Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 576/1274 | < Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >

  • SFML title bar with weird characters when using UTF-8

    - by TheOm3ga
    (Previously asked at http://stackoverflow.com/questions/4922478/sfml-title-bar-with-weird-characters-when-using-utf-8) I've just started using SFML and one of the first problems I've come across is some weird characters on the the titlebar whenever I try to use accents or any other extended char. For instance, I've got: sf::RenderWindow Ventana(sf::VideoMode(800, 600, 32), "Año nuevóóó"); And the titlebar renders like AÂ+o nuevoA³A³A³ This ONLY HAPPENS if my source code file is enconded in UTF-8. If I change the file encoding to ISO-8859-1, it shows properly. Obviously all of my files use UTF-8, as its the system-wide encoding. I'm using GCC under Ubuntu GNU/Linux. I've tried using the different utilities in sf::Unicode to adapt the text, but none of them seems to work.

    Read the article

  • Bejeweled-like game, managing different gem/powerup behaviors?

    - by Wissam
    I thought I'd ask a question and look forward to some insight from this very compelling community. In a Bejeweled-like (Match 3) game, the standard behavior once a valid swap of two adjacent tiles is made is that the resulting matching tiles are destroyed, any tiles now sitting over empty spaces fall to the position above the next present-tile, and any void created above is filled with new tiles. In richer Match-3 games like Bejeweled, 4 in a row (as opposed to just 3) modifies this behavior such that the tile that was swapped is retained, turned into a "flaming" gem, it falls, and then the empty space above is filled. The next time that "flaming gem" is played it explodes and destroys the 8 perimeter tiles, triggers a different animation sequence (neighbors of those 8 tiles being destroyed look like they've been hit by a shockwave then they fall to their respective positions). Scoring is different, the triggered sounds are different, etc. There are even more elaborate behaviors for Match5, Match-cross-pattern, and many powerups that can be purchased, each which produces a more elaborate sequence of events, sounds, animations, scoring, etc... What is the best approach to developing all these different behaviors that respond to players' "move" and her current "performance" and that deviate from the standard sequence of events, scoring, animation, sounds etc, in such a way that we can always flexibly introduce a new "powerup" ? What we are doing now is hard-coding the events of each one, but the task is long and arduous and seems like the wrong approach especially since the game-designers and testers often offer (later) valuable insight on what works better in-game, which means that the code itself may have to be re-written even for minor changes in behavior (say, destroy only 7 neighboring tiles, instead of all 8 in an explosion). ANY pointers for good practices here would be highly appreciated.

    Read the article

  • DX10 sprite and pixel shader

    - by Alex Farber
    I am using ID3DX10Sprite to draw 2D image on the screen. 3D scene contains only one textured sprite placed over the whole window area. Render method looks like this: m_pDevice-ClearRenderTargetView(...); m_pSprite-Begin(D3DX10_SPRITE_SORT_TEXTURE); m_pSprite-DrawSpritesImmediate(&m_SpriteDefinition, 1, 0, 0); m_pSprite-End(); Now I want to make some transformations with the sprite texture in a shader. Currently the program doesn't work with shader. How it is possible to add pixel shader to the program with this structure? Inside the shader, I need to set all colors equal to red, and multiply pixel values by some coefficient. Something like this: float4 TexturePixelShader(PixelInputType input) : SV_Target { float4 textureColor; textureColor = shaderTexture.Sample(SampleType, input.tex); textureColor.x = textureColor.x * coefficient; textureColor.y = textureColor.x; textureColor.z = textureColor.x; return textureColor; }

    Read the article

  • What is the best type of c# timer to use with a Unity game that uses many timers simultaneously?

    - by Kyle Seidlitz
    I am developing a stand-alone 3d game in Unity that will have anywhere from 1 to 200 timers running simultaneously. There will be a GameObject containing 1 timer. For this game timer durations will range from 5 minutes to 4 days. There will not be any countdown displays or any UI for the timers. Each object is a prefab, with all the necessary materials included. An attached script will handle the timer and all the necessary code to change the materials and make any sound effects. Once the timer is expired, the user will then click on the object again, and the object will be destroyed, and the user's inventory will be adjusted. If the user wants to save or end the game before all the timers are done, the start value of the still running timers is to be saved to an XML file such that when the game is started again, any still running timers will be checked to see if they have expired, where the object's materials will be changed appropriately. I am still trying to figure out what type of timer to use, and see also if there are any suggestions for saving and calculating times over several days. What class(es) of timers should I use? Are there any special issues I should look out for in terms of performance?

    Read the article

  • X Error of failed request: BadMatch [migrated]

    - by Andrew Grabko
    I'm trying to execute some "hello world" opengl code: #include <GL/freeglut.h> void displayCall() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); ... Some more code here glutSwapBuffers(); } int main(int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); glutInitWindowSize(500, 500); glutInitWindowPosition(300, 200); glutInitContextVersion(4, 2); glutInitContextFlags(GLUT_FORWARD_COMPATIBLE); glutCreateWindow("Hello World!"); glutDisplayFunc(displayCall); glutMainLoop(); return 0; } As a result I get: X Error of failed request: BadMatch (invalid parameter attributes) Major opcode of failed request: 128 (GLX) Minor opcode of failed request: 34 () Serial number of failed request: 39 Current serial number in output stream: 40 Here is the stack trace: fghCreateNewContext() at freeglut_window.c:737 0x7ffff7bbaa81 fgOpenWindow() at freeglut_window.c:878 0x7ffff7bbb2fb fgCreateWindow() at freeglut_structure.c:106 0x7ffff7bb9d86 glutCreateWindow() at freeglut_window.c:1,183 0x7ffff7bbb4f2 main() at AlphaTest.cpp:51 0x4007df Here is the last piece of code, after witch the program crashes: createContextAttribs = (CreateContextAttribsProc) fghGetProcAddress("glXCreateContextAttribsARB" ); if ( createContextAttribs == NULL ) { fgError( "glXCreateContextAttribsARB not found" ); } context = createContextAttribs( dpy, config, share_list, direct, attributes ); "glXCreateContextAttribsARB" address is obtained successfully, but the program crashes on its invocation. If I specify OpenGL version less than 4.2 in "glutInitContextVersion()" program runs without errors. Here is my glxinfo's OpelGL version: OpenGL version string: 4.2.0 NVIDIA 285.05.09 I would be very appreciate any further ideas.

    Read the article

  • Triple buffering causes input lag?

    - by user782220
    Consider some time in between two vsyncs. Suppose the first display buffer is being used to display the current image, and suppose the game was really fast and computed and rendered the next image to the second display buffer and the next one after that to the third display buffer. That is the rendering to the second and third display buffer happens so fast that it occurs before the next vsync. Suppose input from the user comes in now. What you would like is for the results of the input to show up on the next vsync or (probably more typical) the vsync after that. However, with the third display buffer already rendered the input can only effect the image after that. Meaning the input will only take effect at best 3 vsyncs later. I wish i had an image to show the exact timings of what I mean.

    Read the article

  • Detect if square in grid is within a diamond shape

    - by myrkos
    So I have a game in which basically everything is a square inside a big grid. It's easy to check if a square is inside a box whose center is another square: *** x *o* --> x is not in o's square *** **x *o* --> x IS in o's square *** This can be done by simply subtracting the coordinates of o and x, then taking the largest coordinate of that and comparing it with the half side length. Now I want to do the same thing but check if x is in o's diamond, like so: * **x **o** --> x IS in o's diamond *** * What would be the best way to check if a square is in another square's surrounding diamond-shaped area, given the diamond's half width/height?

    Read the article

  • how to make a continuous machine gun sound-effect

    - by Jan
    I am trying to make an entity fire one or more machine-guns. For each gun I store the time between shots (1.0 / firing rate) and the time since the last shot. Also I've loaded ~10 different gun-shot sound-effects. Now, for each gun I do the following: function update(deltatime): timeSinceLastShot += deltatime if timeSinceLastShot >= timeBetweenShots + verySmallRandomValue(): timeSinceLastShot -= timeBetweenShots if gunIsFiring: displayMuzzleFlash() spawnBullet() selectRandomSound().play() But now I often get a crackling noise (which I assume is when two or more guns are firing at the same time and confuse the sound-device). My question is whether A) This a common problem and there is a well-known solution, maybe to do with the channels or something, or B) I am using a completely wrong approach to the task. I had a look at some sound-assets for other games and they used complete burst with multiple shots. I suppose I could try that, but I would like to have organic little hickups in the gun-fire (that's what the random value is for) to make the game more gritty and dirty. I am using Panda3D, but I had the exact same problem in PyGame and SDL. [edit] Thanks a lot for the answers so far! One more problem with faking it though: Now how do I stop the sound? Let's say I have an effect with 5 bangs... *bang* *bang* *bang* *bang* *bang* And I magically manage to loop it so that there's no gap or overlap if the player fires more than 5 shots. Now, what do I do if the player stops firing halfway through the third bang? How do I know how long to keep playing the sample so that the third bang is completed and I can start playing the rumbling echo of the last shot? Of course I can look up the shot/pause timing of that sound-sample and code accordingly, but it feels extremely hacky.

    Read the article

  • How to handle loading and keeping many bitmaps in an Android 2D game

    - by Lumis
    In an Android 2D game which is using SurfaceView where its onDraw is driven by a loop from a Thread, I use many bitmap sprites (sprite sheets) and two background size bitmaps, which are all loaded into memory at the start. It all works fine, however, when the activity is onPause or after reloading it few times, Android shows a tendency to wipe out the big bitmaps only, probably to free memory. Sometimes this happens even in the middle of loading this very activity. In order to counter this, I made a check in the onDraw method to test if the big bitmaps are still there and reload them if they are forcefully recycled by Android, before drawing them on Canvas. This solution may not be the most stable, and since I know that there are much more accomplished android game programmers here than myself, I hope you can reveal some tricks or secrets or at least provide some good hints, how to overcome this.

    Read the article

  • Implementing invisible bones

    - by DeadMG
    I suddenly have the feeling that I have absolutely no idea how to implement invisible objects/bones. Right now, I use hardware instancing to store the world matrix of every bone in a vertex buffer, and then send them all to the pipeline. But when dealing with frustrum culling, or having them set to invisible by my simulation for other reasons, means that some of them will be randomly invisible. Does this mean I effectively need to re-fill the buffer from scratch every frame with only the visible unit's matrices? This seems to me like it would involve a lot of wasted bandwidth.

    Read the article

  • How do I plot individual pixels using the XNA APIs?

    - by izb
    If I wanted to fill my game screen with individually coloured pixels, how would I do this? For example, if I wanted to write a 'game of life'-type game where each pixel was a cell, how would I achieve this using XNA? I've tried just calling SetData() on a Texture2D object using a screen-sized array of Color values, but it complains with: You may not call SetData on a resource while it is actively set on the GraphicsDevice. Unset it from the device before calling SetData. How do I do as it asks? Or better still... is there an alternative, better, efficient way to fill a screen with arbitrary pixels?

    Read the article

  • Collision planes confusion

    - by Jeffrey
    I'm following this tutorial by thecplusplusguy and in the linked video he explain that for example for the world basement and walls we need to create the actual rendered (shown to the player) walls and then duplicate them, place them in the same coordinates as the rendered walls and call them collision (by defining their material to collision). Then it defines in the Object loader function that those objects with material == collision are collision planes and should not be rendered but just used to check collision. Now I'm pretty confused. Why would we add this kind of complexity to a problem that can easily be solved by a simple loadObject(string plane_object, bool check_collision);: Creating only the walls object (by loading .obj file in plane_object) Define them also as collision planes whenever the check_collision is set to true In this case we have lowered the complexity of his method and make it more flexible and faster to develop (faster because we don't always have to make a copy for each plane and flexible because we don't hardcode the Object loader). The only case in which this method could not work is when we need hidden collision planes, and for that we could modify the loadObject() function like this: loadObject(string plane_object, bool check_collision = true, bool hide_object = false); Creating only the walls object (by loading .obj file in plane_object) Define them also as collision planes whenever the check_collision is set to true And add the ability to actually show the object or hide it based on hide_object. The final question is: am I right? What would the possible problem encountered with my solution versus his?

    Read the article

  • Rendering output to arbitary quadrilateral

    - by Trainee4Life
    I want to render output on a device to an arbitary quadirlateral, i.e. project texture on to a quad. What are the possible ways I could implement it? Till now, I have investigated: Drawing textured quadrilateral - Quads look odd as they are composed of triangles, and the distortion looks odd. The issue I'm facing has been discussed here and here as well. Setting transformation on device - Need help in getting this implemented. Pixel shaders - Not able to implement the desired effect. Any help would be much appreciated.

    Read the article

  • Should components have sub-components in a component-based system like Artemis?

    - by Daniel Ingraham
    I am designing a game using Artemis, although this is more of philosophical question about component-based design in general. Let's say I have non-primitive data which applies to a given component (a Component "animal" may have qualities such as "teeth" or "diet"). There are three ways to approach this in data-driven design, as I see it: 1) Generate classes for these qualities using "traditional" OOP. I imagine this has negative implications for performance, as systems then must be made aware of these qualities in order to process them. It also seems counter to the overall philosophy of data-driven design. 2) Include these qualities as sub-components. This seems off, in that we are now confusing the role of components with that of entities. Moreover out of the box Artemis isn't capable of mapping these subcomponents onto their parent components. 3) Add "teeth", "diet", etc. as components to the overall entity alongside "animal". While this feels odd hierarchically, it may simply be a peculiarity of component-based systems. I suspect 3 is the correct way to think about things, but I was curious about other ideas.

    Read the article

  • Problems with SAT Collision Detection

    - by DJ AzKai
    I'm doing a project in one of my modules for college in C++ with SFML and I was hoping someone may be able to help me. I'm using a vector of squares and triangles and I am using the SAT collision detection method to see if objects collide and to make the objects respond to the collision appropriately using the MTV(minimum translation vector) Below is my code: //from the main method int main(){ // Create the main window sf::RenderWindow App(sf::VideoMode(800, 600, 32), "SFML OpenGL"); // Create a clock for measuring time elapsed sf::Clock Clock; srand(time(0)); //prepare OpenGL surface for HSR glClearDepth(1.f); glClearColor(0.3f, 0.3f, 0.3f, 0.f); //background colour glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); //// Setup a perspective projection & Camera position glMatrixMode(GL_PROJECTION); glLoadIdentity(); //set up a 3D Perspective View volume //gluPerspective(90.f, 1.f, 1.f, 300.0f);//fov, aspect, zNear, zFar //set up a orthographic projection same size as window //this mease the vertex coordinates are in pixel space glOrtho(0,800,0,600,0,1); // use pixel coordinates // Finally, display rendered frame on screen vector<BouncingThing*> triangles; for(int i = 0; i < 10; i++) { //instantiate each triangle; triangles.push_back(new BouncingTriangle(Vector2f(rand() % 700, rand() % 500), 3)); } vector<BouncingThing*> boxes; for(int i = 0; i < 10; i++) { //instantiate each box; boxes.push_back(new BouncingBox(Vector2f(rand() % 700, rand() % 500), 4)); } CollisionDetection * b = new CollisionDetection(); // Start game loop while (App.isOpen()) { // Process events sf::Event Event; while (App.pollEvent(Event)) { // Close window : exit if (Event.type == sf::Event::Closed) App.close(); // Escape key : exit if ((Event.type == sf::Event::KeyPressed) && (Event.key.code == sf::Keyboard::Escape)) App.close(); } //Prepare for drawing // Clear color and depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0; i < 10; i++) { triangles[i]->draw(); boxes[i]->draw(); triangles[i]->update(Vector2f(800,600)); boxes[i]->draw(); boxes[i]->update(Vector2f(800,600)); } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(boxes[i]))); } } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(boxes[i]))); } } App.display(); } return EXIT_SUCCESS; } (ignore this line) //from the BouncingThing.cpp BouncingThing::BouncingThing(Vector2f position, int noSides) : pos(position), pi(3.14), radius(3.14), nSides(noSides) { collided = false; if(nSides ==3) { Vector2f vert1 = Vector2f(-12.0f,-12.0f); Vector2f vert2 = Vector2f(0.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); } else if(nSides == 4) { Vector2f vert1 = Vector2f(-12.0f,12.0f); Vector2f vert2 = Vector2f(12.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); Vector2f vert4 = Vector2f(-12.0f, -12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); verts.push_back(vert4); } velocity.x = ((rand() % 5 + 1) / 3) + 1; velocity.y = ((rand() % 5 + 1) / 3 ) +1; } void BouncingThing::update(Vector2f screenSize) { Transform t; t.rotate(0); for(int i=0;i< verts.size(); i++) { verts[i]=t.transformPoint(verts[i]); } if(pos.x >= screenSize.x || pos.x <= 0) { velocity.x *= -1; } if(pos.y >= screenSize.y || pos.y <= 0) { velocity.y *= -1; } if(collided) { //velocity.x *= -1; //velocity.y *= -1; collided = false; } pos += velocity; } void BouncingThing::setCollision(bool x){ collided = x; } void BouncingThing::draw() { glBegin(GL_POLYGON); glColor3f(0,1,0); for(int i = 0; i < verts.size(); i++) { glVertex2f(pos.x + verts[i].x,pos.y + verts[i].y); } glEnd(); } vector<Vector2f> BouncingThing::getNormals() { vector<Vector2f> normalVerts; if(nSides == 3) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); Vector2f ac = Vector2f((verts[2].x + pos.x) - (verts[0].x + pos.x), (verts[2].y + pos.y) - (verts[0].y + pos.y)); ac = flip(ac); ac.x *= -1; normalVerts.push_back(ac); return normalVerts; } if(nSides ==4) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); return normalVerts; } } Vector2f BouncingThing::flip(Vector2f v){ float vyTemp = v.x; float vxTemp = v.y * -1; return Vector2f(vxTemp, vyTemp); } (Ignore this line) CollisionDetection::CollisionDetection() { } vector<float> CollisionDetection::bubbleSort(vector<float> w) { int temp; bool finished = false; while (!finished) { finished = true; for (int i = 0; i < w.size()-1; i++) { if (w[i] > w[i+1]) { temp = w[i]; w[i] = w[i+1]; w[i+1] = temp; finished=false; } } } return w; } class Vector{ public: //static int dp_count; static float dot(sf::Vector2f a,sf::Vector2f b){ //dp_count++; return a.x*b.x+a.y*b.y; } static float length(sf::Vector2f a){ return sqrt(a.x*a.x+a.y*a.y); } static Vector2f add(Vector2f a, Vector2f b) { return Vector2f(a.x + b.y, a.y + b.y); } static sf::Vector2f getNormal(sf::Vector2f a,sf::Vector2f b){ sf::Vector2f n; n=a-b; n/=Vector::length(n);//normalise float x=n.x; n.x=n.y; n.y=-x; return n; } }; bool CollisionDetection::CheckCollision(BouncingThing & x, BouncingThing & y) { vector<Vector2f> xVerts = x.getVerts(); vector<Vector2f> yVerts = y.getVerts(); vector<Vector2f> xNormals = x.getNormals(); vector<Vector2f> yNormals = y.getNormals(); int size; vector<float> xRange; vector<float> yRange; for(int j = 0; j < xNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(xNormals[j], Vector2f(xVerts[i].x, xVerts[i].x))); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(xNormals[j], Vector2f(yVerts[i].x , yVerts[i].y))); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } float x3 = Min(xRange[0], yRange[0]); float y3 = Max(xRange[xRange.size() - 1], yRange[yRange.size() - 1]); float length = Max(x3, y3) - Min(x3, y3); } for(int j = 0; j < yNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(yNormals[j], xVerts[i])); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(yNormals[j], yVerts[i])); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } } return true; } float CollisionDetection::Min(float min, float max) { if(max < min) { min = max; } else return min; } float CollisionDetection::Max(float min, float max) { if(min > max) { max = min; } else return min; } On the screen the objects will freeze for a small amount of time before moving off again. However the problem is is that when this happens there are no collisions actually happening and I would really love to find out where the flaw is in the code. If you need any more information/code please don't hesitate to ask and I'll reply as soon as possible Regards, AzKai

    Read the article

  • Creating Rectangle-based buttons with OnClick events

    - by Djentleman
    As the title implies, I want a Button class with an OnClick event handler. It should fire off connected events when it is clicked. This is as far as I've made it: public class Button { public event EventHandler OnClick; public Rectangle Rec { get; set; } public string Text { get; set; } public Button(Rectangle rec, string text) { this.Rec = rec; this.Text = text; } } I have no clue what I'm doing with regards to events. I know how to use them but creating them myself is another matter entirely. I've also made buttons without using events that work on a case-by-case basis. So basically, I want to be able to attach methods to the OnClick EventHandler that will fire when the Button is clicked (i.e., the mouse intersects Rec and the left mouse button is clicked).

    Read the article

  • Unity 3D coding language, C# or JavaScript [on hold]

    - by hemantchhabra
    Hello to the gaming community. I am a budding game designer, learning to code for the first time in my life. I did learned c++ in school, 8 years back, so I sort of understand the logic when people are doing coding and I can suggest them the right route also, but to an extent I can't code. I am beginning to learn coding for Unity 3D. Which one do you suggest is more versatile and easier to work on for future, because I am a game designer not a coder, I would do coding until I don't have anyone else to code for me. It should be easy and fast to learn, functional and universal to apply, and innovative at the same time. C# or JavaScript ? Thank you for your time Ps- if you could suggest me steps to learn and tutorials to look for, that would be just awesome.

    Read the article

  • Algorithm to map an area [on hold]

    - by user37843
    I want to create a crawler that starts in a room and from that room to move North,East,West and South until there aren't any new rooms to visit. I don't want to have duplicates and the output format per line to be something like this: current room, neighbour 1, neighbour 2 ... and in the end to apply BFS algorithm to find the shortest path between 2 rooms. Can anyone offer me some suggestion what to use? Thanks

    Read the article

  • Design leaderboard ratings for quiz games

    - by PeterK
    Back in March 2011 i started the following post: How to design a leaderboard? Now my quiz game have been out for approximately a year and sold pretty decently. I am working on to update the game design and is again looking into the leaderboard design to make it better as i am not happy with it. Currently i rate players on number of correct answers, which is not good as it does not consider things like number of games, difficulty levels etc. I also have "extended" stats behind the UITableView (Leaderboard). A player can play based on three levels of difficulty: hard, medium or easy Difficulty levels can be mixed between players in a game Each game can be one to six players, so there can be single games or duels Between 2 and 30 questions per game As i am considering integrating Game Center Leaderboard i need to design a better rating system so i would like to ask for some ideas how to do the rating based on the above. I am thinking about how much a point would be worth and what it includes.

    Read the article

  • Player sprite moving slower on iPhone 4

    - by nvillec
    I just finished getting movement/jump animation for a player sprite in Xcode using Cocos2D. The basic movement algorithm is a timer that updates every 0.01 sec, changing the sprite position to (sprite.position.x + xVel, sprite.position.y + yVel). Each time a movement button is tapped, the appropriate velocity (initialized to 0) is changed to whatever speed I choose, then a stop movement button returns the velocity to 0. It's not an ideal solution but I'm very new at this and stoked to at least have that working with little help from the internet. So I may not have explained that perfectly, but it is in fact working to my satisfaction in Xcode's iPhone Simulator, however when I build it for my device and run it on my phone, the sprite's movement speed is noticeably slower than in Xcode. At first I thought it must have to do with the resolution of the iPhone 4, making the sprite's movement path twice as long, but I found that if I pull up the multitask bar, then return to the app the speed will sometimes jump back to normal. My second theory was that the code is just inefficient and is bogging the processes down, but I would see this reflected in the frame rate wouldn't I? It stays at 59-60 the whole time, and the spritesheet animation runs at the correct speed. Has anyone experienced this? Is this a really obvious issue that I'm completely missing? Any help (or tips for optimizing my approach to movement) would be much appreciated!

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • Resolving collisions between dynamic game objects

    - by TheBroodian
    I've been building a 2D platformer for some time now, I'm getting to the point where I am adding dynamic objects to the stage for testing. This has prompted me to consider how I would like my character and other objects to behave when they collide. A typical staple in many 2D platformer type games is that the player takes damage upon touching an enemy, and then essentially becomes able to pass through enemies during a period of invulnerability, and at the same time, enemies are able to pass through eachother freely. I personally don't want to take this approach, it feels strange to me that the player should receive arbitrary damage for harmless contact to an enemy, despite whether the enemy is attacking or not, and I would like my enemies' interactions between each other (and my player) to be a little more organic, so to speak. In my head I sort of have this idea where a game object (player, or non player) would be able to push other game objects around by manner of 'pushing' each other out of one anothers' bounding boxes if there is an intersection, and maybe correlate the repelling force to how much their bounding boxes are intersecting. The problem I'm experiencing is I have no idea what the math might look like for something like this? I'll show what work I've done so far, it sort of works, but it's jittery, and generally not quite what I would pass in a functional game: //Clears the anti-duplicate buffer collisionRecord.Clear(); //pick a thing foreach (GameObject entity in entities) { //pick another thing foreach (GameObject subject in entities) { //check to make sure both things aren't the same thing if (!ReferenceEquals(entity, subject)) { //check to see if thing2 is in semi-near proximity to thing1 if (entity.WideProximityArea.Intersects(subject.CollisionRectangle) || entity.WideProximityArea.Contains(subject.CollisionRectangle)) { //check to see if thing2 and thing1 are colliding. if (entity.CollisionRectangle.Intersects(subject.CollisionRectangle) || entity.CollisionRectangle.Contains(subject.CollisionRectangle) || subject.CollisionRectangle.Contains(entity.CollisionRectangle)) { //check if we've already resolved their collision or not. if (!collisionRecord.ContainsKey(entity.GetHashCode())) { //more duplicate resolution checking. if (!collisionRecord.ContainsKey(subject.GetHashCode())) { //if thing1 is traveling right... if (entity.Velocity.X > 0) { //if it isn't too far to the right... if (subject.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height)) || subject.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = entity.CollisionRectangle.Right - subject.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the left, and thing2 to the right. entity.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //if thing1 is traveling left... if (entity.Velocity.X < 0) { //if thing1 isn't too far left... if (entity.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height)) || entity.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = subject.CollisionRectangle.Right - entity.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the right, and thing2 to the left. entity.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //Make record that thing1 and thing2 have interacted and the collision has been solved, so that if thing2 is picked next in the foreach loop, it isn't checked against thing1 a second time before the next update. collisionRecord.Add(entity.GetHashCode(), subject.GetHashCode()); } } } } } } } } One of the biggest issues with my code aside from the jitteriness is that if one character were to land on top of another character, it very suddenly and abruptly resolves the collision, whereas I would like a more subtle and gradual resolution. Any thoughts or ideas are incredibly welcome and helpful.

    Read the article

  • Any technical references for game-oriented icons and symbols?

    - by willc2
    To make localizing easier, I'm using icons to show in-game information like achievements and bonuses. Coming up with good designs isn't easy, especially when it has to be integrated into the rest of the game's art style. Can I do better than looking at some random selection of existing games? Are there any reference books or sites that cover game graphics specifically? I'm looking for more theory and best-practices rather than pre-made graphics.

    Read the article

  • Alternative to NV Occlusion Query - getting the number of fragments which passed the depth test

    - by Etan
    In "modern" environments, the "NV Occlusion Query" extension provide a method to get the number of fragments which passed the depth test. However, on the iPad / iPhone using OpenGL ES, the extension is not available. What is the most performant approach to implement a similar behaviour in the fragment shader? Some of my ideas: Render the object completely in white, then count all the colors together using a two-pass shader where first a vertical line is rendered and for each fragment the shader computes the sum over the whole row. Then, a single vertex is rendered whose fragment sums all the partial sums of the first pass. Doesn't seem to be very efficient. Render the object completely in white over a black background. Downsample recursively, abusing the hardware linear interpolation between textures until being at a reasonably small resolution. This leads to fragments which have a greyscale level depending on the number of white pixels where in their corresponding region. Is this even accurate enough? ... ?

    Read the article

  • Lag compensation of projectile shooting game

    - by Denis Ermolin
    I'm thinking about an algorithm for firing projectiles with lag compensation. Now I did find only one descent solution: Player hits fire button. Client sends input "fire". Client waits for server response. Server generates bullet then sends response to client. Client recieves response and finally fires projectile. Is this solution only "trueway"? I find it the only one that can be fair to all of the clients. Valve in this case, doesn't compensate lag from rocket shots. I am feeling that I will not compensate it, too. I think that with today's bandwidth I can close my eyes on this problem, because I don't see any solutions with fair logic. What do you think?

    Read the article

< Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >