.25); glUniform1fARB(fScaleOverScaleDepth, 4.0 / (6450 - 6350)); glUniform1fARB(g, -0.85); glUniform1f(g2, -0.85 * -0.85); // vertices glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer[1]); glVertexAttribPointer( 0, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); // normals glEnableVertexAttribArray(2); glBindBuffer(GL_ARRAY_BUFFER, normalbuffer[1]); glVertexAttribPointer( 2, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? 0, // stride (void*)0 // array buffer offset ); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer[1]); glUniformMatrix4fv(ModelMatrixAT, 1, GL_FALSE, &ModelMatrix[0][0]); glUniformMatrix4fv(ViewMatrixAT, 1, GL_FALSE, &ViewMatrix[0][0]); glUniformMatrix4fv(ModelViewPAT, 1, GL_FALSE, &MVP[0][0]); // Draw the triangles glDrawElements( GL_TRIANGLES, // mode cubeIndices[1], // count GL_UNSIGNED_SHORT, // type (void*)0 // element array buffer offset ); Any ideas?

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • Intermittent wired network issues in 14.04

    - by Tommy Brunn
    Since yesterday, my wired network connection has been dropping for a couple of seconds every 30 seconds or so. To my knowledge, I had not made any changes to my network. Output of ifconfig -a: ? ~ ifconfig -a eth0 Link encap:Ethernet HWaddr 6c:f0:49:b9:b1:7f inet addr:192.168.0.16 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::6ef0:49ff:feb9:b17f/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:11597 errors:0 dropped:0 overruns:0 frame:0 TX packets:9783 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:10101682 (10.1 MB) TX bytes:1215142 (1.2 MB) Interrupt:48 Base address:0x8000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:96691 errors:0 dropped:0 overruns:0 frame:0 TX packets:96691 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:13594355 (13.5 MB) TX bytes:13594355 (13.5 MB) lspci |grep Ethernet: 04:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 03) Pinging my router: ? ~ ping 192.168.0.1 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data. 64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=0.435 ms 64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=0.571 ms ping: sendmsg: Network is unreachable ping: sendmsg: Network is unreachable ping: sendmsg: Network is unreachable ping: sendmsg: Network is unreachable ping: sendmsg: Network is unreachable 64 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1.03 ms And the output of route: ? ~ route Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface default 192.168.0.1 0.0.0.0 UG 0 0 0 eth0 192.168.0.0 * 255.255.255.0 U 1 0 0 eth0 Some messages from /var/logs/syslog: ? ~ tail -f /var/log/syslog Jun 6 10:37:34 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:37:34 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:37:37 lolbox dnsmasq[1138]: Maximum number of concurrent DNS queries reached (max: 150) Jun 6 10:37:37 lolbox dnsmasq[1362]: Maximum number of concurrent DNS queries reached (max: 150) Jun 6 10:37:39 lolbox dhclient: XMT: Solicit on eth0, interval 8660ms. Jun 6 10:37:39 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:37:39 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:37:47 lolbox dhclient: XMT: Solicit on eth0, interval 16820ms. Jun 6 10:37:47 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:37:47 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:38:04 lolbox dhclient: XMT: Solicit on eth0, interval 34410ms. Jun 6 10:38:04 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:38:04 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:38:16 lolbox NetworkManager[862]: <warn> (eth0): DHCPv6 request timed out. Jun 6 10:38:16 lolbox NetworkManager[862]: <info> (eth0): canceled DHCP transaction, DHCP client pid 13045 Jun 6 10:38:16 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) scheduled... Jun 6 10:38:16 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) started... Jun 6 10:38:16 lolbox NetworkManager[862]: <info> (eth0): device state change: activated -> failed (reason 'ip-config-unavailable') [100 120 5] Jun 6 10:38:16 lolbox NetworkManager[862]: <info> NetworkManager state is now DISCONNECTED Jun 6 10:38:16 lolbox NetworkManager[862]: <warn> Activation (eth0) failed for connection 'Wired connection 1' Jun 6 10:38:16 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) complete. Jun 6 10:38:16 lolbox NetworkManager[862]: <info> (eth0): device state change: failed -> disconnected (reason 'none') [120 30 0] Jun 6 10:38:16 lolbox NetworkManager[862]: <info> (eth0): deactivating device (reason 'none') [0] Jun 6 10:37:34 lolbox whoopsie[1133]: online Jun 6 10:38:16 lolbox whoopsie[1133]: offline Jun 6 10:38:16 lolbox dbus[485]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) Jun 6 10:38:16 lolbox dbus[485]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' Jun 6 10:38:16 lolbox NetworkManager[862]: <info> (eth0): canceled DHCP transaction, DHCP client pid 13044 Jun 6 10:38:16 lolbox NetworkManager[862]: <warn> DNS: plugin dnsmasq update failed Jun 6 10:38:16 lolbox NetworkManager[862]: <info> Removing DNS information from /sbin/resolvconf Jun 6 10:38:16 lolbox avahi-daemon[619]: Withdrawing address record for fe80::6ef0:49ff:feb9:b17f on eth0. Jun 6 10:38:16 lolbox avahi-daemon[619]: Leaving mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:38:16 lolbox avahi-daemon[619]: Interface eth0.IPv6 no longer relevant for mDNS. Jun 6 10:38:16 lolbox avahi-daemon[619]: Withdrawing address record for 192.168.0.16 on eth0. Jun 6 10:38:16 lolbox avahi-daemon[619]: Leaving mDNS multicast group on interface eth0.IPv4 with address 192.168.0.16. Jun 6 10:38:16 lolbox avahi-daemon[619]: Interface eth0.IPv4 no longer relevant for mDNS. Jun 6 10:38:16 lolbox dnsmasq[1362]: setting upstream servers from DBus Jun 6 10:38:17 lolbox avahi-daemon[619]: Joining mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:38:17 lolbox avahi-daemon[619]: New relevant interface eth0.IPv6 for mDNS. Jun 6 10:38:17 lolbox avahi-daemon[619]: Registering new address record for fe80::6ef0:49ff:feb9:b17f on eth0.*. Jun 6 10:38:18 lolbox dnsmasq[1138]: no servers found in /var/run/dnsmasq/resolv.conf, will retry Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Auto-activating connection 'Wired connection 1'. Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) starting connection 'Wired connection 1' Jun 6 10:38:18 lolbox NetworkManager[862]: <info> (eth0): device state change: disconnected -> prepare (reason 'none') [30 40 0] Jun 6 10:38:18 lolbox NetworkManager[862]: <info> NetworkManager state is now CONNECTING Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) scheduled... Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) started... Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) scheduled... Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) complete. Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) starting... Jun 6 10:38:18 lolbox NetworkManager[862]: <info> (eth0): device state change: prepare -> config (reason 'none') [40 50 0] Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) successful. Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) scheduled. Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) complete. Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) started... Jun 6 10:38:18 lolbox NetworkManager[862]: <info> (eth0): device state change: config -> ip-config (reason 'none') [50 70 0] Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Beginning DHCPv4 transaction (timeout in 45 seconds) Jun 6 10:38:18 lolbox NetworkManager[862]: <info> dhclient started with pid 13160 Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Beginning DHCPv6 transaction (timeout in 45 seconds) Jun 6 10:38:18 lolbox NetworkManager[862]: <info> dhclient started with pid 13161 Jun 6 10:38:18 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) complete. Jun 6 10:38:18 lolbox avahi-daemon[619]: Withdrawing address record for fe80::6ef0:49ff:feb9:b17f on eth0. Jun 6 10:38:18 lolbox avahi-daemon[619]: Leaving mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:38:18 lolbox avahi-daemon[619]: Interface eth0.IPv6 no longer relevant for mDNS. Jun 6 10:38:18 lolbox dhclient: Internet Systems Consortium DHCP Client 4.2.4 Jun 6 10:38:18 lolbox dhclient: Copyright 2004-2012 Internet Systems Consortium. Jun 6 10:38:18 lolbox dhclient: All rights reserved. Jun 6 10:38:18 lolbox dhclient: For info, please visit https://www.isc.org/software/dhcp/ Jun 6 10:38:18 lolbox dhclient: Jun 6 10:38:19 lolbox dhclient: Internet Systems Consortium DHCP Client 4.2.4 Jun 6 10:38:19 lolbox dhclient: Copyright 2004-2012 Internet Systems Consortium. Jun 6 10:38:19 lolbox dhclient: All rights reserved. Jun 6 10:38:19 lolbox dhclient: For info, please visit https://www.isc.org/software/dhcp/ Jun 6 10:38:19 lolbox dhclient: Jun 6 10:38:19 lolbox NetworkManager[862]: <info> (eth0): DHCPv4 state changed nbi -> preinit Jun 6 10:38:19 lolbox dhclient: Bound to *:546 Jun 6 10:38:19 lolbox dhclient: Listening on Socket/eth0 Jun 6 10:38:19 lolbox dhclient: Sending on Socket/eth0 Jun 6 10:38:19 lolbox NetworkManager[862]: <info> (eth0): DHCPv6 state changed nbi -> preinit6 Jun 6 10:38:19 lolbox dhclient: Listening on LPF/eth0/6c:f0:49:b9:b1:7f Jun 6 10:38:19 lolbox dhclient: Sending on LPF/eth0/6c:f0:49:b9:b1:7f Jun 6 10:38:19 lolbox dhclient: Sending on Socket/fallback Jun 6 10:38:19 lolbox dhclient: DHCPREQUEST of 192.168.0.16 on eth0 to 255.255.255.255 port 67 (xid=0x3fc9376d) Jun 6 10:38:19 lolbox dhclient: XMT: Solicit on eth0, interval 1020ms. Jun 6 10:38:19 lolbox dhclient: send_packet6: Cannot assign requested address Jun 6 10:38:19 lolbox dhclient: dhc6: send_packet6() sent -1 of 77 bytes Jun 6 10:38:20 lolbox dhclient: DHCPACK of 192.168.0.16 from 192.168.0.1 Jun 6 10:38:20 lolbox dhclient: bound to 192.168.0.16 -- renewal in 41481 seconds. Jun 6 10:38:20 lolbox NetworkManager[862]: <info> (eth0): DHCPv4 state changed preinit -> reboot Jun 6 10:38:20 lolbox NetworkManager[862]: <info> address 192.168.0.16 Jun 6 10:38:20 lolbox NetworkManager[862]: <info> prefix 24 (255.255.255.0) Jun 6 10:38:20 lolbox NetworkManager[862]: <info> gateway 192.168.0.1 Jun 6 10:38:20 lolbox NetworkManager[862]: <info> nameserver '83.255.245.11' Jun 6 10:38:20 lolbox NetworkManager[862]: <info> nameserver '193.150.193.150' Jun 6 10:38:20 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Configure Commit) scheduled... Jun 6 10:38:20 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) started... Jun 6 10:38:20 lolbox avahi-daemon[619]: Joining mDNS multicast group on interface eth0.IPv4 with address 192.168.0.16. Jun 6 10:38:20 lolbox avahi-daemon[619]: New relevant interface eth0.IPv4 for mDNS. Jun 6 10:38:20 lolbox avahi-daemon[619]: Registering new address record for 192.168.0.16 on eth0.IPv4. Jun 6 10:38:20 lolbox dhclient: XMT: Solicit on eth0, interval 2110ms. Jun 6 10:38:20 lolbox dhclient: send_packet6: Cannot assign requested address Jun 6 10:38:20 lolbox dhclient: dhc6: send_packet6() sent -1 of 77 bytes Jun 6 10:38:20 lolbox avahi-daemon[619]: Joining mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:38:20 lolbox avahi-daemon[619]: New relevant interface eth0.IPv6 for mDNS. Jun 6 10:38:20 lolbox avahi-daemon[619]: Registering new address record for fe80::6ef0:49ff:feb9:b17f on eth0.*. Jun 6 10:38:21 lolbox NetworkManager[862]: <info> (eth0): device state change: ip-config -> secondaries (reason 'none') [70 90 0] Jun 6 10:38:21 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) complete. Jun 6 10:38:21 lolbox NetworkManager[862]: <info> (eth0): device state change: secondaries -> activated (reason 'none') [90 100 0] Jun 6 10:38:21 lolbox NetworkManager[862]: <info> NetworkManager state is now CONNECTED_GLOBAL Jun 6 10:38:21 lolbox NetworkManager[862]: <info> Policy set 'Wired connection 1' (eth0) as default for IPv4 routing and DNS. Jun 6 10:38:21 lolbox NetworkManager[862]: <info> Writing DNS information to /sbin/resolvconf Jun 6 10:38:21 lolbox dnsmasq[1362]: setting upstream servers from DBus Jun 6 10:38:21 lolbox dnsmasq[1362]: using nameserver 127.0.0.1#53 Jun 6 10:38:21 lolbox dnsmasq[1362]: using nameserver 193.150.193.150#53 Jun 6 10:38:21 lolbox dnsmasq[1362]: using nameserver 83.255.245.11#53 Jun 6 10:38:21 lolbox NetworkManager[862]: <info> Activation (eth0) successful, device activated. Jun 6 10:38:21 lolbox whoopsie[1133]: message repeated 2 times: [ offline] Jun 6 10:38:21 lolbox whoopsie[1133]: online Jun 6 10:38:21 lolbox ntpdate[13217]: Can't find host ntp.ubuntu.com: Name or service not known (-2) Jun 6 10:38:21 lolbox ntpdate[13217]: no servers can be used, exiting Jun 6 10:38:22 lolbox dnsmasq[1138]: reading /var/run/dnsmasq/resolv.conf Jun 6 10:38:22 lolbox dnsmasq[1138]: using nameserver 127.0.1.1#53 Jun 6 10:38:22 lolbox dhclient: XMT: Solicit on eth0, interval 4080ms. Jun 6 10:38:22 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:38:22 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:38:26 lolbox dhclient: XMT: Solicit on eth0, interval 8450ms. Jun 6 10:38:26 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:38:26 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:38:35 lolbox dhclient: XMT: Solicit on eth0, interval 16630ms. Jun 6 10:38:35 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:38:35 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:38:51 lolbox dhclient: XMT: Solicit on eth0, interval 34860ms. Jun 6 10:38:51 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:38:51 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:38:58 lolbox dnsmasq[1138]: Maximum number of concurrent DNS queries reached (max: 150) Jun 6 10:38:58 lolbox dnsmasq[1362]: Maximum number of concurrent DNS queries reached (max: 150) Jun 6 10:39:04 lolbox NetworkManager[862]: <warn> (eth0): DHCPv6 request timed out. Jun 6 10:39:04 lolbox NetworkManager[862]: <info> (eth0): canceled DHCP transaction, DHCP client pid 13161 Jun 6 10:39:04 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) scheduled... Jun 6 10:39:04 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) started... Jun 6 10:39:04 lolbox NetworkManager[862]: <info> (eth0): device state change: activated -> failed (reason 'ip-config-unavailable') [100 120 5] Jun 6 10:39:04 lolbox NetworkManager[862]: <info> NetworkManager state is now DISCONNECTED Jun 6 10:39:04 lolbox NetworkManager[862]: <warn> Activation (eth0) failed for connection 'Wired connection 1' Jun 6 10:38:22 lolbox whoopsie[1133]: online Jun 6 10:39:04 lolbox whoopsie[1133]: offline Jun 6 10:39:04 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) complete. Jun 6 10:39:04 lolbox dbus[485]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) Jun 6 10:39:04 lolbox NetworkManager[862]: <info> (eth0): device state change: failed -> disconnected (reason 'none') [120 30 0] Jun 6 10:39:04 lolbox NetworkManager[862]: <info> (eth0): deactivating device (reason 'none') [0] Jun 6 10:39:04 lolbox dbus[485]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' Jun 6 10:39:04 lolbox NetworkManager[862]: <info> (eth0): canceled DHCP transaction, DHCP client pid 13160 Jun 6 10:39:04 lolbox avahi-daemon[619]: Withdrawing address record for fe80::6ef0:49ff:feb9:b17f on eth0. Jun 6 10:39:04 lolbox avahi-daemon[619]: Leaving mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:39:04 lolbox avahi-daemon[619]: Interface eth0.IPv6 no longer relevant for mDNS. Jun 6 10:39:04 lolbox avahi-daemon[619]: Withdrawing address record for 192.168.0.16 on eth0. Jun 6 10:39:04 lolbox avahi-daemon[619]: Leaving mDNS multicast group on interface eth0.IPv4 with address 192.168.0.16. Jun 6 10:39:04 lolbox avahi-daemon[619]: Interface eth0.IPv4 no longer relevant for mDNS. Jun 6 10:39:04 lolbox NetworkManager[862]: <warn> DNS: plugin dnsmasq update failed Jun 6 10:39:04 lolbox NetworkManager[862]: <info> Removing DNS information from /sbin/resolvconf Jun 6 10:39:04 lolbox dnsmasq[1362]: setting upstream servers from DBus Jun 6 10:39:05 lolbox avahi-daemon[619]: Joining mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:39:05 lolbox avahi-daemon[619]: New relevant interface eth0.IPv6 for mDNS. Jun 6 10:39:05 lolbox avahi-daemon[619]: Registering new address record for fe80::6ef0:49ff:feb9:b17f on eth0.*. Jun 6 10:39:06 lolbox dnsmasq[1138]: no servers found in /var/run/dnsmasq/resolv.conf, will retry Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Auto-activating connection 'Wired connection 1'. Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) starting connection 'Wired connection 1' Jun 6 10:39:07 lolbox NetworkManager[862]: <info> (eth0): device state change: disconnected -> prepare (reason 'none') [30 40 0] Jun 6 10:39:07 lolbox NetworkManager[862]: <info> NetworkManager state is now CONNECTING Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) scheduled... Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) started... Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) scheduled... Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 1 of 5 (Device Prepare) complete. Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) starting... Jun 6 10:39:07 lolbox NetworkManager[862]: <info> (eth0): device state change: prepare -> config (reason 'none') [40 50 0] Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) successful. Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) scheduled. Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 2 of 5 (Device Configure) complete. Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) started... Jun 6 10:39:07 lolbox NetworkManager[862]: <info> (eth0): device state change: config -> ip-config (reason 'none') [50 70 0] Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Beginning DHCPv4 transaction (timeout in 45 seconds) Jun 6 10:39:07 lolbox NetworkManager[862]: <info> dhclient started with pid 13270 Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Beginning DHCPv6 transaction (timeout in 45 seconds) Jun 6 10:39:07 lolbox NetworkManager[862]: <info> dhclient started with pid 13271 Jun 6 10:39:07 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start) complete. Jun 6 10:39:07 lolbox avahi-daemon[619]: Withdrawing address record for fe80::6ef0:49ff:feb9:b17f on eth0. Jun 6 10:39:07 lolbox avahi-daemon[619]: Leaving mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:39:07 lolbox avahi-daemon[619]: Interface eth0.IPv6 no longer relevant for mDNS. Jun 6 10:39:07 lolbox dhclient: Internet Systems Consortium DHCP Client 4.2.4 Jun 6 10:39:07 lolbox dhclient: Copyright 2004-2012 Internet Systems Consortium. Jun 6 10:39:07 lolbox dhclient: All rights reserved. Jun 6 10:39:07 lolbox dhclient: For info, please visit https://www.isc.org/software/dhcp/ Jun 6 10:39:07 lolbox dhclient: Jun 6 10:39:08 lolbox dhclient: Internet Systems Consortium DHCP Client 4.2.4 Jun 6 10:39:08 lolbox dhclient: Copyright 2004-2012 Internet Systems Consortium. Jun 6 10:39:08 lolbox dhclient: All rights reserved. Jun 6 10:39:08 lolbox dhclient: For info, please visit https://www.isc.org/software/dhcp/ Jun 6 10:39:08 lolbox dhclient: Jun 6 10:39:08 lolbox dhclient: Bound to *:546 Jun 6 10:39:08 lolbox dhclient: Listening on Socket/eth0 Jun 6 10:39:08 lolbox dhclient: Sending on Socket/eth0 Jun 6 10:39:08 lolbox kernel: [ 1446.098590] type=1400 audit(1402043948.002:75): apparmor="DENIED" operation="signal" profile="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=13273 comm="nm-dhcp-client." requested_mask="send" denied_mask="send" signal=term peer="/sbin/dhclient" Jun 6 10:39:08 lolbox kernel: [ 1446.098599] type=1400 audit(1402043948.002:76): apparmor="DENIED" operation="signal" profile="/sbin/dhclient" pid=13273 comm="nm-dhcp-client." requested_mask="receive" denied_mask="receive" signal=term peer="/usr/lib/NetworkManager/nm-dhcp-client.action" Jun 6 10:39:08 lolbox NetworkManager[862]: <info> (eth0): DHCPv4 state changed nbi -> preinit Jun 6 10:39:08 lolbox dhclient: Listening on LPF/eth0/6c:f0:49:b9:b1:7f Jun 6 10:39:08 lolbox dhclient: Sending on LPF/eth0/6c:f0:49:b9:b1:7f Jun 6 10:39:08 lolbox dhclient: Sending on Socket/fallback Jun 6 10:39:08 lolbox dhclient: DHCPREQUEST of 192.168.0.16 on eth0 to 255.255.255.255 port 67 (xid=0x3e0183b9) Jun 6 10:39:08 lolbox dhclient: XMT: Solicit on eth0, interval 1050ms. Jun 6 10:39:08 lolbox dhclient: send_packet6: Cannot assign requested address Jun 6 10:39:08 lolbox dhclient: dhc6: send_packet6() sent -1 of 77 bytes Jun 6 10:39:09 lolbox dhclient: DHCPACK of 192.168.0.16 from 192.168.0.1 Jun 6 10:39:09 lolbox dhclient: bound to 192.168.0.16 -- renewal in 35498 seconds. Jun 6 10:39:09 lolbox NetworkManager[862]: <info> (eth0): DHCPv4 state changed preinit -> reboot Jun 6 10:39:09 lolbox NetworkManager[862]: <info> address 192.168.0.16 Jun 6 10:39:09 lolbox NetworkManager[862]: <info> prefix 24 (255.255.255.0) Jun 6 10:39:09 lolbox NetworkManager[862]: <info> gateway 192.168.0.1 Jun 6 10:39:09 lolbox NetworkManager[862]: <info> nameserver '83.255.245.11' Jun 6 10:39:09 lolbox NetworkManager[862]: <info> nameserver '193.150.193.150' Jun 6 10:39:09 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Configure Commit) scheduled... Jun 6 10:39:09 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) started... Jun 6 10:39:09 lolbox avahi-daemon[619]: Joining mDNS multicast group on interface eth0.IPv4 with address 192.168.0.16. Jun 6 10:39:09 lolbox avahi-daemon[619]: New relevant interface eth0.IPv4 for mDNS. Jun 6 10:39:09 lolbox avahi-daemon[619]: Registering new address record for 192.168.0.16 on eth0.IPv4. Jun 6 10:39:09 lolbox avahi-daemon[619]: Joining mDNS multicast group on interface eth0.IPv6 with address fe80::6ef0:49ff:feb9:b17f. Jun 6 10:39:09 lolbox avahi-daemon[619]: New relevant interface eth0.IPv6 for mDNS. Jun 6 10:39:09 lolbox avahi-daemon[619]: Registering new address record for fe80::6ef0:49ff:feb9:b17f on eth0.*. Jun 6 10:39:10 lolbox dhclient: XMT: Solicit on eth0, interval 2180ms. Jun 6 10:39:10 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:39:10 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:39:10 lolbox NetworkManager[862]: <info> (eth0): device state change: ip-config -> secondaries (reason 'none') [70 90 0] Jun 6 10:39:10 lolbox NetworkManager[862]: <info> Activation (eth0) Stage 5 of 5 (IPv4 Commit) complete. Jun 6 10:39:10 lolbox NetworkManager[862]: <info> (eth0): device state change: secondaries -> activated (reason 'none') [90 100 0] Jun 6 10:39:10 lolbox NetworkManager[862]: <info> NetworkManager state is now CONNECTED_GLOBAL Jun 6 10:39:10 lolbox NetworkManager[862]: <info> Policy set 'Wired connection 1' (eth0) as default for IPv4 routing and DNS. Jun 6 10:39:10 lolbox NetworkManager[862]: <info> Writing DNS information to /sbin/resolvconf Jun 6 10:39:10 lolbox dnsmasq[1362]: setting upstream servers from DBus Jun 6 10:39:10 lolbox dnsmasq[1362]: using nameserver 127.0.0.1#53 Jun 6 10:39:10 lolbox dnsmasq[1362]: using nameserver 193.150.193.150#53 Jun 6 10:39:10 lolbox dnsmasq[1362]: using nameserver 83.255.245.11#53 Jun 6 10:39:10 lolbox NetworkManager[862]: <info> Activation (eth0) successful, device activated. Jun 6 10:39:10 lolbox whoopsie[1133]: message repeated 2 times: [ offline] Jun 6 10:39:10 lolbox whoopsie[1133]: online Jun 6 10:39:10 lolbox ntpdate[13339]: Can't find host ntp.ubuntu.com: Name or service not known (-2) Jun 6 10:39:10 lolbox ntpdate[13339]: no servers can be used, exiting Jun 6 10:39:11 lolbox dnsmasq[1138]: reading /var/run/dnsmasq/resolv.conf Jun 6 10:39:11 lolbox dnsmasq[1138]: using nameserver 127.0.1.1#53 Jun 6 10:39:12 lolbox dhclient: XMT: Solicit on eth0, interval 4350ms. Jun 6 10:39:12 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:39:12 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:39:16 lolbox dhclient: XMT: Solicit on eth0, interval 8740ms. Jun 6 10:39:16 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:39:16 lolbox dhclient: IA_NA status code NoAddrsAvail. Jun 6 10:39:17 lolbox dnsmasq[1138]: Maximum number of concurrent DNS queries reached (max: 150) Jun 6 10:39:17 lolbox dnsmasq[1362]: Maximum number of concurrent DNS queries reached (max: 150) Jun 6 10:39:25 lolbox dhclient: XMT: Solicit on eth0, interval 17610ms. Jun 6 10:39:25 lolbox dhclient: RCV: Advertise message on eth0 from fe80::120d:7fff:fe97:9d54. Jun 6 10:39:25 lolbox dhclient: IA_NA status code NoAddrsAvail.

    Read the article

  • iPhone SDK vs Windows Phone 7 Series SDK Challenge, Part 1: Hello World!

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. Hello World! Of course no first post would be allowed if it didnt focus on the hello world scenario.  The iPhone SDK follows that tradition with the Your First iPhone Application walkthrough.  I will say that the developer documentation for iPhone is pretty good.  There are plenty of walkthoughs and they break things down into nicely sized steps and do a good job of bringing the user along.  As expected, this application is quite simple.  It comprises of a text box, a label, and a button.  When you push the button, the label changes to Hello plus the  word you typed into the text box.  Makes perfect sense for a starter application.  Theres not much to this but it covers a few basic elements: Laying out basic UI Handling user input Hooking up events Formatting text     So, lets get started building a similar app for Windows Phone 7 Series! Implementing the UI: UI in Silverlight (and therefore Windows Phone 7) is defined in XAML, which is a declarative XML language also used by WPF on the desktop.  For anyone thats familiar with similar types of markup, its relatively straightforward to learn, but has a lot of power in it once you get it figured out.  Well talk more about that. This UI is very simple.  When I look at this, I note a couple of things: Elements are arranged vertically They are all centered So, lets create our Application and then start with the UI.  Once you have the the VS 2010 Express for Windows Phone tool running, create a new Windows Phone Project, and call it Hello World: Once created, youll see the designer on one side and your XAML on the other: Now, we can create our UI in one of three ways: Use the designer in Visual Studio to drag and drop the components Use the designer in Expression Blend 4 to drag and drop the components Enter the XAML by hand in either of the above Well start with (1), then kind of move to (3) just for instructional value. To develop this UI in the designer: First, delete all of the markup between inside of the Grid element (LayoutRoot).  You should be left with just this XAML for your MainPage.xaml (i shortened all the xmlns declarations below for brevity): 1: <phoneNavigation:PhoneApplicationPage 2: x:Class="HelloWorld.MainPage" 3: xmlns="...[snip]" 4: FontFamily="{StaticResource PhoneFontFamilyNormal}" 5: FontSize="{StaticResource PhoneFontSizeNormal}" 6: Foreground="{StaticResource PhoneForegroundBrush}"> 7:   8: <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 9:   10: </Grid> 11:   12: </phoneNavigation:PhoneApplicationPage> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Well be adding XAML at line 9, so thats the important part. Now, Click on the center area of the phone surface Open the Toolbox and double click StackPanel Double click TextBox Double click TextBlock Double click Button That will create the necessary UI elements but they wont be arranged quite right.  Well fix it in a second.    Heres the XAML that we end up with: 1: <StackPanel Height="100" HorizontalAlignment="Left" Margin="10,10,0,0" Name="stackPanel1" VerticalAlignment="Top" Width="200"> 2: <TextBox Height="32" Name="textBox1" Text="TextBox" Width="100" /> 3: <TextBlock Height="23" Name="textBlock1" Text="TextBlock" /> 4: <Button Content="Button" Height="70" Name="button1" Width="160" /> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The designer does its best at guessing what we want, but in this case we want things to be a bit simpler. So well just clean it up a bit.  We want the items to be centered and we want them to have a little bit of a margin on either side, so heres what we end up with.  Ive also made it match the values and style from the iPhone app: 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <TextBlock Name="textBlock1" HorizontalAlignment="Center" Margin="0,100,0,0" Text="Hello You!" /> 4: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello"/> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now lets take a look at what weve done there. Line 1: We removed all of the formatting from the StackPanel, except for Margin, as thats all we need.  Since our parent element is a Grid, by default the StackPanel will be sized to fit in that space.  The Margin says that we want to reserve 10 pixels on each side of the StackPanel. Line 2: Weve set the HorizontalAlignment of the TextBox to Stretch, which says that it should fill its parents size horizontally.  We want to do this so the TextBox is always full-width.  We also set TextAlignment to Center, to center the text. Line 3: In contrast to the TextBox above, we dont care how wide the TextBlock is, just so long as it is big enough for its text.  Thatll happen automatically, so we just set its Horizontal alignment to Center.  We also set a Margin above the TextBlock of 100 pixels to bump it down a bit, per the iPhone UI. Line 4: We do the same things here as in Line 3. Heres how the UI looks in the designer: Believe it or not, were almost done! Implementing the App Logic Now, we want the TextBlock to change its text when the Button is clicked.  In the designer, double click the Button to be taken to the Event Handler for the Buttons Click event.  In that event handler, we take the Text property from the TextBox, and format it into a string, then set it into the TextBlock.  Thats it! 1: private void button1_Click(object sender, RoutedEventArgs e) 2: { 3: string name = textBox1.Text; 4:   5: // if there isn't a name set, just use "World" 6: if (String.IsNullOrEmpty(name)) 7: { 8: name = "World"; 9: } 10:   11: // set the value into the TextBlock 12: textBlock1.Text = String.Format("Hello {0}!", name); 13:   14: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We use the String.Format() method to handle the formatting for us.    Now all thats left is to test the app in the Windows Phone Emulator and verify it does what we think it does! And it does! Comparing against the iPhone Looking at the iPhone example, there are basically three things that you have to touch as the developer: 1) The UI in the Nib file 2) The app delegate 3) The view controller Counting lines is a bit tricky here, but to try to keep this even, Im going to only count lines of code that I could not have (or would not have) generated with the tooling.  Meaning, Im not counting XAML and Im not counting operations that happen in the Nib file with the XCode designer tool.  So in the case of the above, even though I modified the XAML, I could have done all of those operations using the visual designer tool.  And normally I would have, but the XAML is more instructive (and less steps!).  Im interested in things that I, as the developer have to figure out in code.  Im also not counting lines that just have a curly brace on them, or lines that are generated for me (e.g. method names that are generated for me when I make a connection, etc.) So, by that count, heres what I get from the code listing for the iPhone app found here: HelloWorldAppDelegate.h: 6 HelloWorldAppDelegate.m: 12 MyViewController.h: 8 MyViewController.m: 18 Which gives me a grand total of about 44 lines of code on iPhone.  I really do recommend looking at the iPhone code for a comparison to the above. Now, for the Windows Phone 7 Series application, the only code I typed was in the event handler above Main.Xaml.cs: 4 So a total of 4 lines of code on Windows Phone 7.  And more importantly, the process is just A LOT simpler.  For example, I was surprised that the User Interface Designer in XCode doesnt automatically create instance variables for me and wire them up to the corresponding elements.  I assumed I wouldnt have to write this code myself (and risk getting it wrong!).  I dont need to worry about view controllers or anything.  I just write my code.  This blog post up to this point has covered almost every aspect of this apps development in a few pages.  The iPhone tutorial has 5 top level steps with 2-3 sub sections of each. Now, its worth pointing out that the iPhone development model uses the Model View Controller (MVC) pattern, which is a very flexible and powerful pattern that enforces proper separation of concerns.  But its fairly complex and difficult to understand when you first walk up to it.  Here at Microsoft weve dabbled in MVC a bit, with frameworks like MFC on Visual C++ and with the ASP.NET MVC framework now.  Both are very powerful frameworks.  But one of the reasons weve stayed away from MVC with client UI frameworks is that its difficult to tool.  We havent seen the type of value that beats double click, write code! for the broad set of scenarios. Another thing to think about is how many of those lines of code were focused on my apps functionality?.  Or, the converse of How many lines of code were boilerplate plumbing?  In both examples, the actual number of functional code lines is similar.  I count most of them in MyViewController.m, in the changeGreeting method.  Its about 7 lines of code that do the work of taking the value from the TextBox and putting it into the label.  Versus 4 on the Windows Phone 7 side.  But, unfortunately, on iPhone I still have to write that other 37 lines of code, just to get there. 10% of the code, 1 file instead of 4, its just much simpler. Making Some Tweaks It turns out, I can actually do this application with ZERO  lines of code, if Im willing to change the spec a bit. The data binding functionality in Silverlight is incredibly powerful.  And what I can do is databind the TextBoxs value directly to the TextBlock.  Take some time looking at this XAML below.  Youll see that I have added another nested StackPanel and two more TextBlocks.  Why?  Because thats how I build that string, and the nested StackPanel will lay things out Horizontally for me, as specified by the Orientation property. 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" Margin="0,100,0,0" > 4: <TextBlock Text="Hello " /> 5: <TextBlock Name="textBlock1" Text="{Binding ElementName=textBox1, Path=Text}" /> 6: <TextBlock Text="!" /> 7: </StackPanel> 8: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello" Click="button1_Click" /> 9: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, the real action is there in the bolded TextBlock.Text property: Text="{Binding ElementName=textBox1, Path=Text}" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That does all the heavy lifting.  It sets up a databinding between the TextBox.Text property on textBox1 and the TextBlock.Text property on textBlock1. As I change the text of the TextBox, the label updates automatically. In fact, I dont even need the button any more, so I could get rid of that altogether.  And no button means no event handler.  No event handler means no C# code at all.  Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Building a better mouse-trap &ndash; Improving the creation of XML Message Requests using Reflection, XML &amp; XSLT

    - by paulschapman
    Introduction The way I previously created messages to send to the GovTalk service I used the XMLDocument to create the request. While this worked it left a number of problems; not least that for every message a special function would need to created. This is OK for the short term but the biggest cost in any software project is maintenance and this would be a headache to maintain. So the following is a somewhat better way of achieving the same thing. For the purposes of this article I am going to be using the CompanyNumberSearch request of the GovTalk service – although this technique would work for any service that accepted XML. The C# functions which send and receive the messages remain the same. The magic sauce in this is the XSLT which defines the structure of the request, and the use of objects in conjunction with reflection to provide the content. It is a bit like Sweet Chilli Sauce added to Chicken on a bed of rice. So on to the Sweet Chilli Sauce The Sweet Chilli Sauce The request to search for a company based on it’s number is as follows; <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID>1</TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID>????????????????????????????????</SenderID> <Authentication> <Method>CHMD5</Method> <Value>????????????????????????????????</Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber>99999999</PartialCompanyNumber> <DataSet>LIVE</DataSet> <SearchRows>1</SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> This is the XML that we send to the GovTalk Service and we get back a list of companies that match the criteria passed A message is structured in two parts; The envelope which identifies the person sending the request, with the name of the request, and the body which gives the detail of the company we are looking for. The Chilli What makes it possible is the use of XSLT to define the message – and serialization to convert each request object into XML. To start we need to create an object which will represent the contents of the message we are sending. However there is a common properties in all the messages that we send to Companies House. These properties are as follows SenderId – the id of the person sending the message SenderPassword – the password associated with Id TransactionId – Unique identifier for the message AuthenticationValue – authenticates the request Because these properties are unique to the Companies House message, and because they are shared with all messages they are perfect candidates for a base class. The class is as follows; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Security.Cryptography; using System.Text; using System.Text.RegularExpressions; using Microsoft.WindowsAzure.ServiceRuntime; namespace CompanyHub.Services { public class GovTalkRequest { public GovTalkRequest() { try { SenderID = RoleEnvironment.GetConfigurationSettingValue("SenderId"); SenderPassword = RoleEnvironment.GetConfigurationSettingValue("SenderPassword"); TransactionId = DateTime.Now.Ticks.ToString(); AuthenticationValue = EncodePassword(String.Format("{0}{1}{2}", SenderID, SenderPassword, TransactionId)); } catch (System.Exception ex) { throw ex; } } /// <summary> /// returns the Sender ID to be used when communicating with the GovTalk Service /// </summary> public String SenderID { get; set; } /// <summary> /// return the password to be used when communicating with the GovTalk Service /// </summary> public String SenderPassword { get; set; } // end SenderPassword /// <summary> /// Transaction Id - uses the Time and Date converted to Ticks /// </summary> public String TransactionId { get; set; } // end TransactionId /// <summary> /// calculate the authentication value that will be used when /// communicating with /// </summary> public String AuthenticationValue { get; set; } // end AuthenticationValue property /// <summary> /// encodes password(s) using MD5 /// </summary> /// <param name="clearPassword"></param> /// <returns></returns> public static String EncodePassword(String clearPassword) { MD5CryptoServiceProvider md5Hasher = new MD5CryptoServiceProvider(); byte[] hashedBytes; UTF32Encoding encoder = new UTF32Encoding(); hashedBytes = md5Hasher.ComputeHash(ASCIIEncoding.Default.GetBytes(clearPassword)); String result = Regex.Replace(BitConverter.ToString(hashedBytes), "-", "").ToLower(); return result; } } } There is nothing particularly clever here, except for the EncodePassword method which hashes the value made up of the SenderId, Password and Transaction id. Each message inherits from this object. So for the Company Number Search in addition to the properties above we need a partial number, which dataset to search – for the purposes of the project we only need to search the LIVE set so this can be set in the constructor and the SearchRows. Again all are set as properties. With the SearchRows and DataSet initialized in the constructor. public class CompanyNumberSearchRequest : GovTalkRequest, IDisposable { /// <summary> /// /// </summary> public CompanyNumberSearchRequest() : base() { DataSet = "LIVE"; SearchRows = 1; } /// <summary> /// Company Number to search against /// </summary> public String PartialCompanyNumber { get; set; } /// <summary> /// What DataSet should be searched for the company /// </summary> public String DataSet { get; set; } /// <summary> /// How many rows should be returned /// </summary> public int SearchRows { get; set; } public void Dispose() { DataSet = String.Empty; PartialCompanyNumber = String.Empty; DataSet = "LIVE"; SearchRows = 1; } } As well as inheriting from our base class, I have also inherited from IDisposable – not just because it is just plain good practice to dispose of objects when coding, but it gives also gives us more versatility when using the object. There are four stages in making a request and this is reflected in the four methods we execute in making a call to the Companies House service; Create a request Send a request Check the status If OK then get the results of the request I’ve implemented each of these stages within a static class called Toolbox – which also means I don’t need to create an instance of the class to use it. When making a request there are three stages; Get the template for the message Serialize the object representing the message Transform the serialized object using a predefined XSLT file. Each of my templates I have defined as an embedded resource. When retrieving a resource of this kind we have to include the full namespace to the resource. In making the code re-usable as much as possible I defined the full ‘path’ within the GetRequest method. requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); So we now have the full path of the file within the assembly. Now all we need do is retrieve the assembly and get the resource. asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); Once retrieved  So this can be returned to the calling function and we now have a stream of XSLT to define the message. Time now to serialize the request to create the other side of this message. // Serialize object containing Request, Load into XML Document t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); First off we need the type of the object so we make a call to the GetType method of the object containing the Message properties. Next we need a MemoryStream, XmlSerializer and an XMLTextWriter so these can be initialized. The object is serialized by making the call to the Serialize method of the serializer object. The result of that is then converted into a MemoryStream. That MemoryStream is then converted into a string. ConvertByteArrayToString This is a fairly simple function which uses an ASCIIEncoding object found within the System.Text namespace to convert an array of bytes into a string. public static String ConvertByteArrayToString(byte[] bytes) { System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding(); return enc.GetString(bytes); } I only put it into a function because I will be using this in various places. The Sauce When adding support for other messages outside of creating a new object to store the properties of the message, the C# components do not need to change. It is in the XSLT file that the versatility of the technique lies. The XSLT file determines the format of the message. For the CompanyNumberSearch the XSLT file is as follows; <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID> <xsl:value-of select="CompanyNumberSearchRequest/TransactionId"/> </TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID><xsl:value-of select="CompanyNumberSearchRequest/SenderID"/></SenderID> <Authentication> <Method>CHMD5</Method> <Value> <xsl:value-of select="CompanyNumberSearchRequest/AuthenticationValue"/> </Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber> <xsl:value-of select="CompanyNumberSearchRequest/PartialCompanyNumber"/> </PartialCompanyNumber> <DataSet> <xsl:value-of select="CompanyNumberSearchRequest/DataSet"/> </DataSet> <SearchRows> <xsl:value-of select="CompanyNumberSearchRequest/SearchRows"/> </SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> </xsl:template> </xsl:stylesheet> The outer two tags define that this is a XSLT stylesheet and the root tag from which the nodes are searched for. The GovTalkMessage is the format of the message that will be sent to Companies House. We first set up the XslCompiledTransform object which will transform the XSLT template and the serialized object into the request to Companies House. xslt = new XslCompiledTransform(); resultStream = new MemoryStream(); writer = new XmlTextWriter(resultStream, Encoding.ASCII); doc = new XmlDocument(); The Serialize method require XmlTextWriter to write the XML (writer) and a stream to place the transferred object into (writer). The XML will be loaded into an XMLDocument object (doc) prior to the transformation. // create XSLT Template xslTemplate = Toolbox.GetRequest(Template); xslTemplate.Seek(0, SeekOrigin.Begin); templateReader = XmlReader.Create(xslTemplate); xslt.Load(templateReader); I have stored all the templates as a series of Embedded Resources and the GetRequestCall takes the name of the template and extracts the relevent XSLT file. /// <summary> /// Gets the framwork XML which makes the request /// </summary> /// <param name="RequestFile"></param> /// <returns></returns> public static Stream GetRequest(String RequestFile) { String requestFile = String.Empty; Stream sr = null; Assembly asm = null; try { requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); } catch (Exception) { throw; } finally { asm = null; } return sr; } // end private static stream GetRequest We first take the template name and expand it to include the full namespace to the Embedded Resource I like to keep all my schemas in the same directory and so the namespace reflects this. The rest is the default namespace for the project. Then we get the currently executing assembly (which will contain the resources with the call to GetExecutingAssembly() ) Finally we get a stream which contains the XSLT file. We use this stream and then load an XmlReader with the contents of the template, and that is in turn loaded into the XslCompiledTransform object. We convert the object containing the message properties into Xml by serializing it; calling the Serialize() method of the XmlSerializer object. To set up the object we do the following; t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); We first determine the type of the object being transferred by calling GetType() We create an XmlSerializer object by passing the type of the object being serialized. The serializer writes to a memory stream and that is linked to an XmlTextWriter. Next job is to serialize the object and load it into an XmlDocument. serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; xmlRequest = new XmlTextReader(ms); GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); doc.LoadXml(GovTalkRequest); Time to transform the XML to construct the full request. xslt.Transform(doc, writer); resultStream.Seek(0, SeekOrigin.Begin); request = Toolbox.ConvertByteArrayToString(resultStream.ToArray()); So that creates the full request to be sent  to Companies House. Sending the request So far we have a string with a request for the Companies House service. Now we need to send the request to the Companies House Service. Configuration within an Azure project There are entire blog entries written about configuration within an Azure project – most of this is out of scope for this article but the following is a summary. Configuration is defined in two files within the parent project *.csdef which contains the definition of configuration setting. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WebRole name="CompanyHub.Host"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="80" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="DataConnectionString" /> </ConfigurationSettings> </WebRole> <WebRole name="CompanyHub.Services"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="8080" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="SenderId"/> <Setting name="SenderPassword" /> <Setting name="GovTalkUrl"/> </ConfigurationSettings> </WebRole> <WorkerRole name="CompanyHub.Worker"> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> </ConfigurationSettings> </WorkerRole> </ServiceDefinition>   Above is the configuration definition from the project. What we are interested in however is the ConfigurationSettings tag of the CompanyHub.Services WebRole. There are four configuration settings here, but at the moment we are interested in the second to forth settings; SenderId, SenderPassword and GovTalkUrl The value of these settings are defined in the ServiceDefinition.cscfg file; <?xml version="1.0"?> <ServiceConfiguration serviceName="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration"> <Role name="CompanyHub.Host"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="DataConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> <Role name="CompanyHub.Services"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="SenderId" value="UserID"/> <Setting name="SenderPassword" value="Password"/> <Setting name="GovTalkUrl" value="http://xmlgw.companieshouse.gov.uk/v1-0/xmlgw/Gateway"/> </ConfigurationSettings> </Role> <Role name="CompanyHub.Worker"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> </ServiceConfiguration>   Look for the Role tag that contains our project name (CompanyHub.Services). Having configured the parameters we can now transmit the request. This is done by ‘POST’ing a stream of XML to the Companies House servers. govTalkUrl = RoleEnvironment.GetConfigurationSettingValue("GovTalkUrl"); request = WebRequest.Create(govTalkUrl); request.Method = "POST"; request.ContentType = "text/xml"; writer = new StreamWriter(request.GetRequestStream()); writer.WriteLine(RequestMessage); writer.Close(); We use the WebRequest object to send the object. Set the method of sending to ‘POST’ and the type of data as text/xml. Once set up all we do is write the request to the writer – this sends the request to Companies House. Did the Request Work Part I – Getting the response Having sent a request – we now need the result of that request. response = request.GetResponse(); reader = response.GetResponseStream(); result = Toolbox.ConvertByteArrayToString(Toolbox.ReadFully(reader));   The WebRequest object has a GetResponse() method which allows us to get the response sent back. Like many of these calls the results come in the form of a stream which we convert into a string. Did the Request Work Part II – Translating the Response Much like XSLT and XML were used to create the original request, so it can be used to extract the response and by deserializing the result we create an object that contains the response. Did it work? It would be really great if everything worked all the time. Of course if it did then I don’t suppose people would pay me and others the big bucks so that our programmes do not a) Collapse in a heap (this is an area of memory) b) Blow every fuse in the place in a shower of sparks (this will probably not happen this being real life and not a Hollywood movie, but it was possible to blow the sound system of a BBC Model B with a poorly coded setting) c) Go nuts and trap everyone outside the airlock (this was from a movie, and unless NASA get a manned moon/mars mission set up unlikely to happen) d) Go nuts and take over the world (this was also from a movie, but please note life has a habit of being of exceeding the wildest imaginations of Hollywood writers (note writers – Hollywood executives have no imagination and judging by recent output of that town have turned plagiarism into an art form). e) Freeze in total confusion because the cleaner pulled the plug to the internet router (this has happened) So anyway – we need to check to see if our request actually worked. Within the GovTalk response there is a section that details the status of the message and a description of what went wrong (if anything did). I have defined an XSLT template which will extract these into an XML document. <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <xsl:template match="/"> <GovTalkStatus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Status> <xsl:value-of select="ev:GovTalkMessage/ev:Header/ev:MessageDetails/ev:Qualifier"/> </Status> <Text> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Text"/> </Text> <Location> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Location"/> </Location> <Number> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Number"/> </Number> <Type> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Type"/> </Type> </GovTalkStatus> </xsl:template> </xsl:stylesheet>   Only thing different about previous XSL files is the references to two namespaces ev & gt. These are defined in the GovTalk response at the top of the response; xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" If we do not put these references into the XSLT template then  the XslCompiledTransform object will not be able to find the relevant tags. Deserialization is a fairly simple activity. encoder = new ASCIIEncoding(); ms = new MemoryStream(encoder.GetBytes(statusXML)); serializer = new XmlSerializer(typeof(GovTalkStatus)); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); messageStatus = (GovTalkStatus)serializer.Deserialize(ms);   We set up a serialization object using the object type containing the error state and pass to it the results of a transformation between the XSLT above and the GovTalk response. Now we have an object containing any error state, and the error message. All we need to do is check the status. If there is an error then we can flag an error. If not then  we extract the results and pass that as an object back to the calling function. We go this by guess what – defining an XSLT template for the result and using that to create an Xml Stream which can be deserialized into a .Net object. In this instance the XSLT to create the result of a Company Number Search is; <?xml version="1.0" encoding="us-ascii"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:sch="http://xmlgw.companieshouse.gov.uk/v1-0/schema" exclude-result-prefixes="ev"> <xsl:template match="/"> <CompanySearchResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <CompanyNumber> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyNumber"/> </CompanyNumber> <CompanyName> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyName"/> </CompanyName> </CompanySearchResult> </xsl:template> </xsl:stylesheet> and the object definition is; using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace CompanyHub.Services { public class CompanySearchResult { public CompanySearchResult() { CompanyNumber = String.Empty; CompanyName = String.Empty; } public String CompanyNumber { get; set; } public String CompanyName { get; set; } } } Our entire code to make calls to send a request, and interpret the results are; String request = String.Empty; String response = String.Empty; GovTalkStatus status = null; fault = null; try { using (CompanyNumberSearchRequest requestObj = new CompanyNumberSearchRequest()) { requestObj.PartialCompanyNumber = CompanyNumber; request = Toolbox.CreateRequest(requestObj, "CompanyNumberSearch.xsl"); response = Toolbox.SendGovTalkRequest(request); status = Toolbox.GetMessageStatus(response); if (status.Status.ToLower() == "error") { fault = new HubFault() { Message = status.Text }; } else { Object obj = Toolbox.GetGovTalkResponse(response, "CompanyNumberSearchResult.xsl", typeof(CompanySearchResult)); } } } catch (FaultException<ArgumentException> ex) { fault = new HubFault() { FaultType = ex.Detail.GetType().FullName, Message = ex.Detail.Message }; } catch (System.Exception ex) { fault = new HubFault() { FaultType = ex.GetType().FullName, Message = ex.Message }; } finally { } Wrap up So there we have it – a reusable set of functions to send and interpret XML results from an internet based service. The code is reusable with a little change with any service which uses XML as a transport mechanism – and as for the Companies House GovTalk service all I need to do is create various objects for the result and message sent and the relevent XSLT files. I might need minor changes for other services but something like 70-90% will be exactly the same.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Jframe using multiple classes?

    - by user2945880
    and im trying to make it so it can show multiple classes at once Jframe: import javax.swing.JFrame; import java.awt.BorderLayout; public class Concert { public static void main(String[] args) { JFrame frame = new JFrame(); frame.setSize(1000, 800); frame.setTitle("Concert!"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); Concertbackground component = new Concertbackground(); BandComponent component1 = new BandComponent(); frame.add(component, BorderLayout.NORTH); frame.add(component1, BorderLayout.CENTER); frame.setVisible(true); } } These are the two classes mentioned in the Jframe: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Rectangle; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import javax.swing.JComponent; import java.awt.Polygon; /* BandComponent.java Justin Walker 10/27/13 */ public class BandComponent extends JComponent { public void paintComponent(Graphics g) { // Recover Graphics2D Graphics2D g2 = (Graphics2D) g; int xScale = 250; int yScale = 100; int x = 343; int y = 343; //singer Polygon sing = new Polygon(); sing.addPoint(667 ,208 + xScale); sing.addPoint(676,213 + xScale); sing.addPoint(678,217 + xScale); sing.addPoint(682,221 + xScale); sing.addPoint(681,224 + xScale); sing.addPoint(680,231 + xScale); sing.addPoint(676,242 + xScale); sing.addPoint(672,244 + xScale); sing.addPoint(672,250 + xScale); sing.addPoint(682,248 + xScale); sing.addPoint(713,244 + xScale); sing.addPoint(734,247 + xScale); sing.addPoint(750,247 + xScale); sing.addPoint(794,232 + xScale); sing.addPoint(800,231 + xScale); sing.addPoint(801,223 + xScale); sing.addPoint(807,219 + xScale); sing.addPoint(806,221 + xScale); sing.addPoint(806,229 + xScale); sing.addPoint(818,222 + xScale); sing.addPoint(820,223 + xScale); sing.addPoint(825,227 + xScale); sing.addPoint(825,240 + xScale); sing.addPoint(817,243 + xScale); sing.addPoint(807,245 + xScale); sing.addPoint(803,247 + xScale); sing.addPoint(801,252 + xScale); sing.addPoint(781,257 + xScale); sing.addPoint(762,264 + xScale); sing.addPoint(734,271 + xScale); sing.addPoint(701,286 + xScale); sing.addPoint(691,296 + xScale); sing.addPoint(693,311 + xScale); sing.addPoint(690,317 + xScale); sing.addPoint(690,335 + xScale); sing.addPoint(691,339 + xScale); sing.addPoint(689,343 + xScale); sing.addPoint(712,382 + xScale); sing.addPoint(725,400 + xScale); sing.addPoint(731,418 + xScale); sing.addPoint(731,428 + xScale); sing.addPoint(738,454 + xScale); sing.addPoint(741,460 + xScale); sing.addPoint(746,468 + xScale); sing.addPoint(766,468 + xScale); sing.addPoint(771,481 + xScale);// sing.addPoint(723,482 + xScale); sing.addPoint(720,462 + xScale); sing.addPoint(718,454 + xScale); sing.addPoint(709,436 + xScale); sing.addPoint(703,436 + xScale); sing.addPoint(699,417 + xScale); sing.addPoint(686,396 + xScale); sing.addPoint(678,395 + xScale); sing.addPoint(676,437 + xScale); sing.addPoint(673,439 + xScale); sing.addPoint(638,435 + xScale); sing.addPoint(640,398 + xScale); sing.addPoint(634,410 + xScale); sing.addPoint(625,416 + xScale); sing.addPoint(622,436 + xScale); sing.addPoint(622,443 + xScale); sing.addPoint(615,447 + xScale); sing.addPoint(609,456 + xScale); sing.addPoint(606,481 + xScale);// sing.addPoint(557,481 + xScale); sing.addPoint(560,467 + xScale); sing.addPoint(579,467 + xScale); sing.addPoint(587,464 + xScale); sing.addPoint(593,452 + xScale); sing.addPoint(594,441 + xScale); sing.addPoint(592,434 + xScale); sing.addPoint(600,416 + xScale); sing.addPoint(608,405 + xScale); sing.addPoint(609,394 + xScale); sing.addPoint(617,376 + xScale); sing.addPoint(619,363 + xScale); sing.addPoint(632,334 + xScale); sing.addPoint(637,324 + xScale); sing.addPoint(635,314 + xScale); sing.addPoint(639,296 + xScale); sing.addPoint(627,285 + xScale); sing.addPoint(600,279 + xScale); sing.addPoint(582,278 + xScale); sing.addPoint(575,275 + xScale); sing.addPoint(546,256 + xScale); sing.addPoint(536,252 + xScale); sing.addPoint(533,350 + xScale); sing.addPoint(534,361 + xScale); sing.addPoint(532,367 + xScale); sing.addPoint(529,369 + xScale); sing.addPoint(524,363 + xScale); sing.addPoint(525,355 + xScale); sing.addPoint(531,254 + xScale); sing.addPoint(527,249 + xScale); sing.addPoint(527,242 + xScale); sing.addPoint(529,237 + xScale); sing.addPoint(532,237 + xScale); sing.addPoint(536,178 + xScale); sing.addPoint(534,129 + xScale); sing.addPoint(535,123 + xScale); sing.addPoint(541,120 + xScale); sing.addPoint(545,123 + xScale); sing.addPoint(547,131 + xScale); sing.addPoint(545,173 + xScale); sing.addPoint(538,233 + xScale); sing.addPoint(549,239 + xScale); sing.addPoint(558,241 + xScale); sing.addPoint(585,257 + xScale); sing.addPoint(599,257 + xScale); sing.addPoint(627,254 + xScale); sing.addPoint(647,251 + xScale); sing.addPoint(653,248 + xScale); sing.addPoint(652,235 + xScale); sing.addPoint(648,226 + xScale); sing.addPoint(652,218 + xScale); sing.addPoint(661,212 + xScale); g2.setColor(Color.black); g2.fill(sing); g2.draw(sing); //guitar Polygon guitar = new Polygon(); guitar.addPoint(148,28); guitar.addPoint(158,32); guitar.addPoint(164,38); guitar.addPoint(168,46); guitar.addPoint(169,52); guitar.addPoint(167,60); guitar.addPoint(164,65); guitar.addPoint(165,70); guitar.addPoint(161,76); guitar.addPoint(158,92); guitar.addPoint(162,97); guitar.addPoint(161,102); guitar.addPoint(158,106); guitar.addPoint(155,108); guitar.addPoint(151,127); guitar.addPoint(152,133); guitar.addPoint(155,137); guitar.addPoint(151,146); guitar.addPoint(153,147); guitar.addPoint(160,142); guitar.addPoint(162,133); guitar.addPoint(162,123); guitar.addPoint(161,113); guitar.addPoint(162,110); guitar.addPoint(164,117); guitar.addPoint(169,131); guitar.addPoint(171,144); guitar.addPoint(170,159); guitar.addPoint(166,167); guitar.addPoint(166,171); guitar.addPoint(174,174); guitar.addPoint(183,184); guitar.addPoint(191,195); guitar.addPoint(196,198); guitar.addPoint(198,200); guitar.addPoint(199,210); guitar.addPoint(211,225); guitar.addPoint(212,233); guitar.addPoint(220,248); guitar.addPoint(233,260); guitar.addPoint(245,266); guitar.addPoint(248,268); guitar.addPoint(249,277); guitar.addPoint(205,275); guitar.addPoint(204,262); guitar.addPoint(187,238); guitar.addPoint(178,224); guitar.addPoint(177,216); guitar.addPoint(156,201); guitar.addPoint(146,197); guitar.addPoint(134,211); guitar.addPoint(128,229); guitar.addPoint(125,244);// guitar.addPoint(121,246); guitar.addPoint(107,248); guitar.addPoint(100,252); guitar.addPoint(97,258); guitar.addPoint(96,253); guitar.addPoint(89,258); guitar.addPoint(65,267); guitar.addPoint(63,274); guitar.addPoint(64,283); guitar.addPoint(41,282); guitar.addPoint(44,270); guitar.addPoint(47,264); guitar.addPoint(51,255); guitar.addPoint(73,238); guitar.addPoint(79,228); guitar.addPoint(97,222); guitar.addPoint(101,204); guitar.addPoint(102,181); guitar.addPoint(100,170); guitar.addPoint(95,161); guitar.addPoint(97,154); guitar.addPoint(91,152); guitar.addPoint(77,131); guitar.addPoint(65,123); guitar.addPoint(61,105); guitar.addPoint(64,94); guitar.addPoint(72,91); guitar.addPoint(78,82); guitar.addPoint(78,76); guitar.addPoint(70,73); guitar.addPoint(70,67); guitar.addPoint(93,51); guitar.addPoint(101,48); guitar.addPoint(111,52); guitar.addPoint(118,59); guitar.addPoint(119,70); guitar.addPoint(117,78); guitar.addPoint(113,79); guitar.addPoint(112,86); guitar.addPoint(111,88); guitar.addPoint(109,89); guitar.addPoint(109,92); guitar.addPoint(122,99);// guitar.addPoint(124,99); guitar.addPoint(133,96); guitar.addPoint(145,93); //guitar.addPoint(138,124); guitar.addPoint(150,69); guitar.addPoint(150,62); guitar.addPoint(155,58); guitar.addPoint(154,53); guitar.addPoint(149,50); guitar.addPoint(154,46); guitar.addPoint(153,38); guitar.addPoint(147,28); g2.setColor(Color.black); g2.fill(guitar); g2.draw(guitar); Polygon guitar2 = new Polygon (); guitar2.addPoint(141,108); guitar2.addPoint(139,126); guitar2.addPoint(135,122); guitar2.addPoint(128,122); guitar2.addPoint(129,116); guitar2.addPoint(143,108); g2.setColor(Color.white); g2.fill(guitar2); g2.draw(guitar2); //bass guitar Polygon bassgt = new Polygon (); bassgt.addPoint(871,21); bassgt.addPoint(879,24); bassgt.addPoint(885,32); bassgt.addPoint(886,42); bassgt.addPoint(895,47); bassgt.addPoint(904,56); bassgt.addPoint(907,69); bassgt.addPoint(909,83); bassgt.addPoint(910,91); bassgt.addPoint(941,81); bassgt.addPoint(946,75); bassgt.addPoint(945,67); bassgt.addPoint(950,67); bassgt.addPoint(955,75); bassgt.addPoint(960,68); bassgt.addPoint(963,74); bassgt.addPoint(967,72); bassgt.addPoint(971,66); bassgt.addPoint(973,70); bassgt.addPoint(981,67); bassgt.addPoint(984,71); bassgt.addPoint(982,76); bassgt.addPoint(987,80); bassgt.addPoint(986,82); bassgt.addPoint(980,83); bassgt.addPoint(979,90); bassgt.addPoint(974,85); bassgt.addPoint(970,86); bassgt.addPoint(973,91); bassgt.addPoint(965,86); bassgt.addPoint(960,90); bassgt.addPoint(961,100); bassgt.addPoint(955,92); bassgt.addPoint(944,91); bassgt.addPoint(907,103); bassgt.addPoint(906,109); bassgt.addPoint(893,114); bassgt.addPoint(895,123); bassgt.addPoint(900,131); bassgt.addPoint(904,134); bassgt.addPoint(908,145); bassgt.addPoint(911,159); bassgt.addPoint(918,171); bassgt.addPoint(919,190); bassgt.addPoint(923,198); bassgt.addPoint(919,201); bassgt.addPoint(919,210); bassgt.addPoint(927,220); bassgt.addPoint(942,226); bassgt.addPoint(944,234); bassgt.addPoint(909,230); bassgt.addPoint(905,214); bassgt.addPoint(899,204); bassgt.addPoint(893,203); bassgt.addPoint(889,171); bassgt.addPoint(877,151); bassgt.addPoint(861,152); bassgt.addPoint(852,169); bassgt.addPoint(849,203); bassgt.addPoint(841,210); bassgt.addPoint(840,228); bassgt.addPoint(828,233); bassgt.addPoint(806,235); bassgt.addPoint(805,228); bassgt.addPoint(822,219); bassgt.addPoint(824,204); bassgt.addPoint(817,201); bassgt.addPoint(822,196); bassgt.addPoint(822,184); bassgt.addPoint(828,162); bassgt.addPoint(829,152); bassgt.addPoint(820,149); bassgt.addPoint(811,144); bassgt.addPoint(806,134); bassgt.addPoint(805,117); bassgt.addPoint(820,107); bassgt.addPoint(819,89); bassgt.addPoint(811,83); bassgt.addPoint(811,77); bassgt.addPoint(824,66); bassgt.addPoint(825,61); bassgt.addPoint(842,53); bassgt.addPoint(852,43); bassgt.addPoint(853,29); bassgt.addPoint(870,20); g2.setColor(Color.black); g2.fill(bassgt); g2.draw(bassgt); Polygon bassgt2 = new Polygon(); bassgt2.addPoint(845,78); bassgt2.addPoint(845,98); bassgt2.addPoint(843,98); bassgt2.addPoint(842,105); bassgt2.addPoint(839,109); bassgt2.addPoint(834,103); bassgt2.addPoint(832,85); bassgt2.addPoint(845,78); g2.setColor(Color.white); g2.fill(bassgt2); g2.draw(bassgt2); Polygon drums = new Polygon (); drums.addPoint(713,104); drums.addPoint(706,121); drums.addPoint(721,377); drums.addPoint(248,380); drums.addPoint(253,228); drums.addPoint(250,206); drums.addPoint(237,178); drums.addPoint(206,166); drums.addPoint(201,154); drums.addPoint(198,152); drums.addPoint(208,148); drums.addPoint(236,150); drums.addPoint(247,130); drums.addPoint(227,119); drums.addPoint(219,105); drums.addPoint(222,96); drums.addPoint(233,88); drums.addPoint(251,84); drums.addPoint(272,83); drums.addPoint(300,91); drums.addPoint(285,72); drums.addPoint(294,57); drums.addPoint(319,46); drums.addPoint(372,45); drums.addPoint(406,50); drums.addPoint(428,65); drums.addPoint(433,74); drums.addPoint(450,58); drums.addPoint(478,48); drums.addPoint(514,48); drums.addPoint(544,51); drums.addPoint(566,52); drums.addPoint(577,67); drums.addPoint(575,79); drums.addPoint(561,95); drums.addPoint(545,98); drums.addPoint(525,105); drums.addPoint(524,147); drums.addPoint(524,183); drums.addPoint(645,175); drums.addPoint(662,143); drums.addPoint(617,152); drums.addPoint(608,148); drums.addPoint(614,139); drums.addPoint(633,128); drums.addPoint(661,116); drums.addPoint(659,107); drums.addPoint(625,114); drums.addPoint(592,113); drums.addPoint(571,111); drums.addPoint(565,102); drums.addPoint(576,86); drums.addPoint(616,70); drums.addPoint(647,66); drums.addPoint(679,67); drums.addPoint(695,72); drums.addPoint(699,90); drums.addPoint(678,100); drums.addPoint(667,103); drums.addPoint(672,113); drums.addPoint(689,105); drums.addPoint(709,106); g2.setColor(Color.black); g2.fill(drums); g2.draw(drums); } } The second class: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Rectangle; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import javax.swing.JComponent; import java.awt.GradientPaint; /* component that draws the concert background */ public class Concertbackground extends JComponent { public void paintComponent(Graphics g) { super.paintComponent(g); // Recover Graphics2D Graphics2D g2 = (Graphics2D) g; //Background Top g2.setColor(Color.BLUE); Rectangle backgroundTop = new Rectangle (0, 0, getWidth(), getHeight() / 4); g2.fill(backgroundTop); // Background bottom g2.setColor(Color.GREEN); Rectangle backgroundBottom = new Rectangle (0, getHeight() / 2, getWidth(), getHeight() / 2); g2.fill(backgroundBottom); // Speaker base g2.setColor(Color.BLACK); Rectangle base = new Rectangle (0, 0, 50, 100); g2.fill(base); // Speakers circles gray top g2.setColor(Color.DARK_GRAY); Ellipse2D.Double speakerTop = new Ellipse2D.Double(10, 10, 30, 30); g2.fill(speakerTop); //speakers circles black top g2.setColor(Color.BLACK); Ellipse2D.Double speakerTop1 = new Ellipse2D.Double(15, 15, 20, 20); g2.fill(speakerTop1); // Speakers circles gray bottom g2.setColor(Color.DARK_GRAY); Ellipse2D.Double speakerBottom = new Ellipse2D.Double(10, 50, 30, 30); g2.fill(speakerBottom); //speakers circles black bottom g2.setColor(Color.BLACK); Ellipse2D.Double speakerBottom1 = new Ellipse2D.Double(15, 55, 20, 20); g2.fill(speakerBottom1); } } My main question is how do I change my Jframe so it can use as many classes as I want, It cant be the size of my classes because they were used with the same 1000, 800 Jframe to make the classes. I also need to be able to add more than just these two classes to my Jframe.

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • TCP RST Reset Every 5 Minutes on Windows 2003 sp2

    - by Dan
    Hey, Recently I had a web developer come to me and ask why he was receiving connection errors in his app that was accessing a sql database. So, I went through my normal trouble shooting steps to isolate or reproduce the issue. I discovered that if I connected to the database using Query Analyzer and let the connection idle for 5 minutes it would disconnect. Meaning... I would no longer be able to refresh my tables or any other object/node within the object browser in Query Analyzer. I would have to right click on the instance and refresh for it to re-establish the connection. Next I went to wireshark and ran a capture on the client pc's nic card. Sure enough it was receiving a TCP RST reset every 5 min if the connection idled longer than 5 min. I also ran a capture on the SQL Server and noticed the TCP RST reset command as well. Attached below is the capture from the client Machine. If someone could please assist... That would be great. -I checked all settings within SQL Server 2000 against another server and they all seem to be the same. -Issue does not occur if I connect to any other SQL server 2000 server. -Issue does not occur if connecting to SQL on the server itself... so only over the network. -I consulted with network team and this is the response back: There are no firewalls or proxies in between SQL Server and your desktop. The traffic flows like this: Desktop-Access Switch-Distro Switch-Core Switch-Datacenter Switch-SQL Server None of the switches have security ACL’s configured on them. Also they stated that NAT was not turned on. -Issue does not occur with SQL server Enterprise Manager. -Ran SQL Profiler at the same time and did not see anything out of the ordinary during the RST I HAVE SEARCHED HIGH AND LOW ON GOOGLE FOR A RESOLUTION FOR THIS ISSUE. NO LUCK! My questions are: What could be causing this? Wrong Sequence number? setting in a router or switch the network team may have over looked? Setting within Windows? Setting within SQL Server 2000 that I have over looked? Better way to utilize Wireshark to find more answers? RST is about 10 from the bottom. No. Time Source Destination Protocol Info 258 24.390708 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [SYN] Seq=0 Len=0 MSS=1260 259 24.401679 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 260 24.401729 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 261 24.402212 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 262 24.413335 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 285 24.466512 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 286 24.466536 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=437 289 24.478168 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [ACK] Seq=38 Ack=1740 Win=64240 Len=0 290 24.480078 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=38 Ack=1740 Win=64240 Len=385 293 24.493629 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1740 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=60 294 24.504637 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=423 Ack=1800 Win=64180 Len=17 295 24.533197 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1800 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=44 296 24.544098 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=440 Ack=1844 Win=64136 Len=17 297 24.544524 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1844 Ack=457 Win=65079 [TCP CHECKSUM INCORRECT] Len=58 298 24.558033 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=457 Ack=1902 Win=64078 Len=31 299 24.558493 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1902 Ack=488 Win=65048 [TCP CHECKSUM INCORRECT] Len=92 300 24.569984 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=488 Ack=1994 Win=63986 Len=70 301 24.577395 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1994 Ack=558 Win=64978 [TCP CHECKSUM INCORRECT] Len=448 303 24.589834 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=558 Ack=2442 Win=63538 Len=64 304 24.590122 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [FIN, ACK] Seq=2442 Ack=622 Win=64914 [TCP CHECKSUM INCORRECT] Len=0 305 24.601094 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [ACK] Seq=622 Ack=2443 Win=63538 Len=0 306 24.601659 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [FIN, ACK] Seq=622 Ack=2443 Win=63538 Len=0 307 24.601686 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=2443 Ack=623 Win=64914 [TCP CHECKSUM INCORRECT] Len=0 321 25.839371 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [SYN] Seq=0 Len=0 MSS=1260 322 25.850291 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 323 25.850321 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 324 25.850660 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 325 25.861573 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 326 25.863103 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 327 25.863130 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=463 328 25.874417 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [ACK] Seq=38 Ack=1766 Win=64240 Len=0 329 25.876315 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=38 Ack=1766 Win=64240 Len=385 330 25.876905 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1766 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=60 331 25.887773 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=423 Ack=1826 Win=64180 Len=17 332 25.888299 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1826 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=44 333 25.899169 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=440 Ack=1870 Win=64136 Len=17 334 25.899574 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1870 Ack=457 Win=65079 [TCP CHECKSUM INCORRECT] Len=58 335 25.910618 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=457 Ack=1928 Win=64078 Len=31 336 25.911051 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1928 Ack=488 Win=65048 [TCP CHECKSUM INCORRECT] Len=92 337 25.922068 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=488 Ack=2020 Win=63986 Len=70 338 25.922500 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2020 Ack=558 Win=64978 [TCP CHECKSUM INCORRECT] Len=34 339 25.933621 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=558 Ack=2054 Win=63952 Len=29 340 25.941165 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2054 Ack=587 Win=64949 [TCP CHECKSUM INCORRECT] Len=54 341 25.952164 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=587 Ack=2108 Win=63898 Len=17 342 25.952993 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2108 Ack=604 Win=64932 [TCP CHECKSUM INCORRECT] Len=72 343 25.963889 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=604 Ack=2180 Win=63826 Len=17 344 25.964366 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2180 Ack=621 Win=64915 [TCP CHECKSUM INCORRECT] Len=52 345 25.975253 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=621 Ack=2232 Win=63774 Len=17 346 25.975590 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2232 Ack=638 Win=64898 [TCP CHECKSUM INCORRECT] Len=32 347 25.986588 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=638 Ack=2264 Win=63742 Len=167 348 25.987262 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2264 Ack=805 Win=64731 [TCP CHECKSUM INCORRECT] Len=512 349 25.998464 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=805 Ack=2776 Win=63230 Len=89 350 25.998861 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2776 Ack=894 Win=64642 [TCP CHECKSUM INCORRECT] Len=46 351 26.009849 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=894 Ack=2822 Win=63184 Len=17 352 26.010175 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2822 Ack=911 Win=64625 [TCP CHECKSUM INCORRECT] Len=80 353 26.021220 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=911 Ack=2902 Win=63104 Len=33 354 26.022613 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2902 Ack=944 Win=64592 [TCP CHECKSUM INCORRECT] Len=498 355 26.034018 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=944 Ack=3400 Win=64240 Len=89 356 26.046501 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [SYN] Seq=0 Len=0 MSS=1260 357 26.057323 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 358 26.057355 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 359 26.057661 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 361 26.068606 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 362 26.070087 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 363 26.070113 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=485 364 26.081336 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [ACK] Seq=38 Ack=1788 Win=64240 Len=0 365 26.083330 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=38 Ack=1788 Win=64240 Len=385 366 26.083943 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1788 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=46 368 26.094921 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=423 Ack=1834 Win=64194 Len=17 369 26.095317 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1834 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=48 370 26.107553 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=440 Ack=1882 Win=64146 Len=877 371 26.241285 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=3400 Ack=1033 Win=64503 [TCP CHECKSUM INCORRECT] Len=0 372 26.241307 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=1882 Ack=1317 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 653 55.913838 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 > 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 654 55.924547 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 > 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 910 85.887176 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 > 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 911 85.898010 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 > 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1155 115.859520 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1156 115.870285 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1395 145.934403 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1396 145.945938 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1649 175.906767 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1650 175.917741 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1887 205.881080 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1888 205.891818 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2112 235.854408 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2113 235.865482 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2398 265.928342 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2399 265.939242 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2671 295.900714 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2672 295.911590 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2880 315.705029 x.x.x.10 x.x.x.99 TCP 2226 14493 [RST] Seq=1317 Len=0 2973 325.975607 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2974 325.986337 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2975 326.154327 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive] 2226 14492 [ACK] Seq=1032 Ack=3400 Win=64240 Len=1 2976 326.154350 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive ACK] 14492 2226 [ACK] Seq=3400 Ack=1033 Win=64503 [TCP CHECKSUM INCORRECT] Len=0

    Read the article

  • "domain crashed" when creating new Xen instance

    - by user47650
    I have downloaded a Xen virtual machine image from the appscale project, and I am trying to start it up. However once I run the command; xm create -c -f xen.conf The instance immediately crashes and provides no console output. however it produces logs that I have posted below. but this is the error; [2011-03-01 12:34:03 xend.XendDomainInfo 3580] WARNING (XendDomainInfo:1178) Domain has crashed: name=appscale-1.4b id=10. I have managed to mount the root.img file locally and verify that it is actually an ext3 file system. I am running Xen 3.0.3 that is a stock RPM from the CentOS 5 repos; # rpm -qa | grep -i xen xen-libs-3.0.3-105.el5_5.5 xen-3.0.3-105.el5_5.5 xen-libs-3.0.3-105.el5_5.5 kernel-xen-2.6.18-194.32.1.el5 any suggestions on how to proceed with troubleshooting? (i am a newbie to Xen) so far I have enabled console logging, but the log file is empty. ==> domain-builder-ng.log <== xc_dom_allocate: cmdline=" ip=:1.2.3.4::::eth0:dhcp root=/dev/sda1 ro xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console", features="" xc_dom_kernel_file: filename="/boot/vmlinuz-2.6.27-7-server" xc_dom_malloc_filemap : 2284 kB xc_dom_ramdisk_file: filename="/boot/initrd.img-2.6.27-7-server" xc_dom_malloc_filemap : 9005 kB xc_dom_boot_xen_init: ver 3.1, caps xen-3.0-x86_64 xen-3.0-x86_32p xc_dom_parse_image: called xc_dom_find_loader: trying ELF-generic loader ... failed xc_dom_find_loader: trying Linux bzImage loader ... xc_dom_malloc : 9875 kB xc_dom_do_gunzip: unzip ok, 0x234bb2 -> 0x9a4de0 OK elf_parse_binary: phdr: paddr=0x200000 memsz=0x447000 elf_parse_binary: phdr: paddr=0x647000 memsz=0xab888 elf_parse_binary: phdr: paddr=0x6f3000 memsz=0x908 elf_parse_binary: phdr: paddr=0x6f4000 memsz=0x1c2f9c elf_parse_binary: memory: 0x200000 -> 0x8b6f9c elf_xen_parse_note: GUEST_OS = "linux" elf_xen_parse_note: GUEST_VERSION = "2.6" elf_xen_parse_note: XEN_VERSION = "xen-3.0" elf_xen_parse_note: VIRT_BASE = 0xffffffff80000000 elf_xen_parse_note: ENTRY = 0xffffffff8071e200 elf_xen_parse_note: HYPERCALL_PAGE = 0xffffffff80209000 elf_xen_parse_note: FEATURES = "!writable_page_tables|pae_pgdir_above_4gb" elf_xen_parse_note: PAE_MODE = "yes" elf_xen_parse_note: LOADER = "generic" elf_xen_parse_note: unknown xen elf note (0xd) elf_xen_parse_note: SUSPEND_CANCEL = 0x1 elf_xen_parse_note: HV_START_LOW = 0xffff800000000000 elf_xen_parse_note: PADDR_OFFSET = 0x0 elf_xen_addr_calc_check: addresses: virt_base = 0xffffffff80000000 elf_paddr_offset = 0x0 virt_offset = 0xffffffff80000000 virt_kstart = 0xffffffff80200000 virt_kend = 0xffffffff808b6f9c virt_entry = 0xffffffff8071e200 xc_dom_parse_elf_kernel: xen-3.0-x86_64: 0xffffffff80200000 -> 0xffffffff808b6f9c xc_dom_mem_init: mem 1024 MB, pages 0x40000 pages, 4k each xc_dom_mem_init: 0x40000 pages xc_dom_boot_mem_init: called x86_compat: guest xen-3.0-x86_64, address size 64 xc_dom_malloc : 2048 kB ==> xend.log <== [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:957) Dev 0 still active, looping... [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:957) Dev 0 still active, looping... [2011-03-01 12:34:01 xend.XendDomainInfo 3580] INFO (XendDomainInfo:957) Dev 0 still active, looping... [2011-03-01 12:34:02 xend.XendDomainInfo 3580] INFO (XendDomainInfo:957) Dev 0 still active, looping... [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2114) UUID Created: True [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2115) Devices to release: [], domid = 9 [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2127) Releasing PVFB backend devices ... [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:207) XendDomainInfo.create(['domain', ['domid', 9], ['uuid', 'd5f22dd4-8dc2-f51f-84e9-eea7d71ea1d0'], ['vcpus', 1], ['vcpu_avail', 1], ['cpu_cap', 0], ['cpu_weight', 256], ['memory', 1024], ['shadow_memory', 0], ['maxmem', 1024], ['features', ''], ['name', 'appscale-1.4b'], ['on_poweroff', 'destroy'], ['on_reboot', 'restart'], ['on_crash', 'restart'], ['image', ['linux', ['kernel', '/boot/vmlinuz-2.6.27-7-server'], ['ramdisk', '/boot/initrd.img-2.6.27-7-server'], ['ip', ':1.2.3.4::::eth0:dhcp'], ['root', '/dev/sda1 ro'], ['args', 'xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console']]], ['cpus', []], ['device', ['vif', ['backend', 0], ['script', 'vif-bridge'], ['mac', '00:16:3B:72:10:E4']]], ['device', ['vbd', ['backend', 0], ['dev', 'sda1:disk'], ['uname', 'file:/local/xen/domains/appscale1.4/root.img'], ['mode', 'w']]], ['state', '----c-'], ['shutdown_reason', 'crash'], ['cpu_time', 0.000339131], ['online_vcpus', 1], ['up_time', '0.952092885971'], ['start_time', '1299011639.92'], ['store_mfn', 1169289], ['console_mfn', 1169288]]) [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:329) parseConfig: config is ['domain', ['domid', 9], ['uuid', 'd5f22dd4-8dc2-f51f-84e9-eea7d71ea1d0'], ['vcpus', 1], ['vcpu_avail', 1], ['cpu_cap', 0], ['cpu_weight', 256], ['memory', 1024], ['shadow_memory', 0], ['maxmem', 1024], ['features', ''], ['name', 'appscale-1.4b'], ['on_poweroff', 'destroy'], ['on_reboot', 'restart'], ['on_crash', 'restart'], ['image', ['linux', ['kernel', '/boot/vmlinuz-2.6.27-7-server'], ['ramdisk', '/boot/initrd.img-2.6.27-7-server'], ['ip', ':1.2.3.4::::eth0:dhcp'], ['root', '/dev/sda1 ro'], ['args', 'xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console']]], ['cpus', []], ['device', ['vif', ['backend', 0], ['script', 'vif-bridge'], ['mac', '00:16:3B:72:10:E4']]], ['device', ['vbd', ['backend', 0], ['dev', 'sda1:disk'], ['uname', 'file:/local/xen/domains/appscale1.4/root.img'], ['mode', 'w']]], ['state', '----c-'], ['shutdown_reason', 'crash'], ['cpu_time', 0.000339131], ['online_vcpus', 1], ['up_time', '0.952092885971'], ['start_time', '1299011639.92'], ['store_mfn', 1169289], ['console_mfn', 1169288]] [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:446) parseConfig: result is {'features': '', 'image': ['linux', ['kernel', '/boot/vmlinuz-2.6.27-7-server'], ['ramdisk', '/boot/initrd.img-2.6.27-7-server'], ['ip', ':1.2.3.4::::eth0:dhcp'], ['root', '/dev/sda1 ro'], ['args', 'xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console']], 'cpus': [], 'vcpu_avail': 1, 'backend': [], 'uuid': 'd5f22dd4-8dc2-f51f-84e9-eea7d71ea1d0', 'on_reboot': 'restart', 'cpu_weight': 256.0, 'memory': 1024, 'cpu_cap': 0, 'localtime': None, 'timer_mode': None, 'start_time': 1299011639.9200001, 'on_poweroff': 'destroy', 'on_crash': 'restart', 'device': [('vif', ['vif', ['backend', 0], ['script', 'vif-bridge'], ['mac', '00:16:3B:72:10:E4']]), ('vbd', ['vbd', ['backend', 0], ['dev', 'sda1:disk'], ['uname', 'file:/local/xen/domains/appscale1.4/root.img'], ['mode', 'w']])], 'bootloader': None, 'maxmem': 1024, 'shadow_memory': 0, 'name': 'appscale-1.4b', 'bootloader_args': None, 'vcpus': 1, 'cpu': None} [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:1784) XendDomainInfo.construct: None [2011-03-01 12:34:02 xend 3580] DEBUG (balloon:145) Balloon: 3034420 KiB free; need 4096; done. [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:1953) XendDomainInfo.initDomain: 10 256.0 [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:1994) _initDomain:shadow_memory=0x0, maxmem=0x400, memory=0x400. [2011-03-01 12:34:02 xend 3580] DEBUG (balloon:145) Balloon: 3034412 KiB free; need 1048576; done. [2011-03-01 12:34:02 xend 3580] INFO (image:139) buildDomain os=linux dom=10 vcpus=1 [2011-03-01 12:34:02 xend 3580] DEBUG (image:208) domid = 10 [2011-03-01 12:34:02 xend 3580] DEBUG (image:209) memsize = 1024 [2011-03-01 12:34:02 xend 3580] DEBUG (image:210) image = /boot/vmlinuz-2.6.27-7-server [2011-03-01 12:34:02 xend 3580] DEBUG (image:211) store_evtchn = 1 [2011-03-01 12:34:02 xend 3580] DEBUG (image:212) console_evtchn = 2 [2011-03-01 12:34:02 xend 3580] DEBUG (image:213) cmdline = ip=:1.2.3.4::::eth0:dhcp root=/dev/sda1 ro xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console [2011-03-01 12:34:02 xend 3580] DEBUG (image:214) ramdisk = /boot/initrd.img-2.6.27-7-server [2011-03-01 12:34:02 xend 3580] DEBUG (image:215) vcpus = 1 [2011-03-01 12:34:02 xend 3580] DEBUG (image:216) features = ==> domain-builder-ng.log <== xc_dom_build_image: called xc_dom_alloc_segment: kernel : 0xffffffff80200000 -> 0xffffffff808b7000 (pfn 0x200 + 0x6b7 pages) xc_dom_pfn_to_ptr: domU mapping: pfn 0x200+0x6b7 at 0x2aaaab5f6000 elf_load_binary: phdr 0 at 0x0x2aaaab5f6000 -> 0x0x2aaaaba3d000 elf_load_binary: phdr 1 at 0x0x2aaaaba3d000 -> 0x0x2aaaabae8888 elf_load_binary: phdr 2 at 0x0x2aaaabae9000 -> 0x0x2aaaabae9908 elf_load_binary: phdr 3 at 0x0x2aaaabaea000 -> 0x0x2aaaabb9a004 xc_dom_alloc_segment: ramdisk : 0xffffffff808b7000 -> 0xffffffff82382000 (pfn 0x8b7 + 0x1acb pages) xc_dom_malloc : 160 kB xc_dom_pfn_to_ptr: domU mapping: pfn 0x8b7+0x1acb at 0x2aaab0000000 xc_dom_do_gunzip: unzip ok, 0x8cb5e7 -> 0x1aca210 xc_dom_alloc_segment: phys2mach : 0xffffffff82382000 -> 0xffffffff82582000 (pfn 0x2382 + 0x200 pages) xc_dom_pfn_to_ptr: domU mapping: pfn 0x2382+0x200 at 0x2aaab1acb000 xc_dom_alloc_page : start info : 0xffffffff82582000 (pfn 0x2582) xc_dom_alloc_page : xenstore : 0xffffffff82583000 (pfn 0x2583) xc_dom_alloc_page : console : 0xffffffff82584000 (pfn 0x2584) nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s) nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s) nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s) nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffff827fffff, 20 table(s) xc_dom_alloc_segment: page tables : 0xffffffff82585000 -> 0xffffffff8259c000 (pfn 0x2585 + 0x17 pages) xc_dom_pfn_to_ptr: domU mapping: pfn 0x2585+0x17 at 0x2aaab1ccb000 xc_dom_alloc_page : boot stack : 0xffffffff8259c000 (pfn 0x259c) xc_dom_build_image : virt_alloc_end : 0xffffffff8259d000 xc_dom_build_image : virt_pgtab_end : 0xffffffff82800000 xc_dom_boot_image: called arch_setup_bootearly: doing nothing xc_dom_compat_check: supported guest type: xen-3.0-x86_64 <= matches xc_dom_compat_check: supported guest type: xen-3.0-x86_32p xc_dom_update_guest_p2m: dst 64bit, pages 0x40000 clear_page: pfn 0x2584, mfn 0x11d788 clear_page: pfn 0x2583, mfn 0x11d789 xc_dom_pfn_to_ptr: domU mapping: pfn 0x2582+0x1 at 0x2aaab1ce2000 start_info_x86_64: called setup_hypercall_page: vaddr=0xffffffff80209000 pfn=0x209 domain builder memory footprint allocated malloc : 12139 kB anon mmap : 0 bytes mapped file mmap : 11289 kB domU mmap : 35 MB arch_setup_bootlate: shared_info: pfn 0x0, mfn 0xd6fe1 shared_info_x86_64: called vcpu_x86_64: called vcpu_x86_64: cr3: pfn 0x2585 mfn 0x11d787 launch_vm: called, ctxt=0x97b21f8 xc_dom_release: called ==> xend.log <== [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:114) DevController: writing {'mac': '00:16:3B:72:10:E4', 'handle': '0', 'protocol': 'x86_64-abi', 'backend-id': '0', 'state': '1', 'backend': '/local/domain/0/backend/vif/10/0'} to /local/domain/10/device/vif/0. [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:116) DevController: writing {'domain': 'appscale-1.4b', 'handle': '0', 'script': '/etc/xen/scripts/vif-bridge', 'state': '1', 'frontend': '/local/domain/10/device/vif/0', 'mac': '00:16:3B:72:10:E4', 'online': '1', 'frontend-id': '10'} to /local/domain/0/backend/vif/10/0. [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:634) Checking for duplicate for uname: /local/xen/domains/appscale1.4/root.img [file:/local/xen/domains/appscale1.4/root.img], dev: sda1:disk, mode: w [2011-03-01 12:34:02 xend 3580] DEBUG (blkif:27) exception looking up device number for sda1:disk: [Errno 2] No such file or directory: '/dev/sda1:disk' [2011-03-01 12:34:02 xend 3580] DEBUG (blkif:27) exception looking up device number for sda1: [Errno 2] No such file or directory: '/dev/sda1' [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:114) DevController: writing {'virtual-device': '2049', 'device-type': 'disk', 'protocol': 'x86_64-abi', 'backend-id': '0', 'state': '1', 'backend': '/local/domain/0/backend/vbd/10/2049'} to /local/domain/10/device/vbd/2049. [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:116) DevController: writing {'domain': 'appscale-1.4b', 'frontend': '/local/domain/10/device/vbd/2049', 'format': 'raw', 'dev': 'sda1', 'state': '1', 'params': '/local/xen/domains/appscale1.4/root.img', 'mode': 'w', 'online': '1', 'frontend-id': '10', 'type': 'file'} to /local/domain/0/backend/vbd/10/2049. [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:993) Storing VM details: {'shadow_memory': '0', 'uuid': 'd5f22dd4-8dc2-f51f-84e9-eea7d71ea1d0', 'on_reboot': 'restart', 'start_time': '1299011642.74', 'on_poweroff': 'destroy', 'name': 'appscale-1.4b', 'xend/restart_count': '0', 'vcpus': '1', 'vcpu_avail': '1', 'memory': '1024', 'on_crash': 'restart', 'image': "(linux (kernel /boot/vmlinuz-2.6.27-7-server) (ramdisk /boot/initrd.img-2.6.27-7-server) (ip :1.2.3.4::::eth0:dhcp) (root '/dev/sda1 ro') (args 'xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console'))", 'maxmem': '1024'} [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:1028) Storing domain details: {'console/ring-ref': '1169288', 'console/port': '2', 'name': 'appscale-1.4b', 'console/limit': '1048576', 'vm': '/vm/d5f22dd4-8dc2-f51f-84e9-eea7d71ea1d0', 'domid': '10', 'cpu/0/availability': 'online', 'memory/target': '1048576', 'store/ring-ref': '1169289', 'store/port': '1'} [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:158) Waiting for devices vif. [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:164) Waiting for 0. [2011-03-01 12:34:02 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:1250) XendDomainInfo.handleShutdownWatch [2011-03-01 12:34:02 xend 3580] DEBUG (DevController:509) hotplugStatusCallback /local/domain/0/backend/vif/10/0/hotplug-status. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:509) hotplugStatusCallback /local/domain/0/backend/vif/10/0/hotplug-status. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:523) hotplugStatusCallback 1. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices usb. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices vbd. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:164) Waiting for 2049. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:509) hotplugStatusCallback /local/domain/0/backend/vbd/10/2049/hotplug-status. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:509) hotplugStatusCallback /local/domain/0/backend/vbd/10/2049/hotplug-status. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:523) hotplugStatusCallback 1. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices irq. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices vkbd. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices vfb. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices pci. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices ioports. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices tap. [2011-03-01 12:34:03 xend 3580] DEBUG (DevController:158) Waiting for devices vtpm. [2011-03-01 12:34:03 xend.XendDomainInfo 3580] WARNING (XendDomainInfo:1178) Domain has crashed: name=appscale-1.4b id=10. [2011-03-01 12:34:03 xend.XendDomainInfo 3580] ERROR (XendDomainInfo:2654) VM appscale-1.4b restarting too fast (2.275545 seconds since the last restart). Refusing to restart to avoid loops. [2011-03-01 12:34:03 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2189) XendDomainInfo.destroy: domid=10 ==> xen-hotplug.log <== Nothing to flush. ==> xend.log <== [2011-03-01 12:34:03 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:03 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:03 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:03 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:03 xend.XendDomainInfo 3580] INFO (XendDomainInfo:2330) Dev 2049 still active, looping... [2011-03-01 12:34:03 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2114) UUID Created: True [2011-03-01 12:34:03 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2115) Devices to release: [], domid = 10 [2011-03-01 12:34:03 xend.XendDomainInfo 3580] DEBUG (XendDomainInfo:2127) Releasing PVFB backend devices ... And this is the xen.conf file that I am using; # cat xen.conf # Configuration file for the Xen instance AppScale, created # bn VMBuilder kernel = '/boot/vmlinuz-2.6.27-7-server' ramdisk = '/boot/initrd.img-2.6.27-7-server' memory = 1024 vcpus = 1 root = '/dev/sda1 ro' disk = [ 'file:/local/xen/domains/appscale1.4/root.img,sda1,w', ] name = 'appscale-1.4b' dhcp = 'dhcp' vif = [ 'mac=00:16:3B:72:10:E4' ] on_poweroff = 'destroy' on_reboot = 'restart' on_crash = 'restart' extra = 'xencons=tty console=tty1 console=hvc0 debugger=y debug=y sync_console'

    Read the article

  • DirectX works for 64-bit but not 32-bit

    - by dtbarne
    I'm trying to play a game (Civilization 5) which was previously working but no longer. I believe I've narrowed it down to a DirectX issue because I get an error running dxdiag.exe in 32 bit mode. My goal (at least I believe) is to get Direct3D Acceleration "Enabled" in dxdiag (as it is in 64 bit dxdiag). A very similar issue is here: http://answers.microsoft.com/en-us/windows/forum/windows_7-gaming/direct3d-acceleration-is-not-available-in-windows/4c345e6e-dc68-e011-8dfc-68b599b31bf5?page=1 The proposed answer, which looks very promising, doesn't seem to work for me. Like other users in that thread, HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Direct3D\Drivers does not have a SoftwareOnly key to change. I even tried manually adding it as a string and dword, to no avail. I have a NVIDIA GeForce GT 525M, and before you ask, yes I've tried updating (also uninstalling, reinstalling) my drivers. I've also tried doing the same with DirectX (and Civilization 5 for that matter). Been debugging for some 4+ hours now after a full day of work and I've run out of ideas. I'm hoping somebody knows the solution here! :) Here's what I see when I open dxdiag: DxDiag has detected that there mgiht have been a problem accessing Direct3D the last time this program was used. Would you like to bypass Direct3D this time? No - Crash Yes - Works, but in Display tab: DirectDraw Acceleration: Disabled Direct3D Acceleration: Not Available AGP Texture Acceleration: Not Available If I click "Run 64-bit DxDiag", all three are "Enabled". I should also note that I've tried the following steps as Microsoft suggests, but I'm not able to do so as the "Change Settings" button is disabled. Some programs run very slowly—or not at all—unless Microsoft DirectDraw or Direct3D hardware acceleration is turned on. To determine this, click the Display tab, and then under DirectX Features, check to see whether DirectDraw, Direct3D, and AGP Texture Acceleration appear as Enabled. If not, try turning on hardware acceleration. Click to open Screen Resolution. Click Advanced settings. Click the Troubleshoot tab, and then click Change settings. If you're prompted for an administrator password or confirmation, type the password or provide confirmation. Move the Hardware Acceleration slider to Full. Full dxdiag dump: ------------------ System Information ------------------ Time of this report: 11/8/2012, 23:13:24 Machine name: DTBARNE Operating System: Windows 7 Professional 64-bit (6.1, Build 7601) Service Pack 1 (7601.win7sp1_gdr.120830-0333) Language: English (Regional Setting: English) System Manufacturer: Dell Inc. System Model: Dell System XPS L502X BIOS: Default System BIOS Processor: Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz (4 CPUs), ~2.5GHz Memory: 8192MB RAM Available OS Memory: 8086MB RAM Page File: 2466MB used, 13704MB available Windows Dir: C:\Windows DirectX Version: DirectX 11 DX Setup Parameters: Not found User DPI Setting: Using System DPI System DPI Setting: 96 DPI (100 percent) DWM DPI Scaling: Disabled DxDiag Version: 6.01.7601.17514 32bit Unicode DxDiag Previously: Crashed in Direct3D (stage 2). Re-running DxDiag with "dontskip" command line parameter or choosing not to bypass information gathering when prompted might result in DxDiag successfully obtaining this information ------------ DxDiag Notes ------------ Display Tab 1: No problems found. Sound Tab 1: No problems found. Sound Tab 2: No problems found. Input Tab: No problems found. -------------------- DirectX Debug Levels -------------------- Direct3D: 0/4 (retail) DirectDraw: 0/4 (retail) DirectInput: 0/5 (retail) DirectMusic: 0/5 (retail) DirectPlay: 0/9 (retail) DirectSound: 0/5 (retail) DirectShow: 0/6 (retail) --------------- Display Devices --------------- Card name: Intel(R) HD Graphics 3000 Manufacturer: Chip type: DAC type: Device Key: Enum\PCI\VEN_8086&DEV_0126&SUBSYS_04B61028&REV_09 Display Memory: Dedicated Memory: n/a Shared Memory: n/a Current Mode: 1920 x 1080 (32 bit) (60Hz) Monitor Name: Generic PnP Monitor Monitor Model: Monitor Id: Native Mode: Output Type: Driver Name: Driver File Version: () Driver Version: DDI Version: Driver Model: WDDM 1.1 Driver Attributes: Final Retail Driver Date/Size: , 0 bytes WHQL Logo'd: n/a WHQL Date Stamp: n/a Device Identifier: Vendor ID: Device ID: SubSys ID: Revision ID: Driver Strong Name: oem11.inf:IntelGfx.NTamd64.6.0:iSNBM0:8.15.10.2696:pci\ven_8086&dev_0126&subsys_04b61028 Rank Of Driver: 00E60001 Video Accel: Deinterlace Caps: n/a D3D9 Overlay: DXVA-HD: DDraw Status: Disabled D3D Status: Not Available AGP Status: Not Available ------------- Sound Devices ------------- Description: Speakers (High Definition Audio Device) Default Sound Playback: Yes Default Voice Playback: Yes Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0665&SUBSYS_102804B6&REV_1000 Manufacturer ID: 1 Product ID: 65535 Type: WDM Driver Name: HdAudio.sys Driver Version: 6.01.7601.17514 (English) Driver Attributes: Final Retail WHQL Logo'd: Yes Date and Size: 11/20/2010 22:23:47, 350208 bytes Other Files: Driver Provider: Microsoft HW Accel Level: Basic Cap Flags: 0xF1F Min/Max Sample Rate: 100, 200000 Static/Strm HW Mix Bufs: 1, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No Description: Digital Audio (S/PDIF) (High Definition Audio Device) Default Sound Playback: No Default Voice Playback: No Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0665&SUBSYS_102804B6&REV_1000 Manufacturer ID: 1 Product ID: 65535 Type: WDM Driver Name: HdAudio.sys Driver Version: 6.01.7601.17514 (English) Driver Attributes: Final Retail WHQL Logo'd: Yes Date and Size: 11/20/2010 22:23:47, 350208 bytes Other Files: Driver Provider: Microsoft HW Accel Level: Basic Cap Flags: 0xF1F Min/Max Sample Rate: 100, 200000 Static/Strm HW Mix Bufs: 1, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No --------------------- Sound Capture Devices --------------------- Description: Microphone (High Definition Audio Device) Default Sound Capture: Yes Default Voice Capture: Yes Driver Name: HdAudio.sys Driver Version: 6.01.7601.17514 (English) Driver Attributes: Final Retail Date and Size: 11/20/2010 22:23:47, 350208 bytes Cap Flags: 0x1 Format Flags: 0xFFFFF ------------------- DirectInput Devices ------------------- Device Name: Mouse Attached: 1 Controller ID: n/a Vendor/Product ID: n/a FF Driver: n/a Device Name: Keyboard Attached: 1 Controller ID: n/a Vendor/Product ID: n/a FF Driver: n/a Poll w/ Interrupt: No ----------- USB Devices ----------- + USB Root Hub | Vendor/Product ID: 0x8086, 0x1C26 | Matching Device ID: usb\root_hub20 | Service: usbhub | +-+ Generic USB Hub | | Vendor/Product ID: 0x8087, 0x0024 | | Location: Port_#0001.Hub_#0002 | | Matching Device ID: usb\class_09 | | Service: usbhub ---------------- Gameport Devices ---------------- ------------ PS/2 Devices ------------ + Standard PS/2 Keyboard | Matching Device ID: *pnp0303 | Service: i8042prt | + Terminal Server Keyboard Driver | Matching Device ID: root\rdp_kbd | Upper Filters: kbdclass | Service: TermDD | + Synaptics PS/2 Port TouchPad | Matching Device ID: *dll04b6 | Upper Filters: SynTP | Service: i8042prt | + Terminal Server Mouse Driver | Matching Device ID: root\rdp_mou | Upper Filters: mouclass | Service: TermDD ------------------------ Disk & DVD/CD-ROM Drives ------------------------ Drive: C: Free Space: 26.2 GB Total Space: 122.0 GB File System: NTFS Model: M4-CT128M4SSD2 ATA Device Drive: D: Model: Optiarc DVDRWBD BC-5540H ATA Device Driver: c:\windows\system32\drivers\cdrom.sys, 6.01.7601.17514 (English), , 0 bytes -------------- System Devices -------------- Name: High Definition Audio Controller Device ID: PCI\VEN_8086&DEV_1C20&SUBSYS_04B61028&REV_05\3&11583659&0&D8 Driver: n/a Name: PCI standard host CPU bridge Device ID: PCI\VEN_8086&DEV_0104&SUBSYS_04B61028&REV_09\3&11583659&0&00 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C1A&SUBSYS_04B61028&REV_B5\3&11583659&0&E5 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_0101&SUBSYS_20108086&REV_09\3&11583659&0&08 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C18&SUBSYS_04B61028&REV_B5\3&11583659&0&E4 Driver: n/a Name: Intel(R) Centrino(R) Advanced-N 6230 Device ID: PCI\VEN_8086&DEV_0091&SUBSYS_52218086&REV_34\4&2634DE8D&0&00E1 Driver: n/a Name: PCI standard ISA bridge Device ID: PCI\VEN_8086&DEV_1C4B&SUBSYS_04B61028&REV_05\3&11583659&0&F8 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C16&SUBSYS_04B61028&REV_B5\3&11583659&0&E3 Driver: n/a Name: Realtek PCIe GBE Family Controller Device ID: PCI\VEN_10EC&DEV_8168&SUBSYS_04B61028&REV_06\4&109EAB2F&0&00E5 Driver: n/a Name: Intel(R) Management Engine Interface Device ID: PCI\VEN_8086&DEV_1C3A&SUBSYS_04B61028&REV_04\3&11583659&0&B0 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C12&SUBSYS_04B61028&REV_B5\3&11583659&0&E1 Driver: n/a Name: NVIDIA GeForce GT 525M Device ID: PCI\VEN_10DE&DEV_0DF5&SUBSYS_04B61028&REV_A1\4&4DCA75F&0&0008 Driver: n/a Name: Standard Enhanced PCI to USB Host Controller Device ID: PCI\VEN_8086&DEV_1C2D&SUBSYS_04B61028&REV_05\3&11583659&0&D0 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C10&SUBSYS_04B61028&REV_B5\3&11583659&0&E0 Driver: n/a Name: Standard Enhanced PCI to USB Host Controller Device ID: PCI\VEN_8086&DEV_1C26&SUBSYS_04B61028&REV_05\3&11583659&0&E8 Driver: n/a Name: Standard AHCI 1.0 Serial ATA Controller Device ID: PCI\VEN_8086&DEV_1C03&SUBSYS_04B61028&REV_05\3&11583659&0&FA Driver: n/a Name: SM Bus Controller Device ID: PCI\VEN_8086&DEV_1C22&SUBSYS_04B61028&REV_05\3&11583659&0&FB Driver: n/a Name: Intel(R) HD Graphics 3000 Device ID: PCI\VEN_8086&DEV_0126&SUBSYS_04B61028&REV_09\3&11583659&0&10 Driver: n/a Name: Renesas Electronics USB 3.0 Host Controller Device ID: PCI\VEN_1033&DEV_0194&SUBSYS_04B61028&REV_04\4&3494AC3A&0&00E3 Driver: n/a ------------------ DirectShow Filters ------------------ DirectShow Filters: WMAudio Decoder DMO,0x00800800,1,1,WMADMOD.DLL,6.01.7601.17514 WMAPro over S/PDIF DMO,0x00600800,1,1,WMADMOD.DLL,6.01.7601.17514 WMSpeech Decoder DMO,0x00600800,1,1,WMSPDMOD.DLL,6.01.7601.17514 MP3 Decoder DMO,0x00600800,1,1,mp3dmod.dll,6.01.7600.16385 Mpeg4s Decoder DMO,0x00800001,1,1,mp4sdecd.dll,6.01.7600.16385 WMV Screen decoder DMO,0x00600800,1,1,wmvsdecd.dll,6.01.7601.17514 WMVideo Decoder DMO,0x00800001,1,1,wmvdecod.dll,6.01.7601.17514 Mpeg43 Decoder DMO,0x00800001,1,1,mp43decd.dll,6.01.7600.16385 Mpeg4 Decoder DMO,0x00800001,1,1,mpg4decd.dll,6.01.7600.16385 DV Muxer,0x00400000,0,0,qdv.dll,6.06.7601.17514 Color Space Converter,0x00400001,1,1,quartz.dll,6.06.7601.17713 WM ASF Reader,0x00400000,0,0,qasf.dll,12.00.7601.17514 Screen Capture filter,0x00200000,0,1,wmpsrcwp.dll,12.00.7601.17514 AVI Splitter,0x00600000,1,1,quartz.dll,6.06.7601.17713 VGA 16 Color Ditherer,0x00400000,1,1,quartz.dll,6.06.7601.17713 SBE2MediaTypeProfile,0x00200000,0,0,sbe.dll,6.06.7601.17528 Microsoft DTV-DVD Video Decoder,0x005fffff,2,4,msmpeg2vdec.dll,6.01.7140.0000 AC3 Parser Filter,0x00600000,1,1,mpg2splt.ax,6.06.7601.17528 StreamBufferSink,0x00200000,0,0,sbe.dll,6.06.7601.17528 MJPEG Decompressor,0x00600000,1,1,quartz.dll,6.06.7601.17713 MPEG-I Stream Splitter,0x00600000,1,2,quartz.dll,6.06.7601.17713 SAMI (CC) Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 VBI Codec,0x00600000,1,4,VBICodec.ax,6.06.7601.17514 MPEG-2 Splitter,0x005fffff,1,0,mpg2splt.ax,6.06.7601.17528 Closed Captions Analysis Filter,0x00200000,2,5,cca.dll,6.06.7601.17514 SBE2FileScan,0x00200000,0,0,sbe.dll,6.06.7601.17528 Microsoft MPEG-2 Video Encoder,0x00200000,1,1,msmpeg2enc.dll,6.01.7601.17514 Internal Script Command Renderer,0x00800001,1,0,quartz.dll,6.06.7601.17713 MPEG Audio Decoder,0x03680001,1,1,quartz.dll,6.06.7601.17713 DV Splitter,0x00600000,1,2,qdv.dll,6.06.7601.17514 Video Mixing Renderer 9,0x00200000,1,0,quartz.dll,6.06.7601.17713 Microsoft MPEG-2 Encoder,0x00200000,2,1,msmpeg2enc.dll,6.01.7601.17514 ACM Wrapper,0x00600000,1,1,quartz.dll,6.06.7601.17713 Video Renderer,0x00800001,1,0,quartz.dll,6.06.7601.17713 MPEG-2 Video Stream Analyzer,0x00200000,0,0,sbe.dll,6.06.7601.17528 Line 21 Decoder,0x00600000,1,1,qdvd.dll,6.06.7601.17835 Video Port Manager,0x00600000,2,1,quartz.dll,6.06.7601.17713 Video Renderer,0x00400000,1,0,quartz.dll,6.06.7601.17713 VPS Decoder,0x00200000,0,0,WSTPager.ax,6.06.7601.17514 WM ASF Writer,0x00400000,0,0,qasf.dll,12.00.7601.17514 VBI Surface Allocator,0x00600000,1,1,vbisurf.ax,6.01.7601.17514 File writer,0x00200000,1,0,qcap.dll,6.06.7601.17514 iTV Data Sink,0x00600000,1,0,itvdata.dll,6.06.7601.17514 iTV Data Capture filter,0x00600000,1,1,itvdata.dll,6.06.7601.17514 DVD Navigator,0x00200000,0,3,qdvd.dll,6.06.7601.17835 Overlay Mixer2,0x00200000,1,1,qdvd.dll,6.06.7601.17835 AVI Draw,0x00600064,9,1,quartz.dll,6.06.7601.17713 RDP DShow Redirection Filter,0xffffffff,1,0,DShowRdpFilter.dll, Microsoft MPEG-2 Audio Encoder,0x00200000,1,1,msmpeg2enc.dll,6.01.7601.17514 WST Pager,0x00200000,1,1,WSTPager.ax,6.06.7601.17514 MPEG-2 Demultiplexer,0x00600000,1,1,mpg2splt.ax,6.06.7601.17528 DV Video Decoder,0x00800000,1,1,qdv.dll,6.06.7601.17514 SampleGrabber,0x00200000,1,1,qedit.dll,6.06.7601.17514 Null Renderer,0x00200000,1,0,qedit.dll,6.06.7601.17514 MPEG-2 Sections and Tables,0x005fffff,1,0,Mpeg2Data.ax,6.06.7601.17514 Microsoft AC3 Encoder,0x00200000,1,1,msac3enc.dll,6.01.7601.17514 StreamBufferSource,0x00200000,0,0,sbe.dll,6.06.7601.17528 Smart Tee,0x00200000,1,2,qcap.dll,6.06.7601.17514 Overlay Mixer,0x00200000,0,0,qdvd.dll,6.06.7601.17835 AVI Decompressor,0x00600000,1,1,quartz.dll,6.06.7601.17713 AVI/WAV File Source,0x00400000,0,2,quartz.dll,6.06.7601.17713 Wave Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 MIDI Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 Multi-file Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 File stream renderer,0x00400000,1,1,quartz.dll,6.06.7601.17713 Microsoft DTV-DVD Audio Decoder,0x005fffff,1,1,msmpeg2adec.dll,6.01.7140.0000 StreamBufferSink2,0x00200000,0,0,sbe.dll,6.06.7601.17528 AVI Mux,0x00200000,1,0,qcap.dll,6.06.7601.17514 Line 21 Decoder 2,0x00600002,1,1,quartz.dll,6.06.7601.17713 File Source (Async.),0x00400000,0,1,quartz.dll,6.06.7601.17713 File Source (URL),0x00400000,0,1,quartz.dll,6.06.7601.17713 Infinite Pin Tee Filter,0x00200000,1,1,qcap.dll,6.06.7601.17514 Enhanced Video Renderer,0x00200000,1,0,evr.dll,6.01.7601.17514 BDA MPEG2 Transport Information Filter,0x00200000,2,0,psisrndr.ax,6.06.7601.17669 MPEG Video Decoder,0x40000001,1,1,quartz.dll,6.06.7601.17713 WDM Streaming Tee/Splitter Devices: Tee/Sink-to-Sink Converter,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 Video Compressors: WMVideo8 Encoder DMO,0x00600800,1,1,wmvxencd.dll,6.01.7600.16385 WMVideo9 Encoder DMO,0x00600800,1,1,wmvencod.dll,6.01.7600.16385 MSScreen 9 encoder DMO,0x00600800,1,1,wmvsencd.dll,6.01.7600.16385 DV Video Encoder,0x00200000,0,0,qdv.dll,6.06.7601.17514 MJPEG Compressor,0x00200000,0,0,quartz.dll,6.06.7601.17713 Cinepak Codec by Radius,0x00200000,1,1,qcap.dll,6.06.7601.17514 Intel IYUV codec,0x00200000,1,1,qcap.dll,6.06.7601.17514 Intel IYUV codec,0x00200000,1,1,qcap.dll,6.06.7601.17514 Microsoft RLE,0x00200000,1,1,qcap.dll,6.06.7601.17514 Microsoft Video 1,0x00200000,1,1,qcap.dll,6.06.7601.17514 Audio Compressors: WM Speech Encoder DMO,0x00600800,1,1,WMSPDMOE.DLL,6.01.7600.16385 WMAudio Encoder DMO,0x00600800,1,1,WMADMOE.DLL,6.01.7600.16385 IMA ADPCM,0x00200000,1,1,quartz.dll,6.06.7601.17713 PCM,0x00200000,1,1,quartz.dll,6.06.7601.17713 Microsoft ADPCM,0x00200000,1,1,quartz.dll,6.06.7601.17713 GSM 6.10,0x00200000,1,1,quartz.dll,6.06.7601.17713 CCITT A-Law,0x00200000,1,1,quartz.dll,6.06.7601.17713 CCITT u-Law,0x00200000,1,1,quartz.dll,6.06.7601.17713 MPEG Layer-3,0x00200000,1,1,quartz.dll,6.06.7601.17713 Audio Capture Sources: Microphone (High Definition Aud,0x00200000,0,0,qcap.dll,6.06.7601.17514 PBDA CP Filters: PBDA DTFilter,0x00600000,1,1,CPFilters.dll,6.06.7601.17528 PBDA ETFilter,0x00200000,0,0,CPFilters.dll,6.06.7601.17528 PBDA PTFilter,0x00200000,0,0,CPFilters.dll,6.06.7601.17528 Midi Renderers: Default MidiOut Device,0x00800000,1,0,quartz.dll,6.06.7601.17713 Microsoft GS Wavetable Synth,0x00200000,1,0,quartz.dll,6.06.7601.17713 WDM Streaming Capture Devices: HD Audio Microphone 2,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 Integrated Webcam,0x00200000,1,2,ksproxy.ax,6.01.7601.17514 WDM Streaming Rendering Devices: HD Audio Headphone/Speakers,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 HD Audio SPDIF out,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 BDA Network Providers: Microsoft ATSC Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft DVBC Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft DVBS Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft DVBT Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft Network Provider,0x00200000,0,1,MSNP.ax,6.06.7601.17514 Video Capture Sources: Integrated Webcam,0x00200000,1,2,ksproxy.ax,6.01.7601.17514 Multi-Instance Capable VBI Codecs: VBI Codec,0x00600000,1,4,VBICodec.ax,6.06.7601.17514 BDA Transport Information Renderers: BDA MPEG2 Transport Information Filter,0x00600000,2,0,psisrndr.ax,6.06.7601.17669 MPEG-2 Sections and Tables,0x00600000,1,0,Mpeg2Data.ax,6.06.7601.17514 BDA CP/CA Filters: Decrypt/Tag,0x00600000,1,1,EncDec.dll,6.06.7601.17708 Encrypt/Tag,0x00200000,0,0,EncDec.dll,6.06.7601.17708 PTFilter,0x00200000,0,0,EncDec.dll,6.06.7601.17708 XDS Codec,0x00200000,0,0,EncDec.dll,6.06.7601.17708 WDM Streaming Communication Transforms: Tee/Sink-to-Sink Converter,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 Audio Renderers: Speakers (High Definition Audio,0x00200000,1,0,quartz.dll,6.06.7601.17713 Default DirectSound Device,0x00800000,1,0,quartz.dll,6.06.7601.17713 Default WaveOut Device,0x00200000,1,0,quartz.dll,6.06.7601.17713 Digital Audio (S/PDIF) (High De,0x00200000,1,0,quartz.dll,6.06.7601.17713 DirectSound: Digital Audio (S/PDIF) (High Definition Audio Device),0x00200000,1,0,quartz.dll,6.06.7601.17713 DirectSound: Speakers (High Definition Audio Device),0x00200000,1,0,quartz.dll,6.06.7601.17713 --------------- EVR Power Information --------------- Current Setting: {651288E5-A7ED-4076-A96B-6CC62D848FE1} (Balanced) Quality Flags: 2576 Enabled: Force throttling Allow half deinterlace Allow scaling Decode Power Usage: 100 Balanced Flags: 1424 Enabled: Force throttling Allow batching Force half deinterlace Force scaling Decode Power Usage: 50 PowerFlags: 1424 Enabled: Force throttling Allow batching Force half deinterlace Force scaling Decode Power Usage: 0

    Read the article

  • How to reduce RAM consumption when my server is idle

    - by Julien Genestoux
    We use Slicehost, with 512MB instances. We run Ubuntu 9.10 on them. I installed a few packages, and I'm now trying to optimize RAM consumption before running anything on there. A simple ps gives me the list of running processes : # ps faux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 2 0.0 0.0 0 0 ? S< Jan04 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S< Jan04 0:15 \_ [migration/0] root 4 0.0 0.0 0 0 ? S< Jan04 0:01 \_ [ksoftirqd/0] root 5 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/0] root 6 0.0 0.0 0 0 ? S< Jan04 0:04 \_ [events/0] root 7 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [cpuset] root 8 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [khelper] root 9 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [async/mgr] root 10 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xenwatch] root 11 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xenbus] root 13 0.0 0.0 0 0 ? S< Jan04 0:02 \_ [migration/1] root 14 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/1] root 15 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/1] root 16 0.0 0.0 0 0 ? S< Jan04 0:07 \_ [events/1] root 17 0.0 0.0 0 0 ? S< Jan04 0:02 \_ [migration/2] root 18 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/2] root 19 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/2] root 20 0.0 0.0 0 0 ? R< Jan04 0:07 \_ [events/2] root 21 0.0 0.0 0 0 ? S< Jan04 0:04 \_ [migration/3] root 22 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksoftirqd/3] root 23 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [watchdog/3] root 24 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [events/3] root 25 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/0] root 26 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/1] root 27 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/2] root 28 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kintegrityd/3] root 29 0.0 0.0 0 0 ? S< Jan04 0:01 \_ [kblockd/0] root 30 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/1] root 31 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/2] root 32 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kblockd/3] root 33 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kseriod] root 34 0.0 0.0 0 0 ? S Jan04 0:00 \_ [khungtaskd] root 35 0.0 0.0 0 0 ? S Jan04 0:05 \_ [pdflush] root 36 0.0 0.0 0 0 ? S Jan04 0:06 \_ [pdflush] root 37 0.0 0.0 0 0 ? S< Jan04 1:02 \_ [kswapd0] root 38 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/0] root 39 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/1] root 40 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/2] root 41 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [aio/3] root 42 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsIO] root 43 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 44 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 45 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 46 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsCommit] root 47 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [jfsSync] root 48 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfs_mru_cache] root 49 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/0] root 50 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/1] root 51 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/2] root 52 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfslogd/3] root 53 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/0] root 54 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/1] root 55 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/2] root 56 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsdatad/3] root 57 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/0] root 58 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/1] root 59 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/2] root 60 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [xfsconvertd/3] root 61 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 62 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 63 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 64 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [glock_workqueue] root 65 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 66 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 67 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 68 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [delete_workqueu] root 69 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kslowd] root 70 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kslowd] root 71 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/0] root 72 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/1] root 73 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/2] root 74 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [crypto/3] root 77 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/0] root 78 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/1] root 79 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/2] root 80 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [net_accel/3] root 81 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/0] root 82 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/1] root 83 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/2] root 84 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [sfc_netfront/3] root 310 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [kstriped] root 315 0.0 0.0 0 0 ? S< Jan04 0:00 \_ [ksnapd] root 1452 0.0 0.0 0 0 ? S< Jan04 4:31 \_ [kjournald] root 1 0.0 0.1 19292 948 ? Ss Jan04 0:15 /sbin/init root 1545 0.0 0.1 13164 1064 ? S Jan04 0:00 upstart-udev-bridge --daemon root 1547 0.0 0.1 17196 996 ? S<s Jan04 0:00 udevd --daemon root 1728 0.0 0.2 20284 1468 ? S< Jan04 0:00 \_ udevd --daemon root 1729 0.0 0.1 17192 792 ? S< Jan04 0:00 \_ udevd --daemon root 1881 0.0 0.0 8192 152 ? Ss Jan04 0:00 dd bs=1 if=/proc/kmsg of=/var/run/rsyslog/kmsg syslog 1884 0.0 0.2 185252 1200 ? Sl Jan04 1:00 rsyslogd -c4 103 1894 0.0 0.1 23328 700 ? Ss Jan04 1:08 dbus-daemon --system --fork root 2046 0.0 0.0 136 32 ? Ss Jan04 4:05 runsvdir -P /etc/service log: gems/custom_require.rb:31:in `require'??from /mnt/app/superfeedr-firehoser/current/script/component:52?/opt/ruby-enterprise/lib/ruby/si root 2055 0.0 0.0 112 32 ? Ss Jan04 0:00 \_ runsv chef-client root 2060 0.0 0.0 132 40 ? S Jan04 0:02 | \_ svlogd -tt ./main root 2056 0.0 0.0 112 28 ? Ss Jan04 0:20 \_ runsv superfeedr-firehoser_2 root 2059 0.0 0.0 132 40 ? S Jan04 0:29 | \_ svlogd /var/log/superfeedr-firehoser_2 root 2057 0.0 0.0 112 28 ? Ss Jan04 0:20 \_ runsv superfeedr-firehoser_1 root 2062 0.0 0.0 132 44 ? S Jan04 0:26 \_ svlogd /var/log/superfeedr-firehoser_1 root 2058 0.0 0.0 18708 316 ? Ss Jan04 0:01 cron root 2095 0.0 0.1 49072 764 ? Ss Jan04 0:06 /usr/sbin/sshd root 9832 0.0 0.5 78916 3500 ? Ss 00:37 0:00 \_ sshd: root@pts/0 root 9846 0.0 0.3 17900 2036 pts/0 Ss 00:37 0:00 \_ -bash root 10132 0.0 0.1 15020 1064 pts/0 R+ 09:51 0:00 \_ ps faux root 2180 0.0 0.0 5988 140 tty1 Ss+ Jan04 0:00 /sbin/getty -8 38400 tty1 root 27610 0.0 1.4 47060 8436 ? S Apr04 2:21 python /usr/sbin/denyhosts --daemon --purge --config=/etc/denyhosts.conf --config=/etc/denyhosts.conf root 22640 0.0 0.7 119244 4164 ? Ssl Apr05 0:05 /usr/sbin/console-kit-daemon root 10113 0.0 0.0 3904 316 ? Ss 09:46 0:00 /usr/sbin/collectdmon -P /var/run/collectdmon.pid -- -C /etc/collectd/collectd.conf root 10114 0.0 0.2 201084 1464 ? Sl 09:46 0:00 \_ collectd -C /etc/collectd/collectd.conf -f As you can see there is nothing serious here. If I sum up the RSS line on all this, I get the following : # ps -aeo rss | awk '{sum+=$1} END {print sum}' 30096 Which makes sense. However, I have a pretty big surprise when I do a free: # free total used free shared buffers cached Mem: 591180 343684 247496 0 25432 161256 -/+ buffers/cache: 156996 434184 Swap: 1048568 0 1048568 As you can see 60% of the available memory is already consumed... which leaves me with only 40% to run my own applications if I want to avoid swapping. Quite disapointing! 2 questions arise : Where is all this memory? How to take some of it back for my own apps?

    Read the article

  • Converting a byte array to a X.509 certificate

    - by ddd
    I'm trying to port a piece of Java code into .NET that takes a Base64 encoded string, converts it to a byte array, and then uses it to make a X.509 certificate to get the modulus & exponent for RSA encryption. This is the Java code I'm trying to convert: byte[] externalPublicKey = Base64.decode("base 64 encoded string"); KeyFactory keyFactory = KeyFactory.getInstance("RSA"); EncodedKeySpec publicKeySpec = new X509EncodedKeySpec(externalPublicKey); Key publicKey = keyFactory.generatePublic(publicKeySpec); RSAPublicKey pbrtk = (java.security.interfaces.RSAPublicKey) publicKey; BigInteger modulus = pbrtk.getModulus(); BigInteger pubExp = pbrtk.getPublicExponent(); I've been trying to figure out the best way to convert this into .NET. So far, I've come up with this: byte[] bytes = Convert.FromBase64String("base 64 encoded string"); X509Certificate2 x509 = new X509Certificate2(bytes); RSA rsa = (RSA)x509.PrivateKey; RSAParameters rsaParams = rsa.ExportParameters(false); byte[] modulus = rsaParams.Modulus; byte[] exponent = rsaParams.Exponent; Which to me looks like it should work, but it throws an exception when I use the base 64 encoded string from the Java code to generate the X509 certificate. Is Java's X.509 implementation just incompatible with .NET's, or am I doing something wrong in my conversion from Java to .NET? Or is there simply no conversion from Java to .NET in this case?

    Read the article

  • C# Socket.BeginSend AsyncCallback behavior (timeout?)

    - by mdarsigny
    Hi guys, Here is a scenario with asynchronous sockets that I dont't quite understand... I have 2 Tcp sockets, a client socket & a server socket. My server socket is bound & listening on a port. My client sockets connect to the server socket (using BeginConnect / EndConnect). I then send a message to the server using BeginSend(). On the server side, I don't do a Receive() or BeginReceive(). What happens is that my AsyncCallback specified for my BeginSend call gets invoked & its IAsyncResult tells me that it completed & the call to Socket.EndSend() does not raise any exception... Is there something that I don't get or shouldn't my AsyncCallback be called only if the BeginSend call actually sends something to the server (ie.: callback called after the server has received all bytes)? If there was no receive done on the server, shouldn't my callback be called after the sendtimeout expires and my call to Socket.EndSend then would raise an exception? Thanks

    Read the article

  • "Win32 exception occurred releasing IUnknown at..." error using Pylons and WMI

    - by Anders
    Hi all, Im using Pylons in combination with WMI module to do some basic system monitoring of a couple of machines, for POSIX based systems everything is simple - for Windows - not so much. Doing a request to the Pylons server to get current CPU, however it's not working well, or atleast with the WMI module. First i simply did (something) this: c = wmi.WMI() for cpu in c.Win32_Processor(): value = cpu.LoadPercentage However, that gave me an error when accessing this module via Pylons (GET http://ip:port/cpu): raise x_wmi_uninitialised_thread ("WMI returned a syntax error: you're probably running inside a thread without first calling pythoncom.CoInitialize[Ex]") x_wmi_uninitialised_thread: <x_wmi: WMI returned a syntax error: you're probably running inside a thread without first calling pythoncom.CoInitialize[Ex] (no underlying exception)> Looking at http://timgolden.me.uk/python/wmi/tutorial.html, i wrapped the code accordingly to the example under the topic "CoInitialize & CoUninitialize", which makes the code work, but it keeps throwing "Win32 exception occurred releasing IUnknown at..." And then looking at http://mail.python.org/pipermail/python-win32/2007-August/006237.html and the follow up post, trying to follow that - however pythoncom._GetInterfaceCount() is always 20. Im guessing this is someway related to Pylons spawning worker threads and crap like that, however im kinda lost here, advice would be nice. Thanks in advance, Anders

    Read the article

< Previous Page | 570 571 572 573 574 575 576 577 578 579 580 581  | Next Page >