Search Results

Search found 6209 results on 249 pages for 'composite pattern'.

Page 58/249 | < Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >

  • Parallel Class/Interface Hierarchy with the Facade Design Pattern?

    - by Mike G
    About a third of my code is wrapped inside a Facade class. Note that this isn't a "God" class, but actually represents a single thing (called a Line). Naturally, it delegates responsibilities to the subsystem behind it. What ends up happening is that two of the subsystem classes (Output and Timeline) have all of their methods duplicated in the Line class, which effectively makes Line both an Output and a Timeline. It seems to make sense to make Output and Timeline interfaces, so that the Line class can implement them both. At the same time, I'm worried about creating parallel class and interface structures. You see, there are different types of lines AudioLine, VideoLine, which all use the same type of Timeline, but different types of Output (AudioOutput and VideoOutput, respectively). So that would mean that I'd have to create an AudioOutputInterface and VideoOutputInterface as well. So not only would I have to have parallel class hierarchy, but there would be a parallel interface hierarchy as well. Is there any solution to this design flaw? Here's an image of the basic structure (minus the Timeline class, though know that each Line has-a Timeline): NOTE: I just realized that the word 'line' in Timeline might make is sound like is does a similar function as the Line class. They don't, just to clarify.

    Read the article

  • What is a good design pattern / lib for iOS 5 to synchronize with a web service?

    - by Junto
    We are developing an iOS application that needs to synchronize with a remote server using web services. The existing web services have an "operations" style rather than REST (implemented in WCF but exposing JSON HTTP endpoints). We are unsure of how to structure the web services to best fit with iOS and would love some advice. We are also interested in how to manage the synchronization process within iOS. Without going into detailed specifics, the application allows the user to estimate repair costs at a remote site. These costs are broken down by room and item. If the user has an internet connection this data can be sent back to the server. Multiple photographs can be taken of each item, but they will be held in a separate queue, which sends when the connection is optimal (ideally wifi). Our backend application controls the unique ids for each room and item. Thus, each time we send these costs to the server, the server echoes the central database ids back, thus, that they can be synchronized in the mobile app. I have simplified this a little, since the operations contract is actually much larger, but I just want to illustrate the basic requirements without complicating matters. Firstly, the web service architecture: We currently have two operations: GetCosts and UpdateCosts. My assumption is that if we used a strict REST architecture we would need to break our single web service operations into multiple smaller services. This would make the services much more chatty and we would also have to guarantee a delivery order from the app. For example, we need to make sure that containing rooms are added before the item. Although this seems much more RESTful, our perception is that these extra calls are expensive connections (security checks, database calls, etc). Does the type of web api (operation over service focus) determine chunky vs chatty? Since this is mobile (3G), are we better handling lots of smaller messages, or a few large ones? Secondly, the iOS side. What is the current advice on how to manage data synchronization within the iOS (5) app itself. We need multiple queues and we need to guarantee delivery order in each queue (and technically, ordering between queues). The server needs to control unique ids and other properties and echo them back to the application. The application then needs to update an internal database and when re-updating, make sure the correct ids are available in the update message (essentially multiple inserts and updates in one call). Our backend has a ton of business logic operating on these cost estimates. We don't want any of this in the app itself. Currently the iOS app sends the cost data, and then the server echoes that data back with populated ids (and other data). The existing cost data is deleted and the echoed response data is added to the client database on the device. This is causing us problems, because any photos might not have been sent, but the original entity tree has been removed and replaced. Obviously updating the costs tree rather than replacing it would remove this problem, but I'm not sure if there are any nice xcode libraries out there to do such things. I welcome any advice you might have.

    Read the article

  • How to save one role implementing a client/server pattern in Azure?

    - by Alfredo Delsors
    Sometimes you need to have an instance performing a server role when other instances are playing the client role. An example can be a file sharing like in this great post: http://blogs.msdn.com/b/mariok/archive/2011/02/11/sharing-folders-in-azure.aspx, one instance shares a folder that all other instances are using to write files that the server processes. The problem is that there is not discovering mechanism in Azure that allows one instance to know where the instance acting as a server is located. A first approach can be having a server role and a client role like in the previous post. This means more instances, more money. A solution to save this "server" role is to use Instance 0, always available, to act as a server. An instance can know that it should act as the server checking RoleEnvironment.CurrentRoleInstance.Id.EndsWith(".0"). Other instances can iterate the RoleEnvironment Instances collection to find the instance whose name ends with ".0", getting its endpoints and acting as its clients.

    Read the article

  • Design Pattern Books, Papers or Resources for Non-Object Orientated Paradigms?

    - by FinnNk
    After viewing this video on InfoQ about functional design patterns I was wondering what resources are out there on design patterns for non-object orientated paradigms. There are plenty out there for the OO world (GOF, etc, etc) and for architecture (EoEAA, etc, etc) but I'm not aware of what's out there for functional, logic, or other programming paradigms. Is there anything? A comment during the video suggests possibly not - does anyone know better? (By the way, by design patterns I don't mean language features or data structures but higher level approaches to designing an application - as discussed in the linked video)

    Read the article

  • Is there a pattern or logical structure I can follow for Event Log Numbers?

    - by makerofthings7
    What are some ideas or structure I can use when assigning EventID to events that will be saved to the Event Log? Some options I've considered Sequential (0... int.Max) Multiple of 10, where the "0" is replaced with how noisy the debugLevel is set. xxx0 may represent exceptions, critical information, start, stop etc. ...? What numbering approach gives you the most insight when a user describes the event in an email or phone? What is the most useful to support staff?

    Read the article

  • What OO Design to use ( is there a Design Pattern )?

    - by Blundell
    I have two objects that represent a 'Bar/Club' ( a place where you drink/socialise). In one scenario I need the bar name, address, distance, slogon In another scenario I need the bar name, address, website url, logo So I've got two objects representing the same thing but with different fields. I like to use immutable objects, so all the fields are set from the constructor. One option is to have two constructors and null the other fields i.e: class Bar { private final String name; private final Distance distance; private final Url url; public Bar(String name, Distance distance){ this.name = name; this.distance = distance; this.url = null; } public Bar(String name, Url url){ this.name = name; this.distance = null; this.url = url; } // getters } I don't like this as you would have to null check when you use the getters In my real example the first scenario has 3 fields and the second scenario has about 10, so it would be a real pain having two constructors, the amount of fields I would have to declare null and then when the object are in use you wouldn't know which Bar you where using and so what fields would be null and what wouldn't. What other options do I have? Two classes called BarPreview and Bar? Some type of inheritance / interface? Something else that is awesome?

    Read the article

  • What's is the point of PImpl pattern while we can use interface for same purpose in C++?

    - by ZijingWu
    I see a lot of source code which using PIMPL idiom in C++. I assume Its purposes are hidden the private data/type/implementation, so it can resolve dependence, and then reduce compile time and header include issue. But interface class in C++ also have this capability, it can also used to hidden data/type and implementation. And to hidden let the caller just see the interface when create object, we can add an factory method in it declaration in interface header. The comparison is: Cost: The interface way cost is lower, because you doesn't even need to repeat the public wrapper function implementation void Bar::doWork() { return m_impl->doWork(); }, you just need to define the signature in the interface. Well understand: The interface technology is more well understand by every C++ developer. Performance: Interface way performance not worse than PIMPL idiom, both an extra memory access. I assume the performance is same. Following is the pseudocode code to illustrate my question: // Forward declaration can help you avoid include BarImpl header, and those included in BarImpl header. class BarImpl; class Bar { public: // public functions void doWork(); private: // You doesn't need to compile Bar.cpp after change the implementation in BarImpl.cpp BarImpl* m_impl; }; The same purpose can be implement using interface: // Bar.h class IBar { public: virtual ~IBar(){} // public functions virtual void doWork() = 0; }; // to only expose the interface instead of class name to caller IBar* createObject(); So what's the point of PIMPL?

    Read the article

  • Which is a better design pattern for a database wrapper: Save as you go or Save when your done?

    - by izuriel
    I know this is probably a bad way to ask this question. I was unable to find another question that addressed this. The full question is this: We're producing a wrapper for a database and have two different viewpoints on managing data with the wrapper. The first is that all changes made to a data object in code must be persisted in the database by calling a "save" method to actually save the changes. The other side is that these changes should be save as they are made, so if I change a property it's saved, I change another it's save as well. What are the pros/cons of either choice and which is the "proper" way to manage the data?

    Read the article

  • What Java data structure/design pattern best models this object, considering it would perform these methods?

    - by zundarz
    Methods: 1. getDistance(CityA,CityB) // Returns distance between two cities 2. getCitiesInRadius(CityA,integer) // Returns cities within a given distance of another city 3. getCitiesBeyondRadius(CityA,integer) //Returns cities beyond a given distance of another city 4. getRemoteDestinations(integer) // Returns all city pairs greater than x distance of each other 5. getLocalDestinations(integer) //Returns all city pairs within x distance of each other

    Read the article

  • WHY Google does not ban these sites using this SEO pattern? [on hold]

    - by saddam.bg
    I have seen some sites using a different kind of SEO to promote copyrighted materials such as movies. They also have submitted their site to Google webmaster tools but still now did not get banned. Their Alexa ranks are 7000 or less. On the other hand I have run 5 movie affiliate sites and all of them got banned by Google within a short period of time. I have copied the url of the homepage of solarmovie.me and pasted it on the google search and instead of the homepage url I have seen that their category or tag shows as the homepage (www.solarmovie.me/watch-category/hollyw... Now is solarmovie.me publishing its posts as a single page or something else? I tried to find out what kind of SEO or coding that was, but I couldn't since I have very little knowledge about coding. Also I have seen the same thing with ALLUC.TO in google search (www.alluc.to/popular-links.html). Could anyone please help with the SEO of this kind so that I don't get banned by google frequently or index removed. All SEO webmaster i need your help!!!! Please give me some good tips for this type of SEO. Thank You Very Much

    Read the article

  • Oracle B2B - Synchronous Request Reply

    - by cdwright
    Introduction So first off, let me say I didn't create this demo (although I did modify it some). I got it from a member of the B2B development technical staff. Since it came with only a simple readme file, I thought I would take some time and write a more detailed explanation about how it works. Beginning with Oracle SOA Suite PS5 (11.1.1.6), B2B supports synchronous request reply over http using the b2b/syncreceiver servlet. I’m attaching the demo to this blog which includes a SOA composite archive that needs to be deployed using JDeveloper, a B2B repository with two agreements that need to be deployed using the B2B console, and a test xml file that gets sent to the b2b/syncreceiver servlet using your favorite SOAP test tool (I'm using Firefox Poster here). You can download the zip file containing the demo here. The demo works by sending the sample xml request file (req.xml) to http://<b2bhost>:8001/b2b/syncreceiver using the SOAP test tool.  The syncreceiver servlet keeps the socket connection open between itself and the test tool so that it can synchronously send the reply message back. When B2B receives the inbound request message, it is passed to the SOA composite through the default B2B Fabric binding. A simple reply is created in BPEL and returned to B2B which then sends the message back to the test tool using that same socket connection. I’ll show you the B2B configuration first, then we’ll look at the soa composite. Configuring B2B No additional configuration necessary in order to use the syncreceiver servlet. It is already running when you start SOA. After importing the GC_SyncReqRep.zip repository file into B2B, you’ll have the typical GlobalChips host trading partner and the Acme remote trading partner. Document Management The repository contains two very simple custom XML document definitions called Orders and OrdersResponse. In order to determine the trading partner agreement needed to process the inbound Orders document, you need to know two things about it; what is it and where it came from. So let’s look at how B2B identifies the appropriate document definition for the message. The XSD’s for these two document definitions themselves are not particularly interesting. Whenever you're dealing with custom XML documents, B2B identifies the appropriate document definition for each XML message using an XPath Identification Expression. The expression is entered for each of these document definitions under the document administration tab in the B2B console. The full XPATH expression for the Orders document is  //*[local-name()='shiporder']/*[local-name()='shipto']/*[local-name()='name']/text(). You can see this path in the XSD diagram below and how it uniquely identifies this message. The OrdersReponse document is identified in the same way. The XPath expression for it is //*[local-name()='Response']/*[local-name()='Status']/text(). You can see how it’s path differs uniquely identifying the reply from the request. Trading Partner Profile The trading partner profiles are very simple too. For GlobalChips, a generic identifier is being used to identify the sender of the response document using the host trading partner name. For Acme, a generic identifier is also being used to identify the sender of the inbound request using the remote trading partner name. The document types are added for the remote trading partner as usual. So the remote trading partner Acme is the sender of the Orders document, and it is the receiver of the OrdersResponse document. For the remote trading partner only, there needs to be a dummy channel which gets used in the outbound response agreement. The channel is not actually used. It is just a necessary place holder that needs to be there when creating the agreement. Trading Partner Agreement The agreements are equally simple. There is no validation and translation is not an option for a custom XML document type. For the InboundAgreement (request) the document definition is set to OrdersDef. In the Agreement Parameters section the generic identifiers have been added for the host and remote trading partners. That’s all that is needed for the inbound transaction. For the OutboundAgreement (response), the document definition is set to OrdersResponseDef and the generic identifiers for the two trading partners are added. The remote trading partner dummy delivery channel is also added to the agreement. SOA Composite Import the SOA composite archive into JDeveloper as an EJB JAR file. Open the composite and you should have a project that looks like this. In the composite, open the b2bInboundSyncSvc exposed service and advance through the setup wizard. Select your Application Server Connection and advance to the Operations window. Notice here that the B2B binding is set to Receive. It is not set for Synchronous Request Reply. Continue advancing through the wizard as you normally would and select finish at the end. Now open BPELProcess1 in the composite. The BPEL process is set as a Synchronous Request Reply as you can see below. The while loop is there just to give the process something to do. The actual reply message is prepared in the assignResponseValues assignment followed by an Invoke of the B2B binding. Open the replyResponse Invoke and go to the properties tab. You’ll see that the fromTradingPartnerId, toTradingPartner, documentTypeName, and documentProtocolRevision properties have been set. Testing the Configuration To test the configuration, I used Firefox Poster. Enter the URL for the b2b/syncreceiver servlet and browse for the req.xml file that contains the test request message. In the Headers tab, add the property ‘from’ and give it the value ‘Acme’. This is how B2B will know where the message is coming from and it will use that information along with the document type name to find the right trading partner agreement. Now post the message. You should get back a response with a status of ‘200 OK’. That’s all there is to it.

    Read the article

  • Simplifying for-if messes with better structure?

    - by HH
    # Description: you are given a bitwise pattern and a string # you need to find the number of times the pattern matches in the string # any one liner or simple pythonic solution? import random def matchIt(yourString, yourPattern): """find the number of times yourPattern occurs in yourString""" count = 0 matchTimes = 0 # How can you simplify the for-if structures? for coin in yourString: #return to base if count == len(pattern): matchTimes = matchTimes + 1 count = 0 #special case to return to 2, there could be more this type of conditions #so this type of if-conditionals are screaming for a havoc if count == 2 and pattern[count] == 1: count = count - 1 #the work horse #it could be simpler by breaking the intial string of lenght 'l' #to blocks of pattern-length, the number of them is 'l - len(pattern)-1' if coin == pattern[count]: count=count+1 average = len(yourString)/matchTimes return [average, matchTimes] # Generates the list myString =[] for x in range(10000): myString= myString + [int(random.random()*2)] pattern = [1,0,0] result = matchIt(myString, pattern) print("The sample had "+str(result[1])+" matches and its size was "+str(len(myString))+".\n" + "So it took "+str(result[0])+" steps in average.\n" + "RESULT: "+str([a for a in "FAILURE" if result[0] != 8])) # Sample Output # # The sample had 1656 matches and its size was 10000. # So it took 6 steps in average. # RESULT: ['F', 'A', 'I', 'L', 'U', 'R', 'E']

    Read the article

  • incapsulation of a code inmatlab

    - by user531225
    my code is pathname=uigetdir; filename=uigetfile('*.txt','choose a file name.'); data=importdata(filename); element= (data.data(:,10)); in_array=element; pattern= [1 3]; locations = cell(1, numel(pattern)); for p = 1:(numel(pattern)) locations{p} = find(in_array == pattern(p)); end idx2 = []; for p = 1:numel(locations{1}) start_value = locations{1}(p); for q = 2:numel(locations) found = true; if (~any((start_value + q - 1) == locations{q})) found = false; break; end end if (found) idx2(end + 1) = locations{1}(p); end end [m2,n2]=size(idx2) res_name= {'one' 'two'}; res=[n n2]; In this code I finding a pattern in one of the column of my data file and counting how many times it's repeated. I have like 200 files that I want to do the same with them but unfotunatlly I'm stuck. this is what I have added so far pathname=uigetdir; files=dir('*.txt'); for k=1:length(files) filename=files(k).name; data(k)=importdata(files(k).name); element{k}=data(1,k).data(:,20); in_array=element;pattern= [1 3]; locations = cell(1, numel(pattern)); for p = 1:(numel(pattern)) locations{p} = find(in_array{k}== pattern(p)); end idx2{k} = []; how can I continue this code..??

    Read the article

  • comparision of strings

    - by EmiLazE
    i am writing a program, that simulates game mastermind. but i am struggling on how to compare guessed pattern to key pattern. the game conditions are a little bit changed: patterns consist of letters. if an element of guessed pattern is equal to element of key pattern, and also index is equal, then print b. if an element of guessed pattern is equal to element of key pattern, but index is not, then print w. if an element of guessed pattern is not equal to element of key pattern, print dot. in feedback about guessed pattern, 'b's come first, 'w's second, '.'s last. my problem is that i cannot think of a way totally satisfies the answer. for (i=0; i<patternlength; i++) { for (x=0; x<patternlength; x++) { if (guess[i]==key[x] && i==x) printf("b"); if (guess[i]==key[x] && i!=x) printf("w"); if (guess[i]!=key[x]) printf("."); } }

    Read the article

  • AS11 Oracle B2B Sync Support - Series 2

    - by sinkarbabu.kirubanithi
    In the earlier series, we discussed about how to model "Sync Support" in Oracle B2B. And, we haven't discussed how the response can be consumed synchronously by the back-end application or initiator of sync request. In this sequel, we will see how we can extend it to the SOA composite applications to model the end-to-end usecase, this would help the initiator of sync request to receive the response synchronously. Series 2 - is little lengthier for blog standards so be prepared before you continue further :). Let's start our discussion with a high-level scenario where one need to initiate a synchronous request and get response synchronously. There are various approaches available, we will see one simplest approach here. Components Involved: 1. Oracle B2B 2. Oracle JCA JMS Adapter 3. Oracle BPEL 4. All of the above are wrapped up in a single SOA composite application. Oracle B2B: Skipping the "Sync Support" setup part in B2B, as we have already discussed that in the earlier series 1. Here we have provided "Sync Support" samples that can be imported to B2B directly and users can start testing the same in few minutes. Initiator Sample: This requires two JMS queues to be created, one for B2B to receive initial outbound sync request and the other is for B2B to deliver the incoming sync response to the back-end. Please enable "Use JMS Id" option in both internal listening and delivery channels. This would enable JCA JMS Adapter to correlate the initial B2B request and response and in turn it would be returned as synchronous response of BPEL. Internal Listening Channel Image: Internal Delivery Channel Image: To get going without much challenges, just create queues in Weblogic with the JNDI mentioned in the above two screenshots. If you want to use different names, then you may have to change the queue jndi names in sample after importing it into B2B. Here are the Queue related JNDI names used in the sample, 1. Internal Listening Channel Queue details, Name: JNDI Name: jms/b2b/syncreplyqueue 2. Internal Delivery Channel Queue details, Name: JNDI Name: jms/b2b/syncrequestqueue Here is the Initiator Sample Acme.zip Note: You may have to adjust the ip address of GlobalChips endpoint in the Delivery Channel. Responder Sample: Contains B2B meta-data and the Callout. Just import the sample and place the callout binary under "/tmp/callout" directory. If you choose to use a different location for callout, then you may have to change the same in B2B Configuration after importing the sample. Here are the artifacts, 1. Callout Source SampleCallout.java 2. Callout Binary sample-callout.jar 3. Responder Sample GlobalChips.zip Callout Details: Just gives the static response XML that needs to be sent back as response for the inbound sync request. For a sample purpose, we have given static response but in production you may have to invoke a web service or something similar to get the response. IMPORTANT NOTE: For Sync Support use case, responder is not expected to deliver the inbound sync request to backend as the process of delivering and getting the response from backend are expected from the Callout. This default behavior can be overridden by enabling the config property "b2b.SyncAppDelivery=true" in B2B config mbean (b2b-config.xml). This makes B2B to deliver the inbound sync request to be delivered to backend queue but the response to be sent to remote caller still has to come from Callout. 2. Oracle JCA JMS Adapter: On the initiator side, we have used JCA JMS Request/Reply pattern to send/receive the synchronous message from B2B. 3. Oracle BPEL: Exposes WS-SOAP Endpoint that takes payload as input and passes the same to B2B and returns the synchronous response of B2B as SOAP response. For outside world, it looks as if it is the synchronous web service endpoint but under the cover it uses JMS to trigger/initiate B2B to send and receive the synchronous response. 4. Composite application: All the components discussed above are wired in SOA composite application that helps to model a end-to-end synchronous use case. Here's the composite application sca_B2BSyncSample_rev1.0.jar, you may just deploy this to your AS11 SOA to make use of it. For any editing, you can just import the project in your JDEV under any SOA Application. Here are the composite application screenshots, Composite Application: BPEL With JCA JMS Adapter (Request/Reply):

    Read the article

  • Multiple comosite applications on same WSDL endpoint with OPEN-ESB

    - by Simon Thompson
    Just learning how Open-ESB (GlassFishESB) works and evaluating it for a project. One point I do not understand is that if I have a Composite application bound to an incoming web service (hosted on the glassfish server) can I get muple composite applications to consume this message ? If so is it done by A) simply deploying the multiple composite applications each referencing the save URL and same WSDL B) include each JBI module in the CASA editor and deploy a single composite application with all parts included (will this reduce scaling?) C) create a new composite application which has a BPEL process to send the in message to new endpoints for each compisite applciation . My feeling is that option A should work?

    Read the article

  • What is a good pattern for binding a collection of objects coming from WCF, in Silverlight?

    - by Krishna
    Hi there, I've got a question about a Silverlight WCF Databinding pattern: There are many examples about how to bind data using {Binding} expressions in XAML, how to make async calls to a WCF service, set the DataContext property of a element in the UI, how to use ObservableCollections and INotifyPropertyChanged, INotifyCollectionChanged and so on. Background: I'm using the MVVM pattern, and have a Silverlight ItemsControl, whose ItemsSource is set to an ObservableCollection property on my ViewModel object. My view is of course the XAML which has the {Binding}. Say the model object is called 'Metric'. My ViewModel periodically makes calls to a WCF service that returns ObservableCollection. MetricInfo is the data transfer object (DTO). My question is two-fold: Is there any way to avoid copying each property of MetricInfo to the model class - Metric? When the WCF calls completes, is there any way to make sure I sync the items which are in both my local ObservableCollection and the result of the WCF call - without having to first clear out all the items in the local collection and then add all the ones from the WCF call result? thanks, Krishna

    Read the article

  • Is it worthwhile to implement observer pattern in PHP?

    - by Extrakun
    I have been meaning to make use of design pattern in PHP, such as the observer pattern, but that I have to recreate the observers' relationship each time the page is loaded pains me. As references are saved as a new concrete objects in session, there is no way to preserve relationships between subscribers and their observers unless you use a GUID or some other properties to form a lookup, and store that property instead. With the cost of recreating the relationships each time a page is loaded, is it worthwhile to use design patterns such as observers in PHP, compared to having a clean design? Any real-world experience to share?

    Read the article

  • JSF2 - Why does render response not rerender component setting?

    - by fekete-kamosh
    From the tutorial: "If the request is a postback and errors were encountered during the apply request values phase, process validations phase, or update model values phase, the original page is rendered during Render response phase" (http://java.sun.com/javaee/5/docs/tutorial/doc/bnaqq.html) Does it mean that if view is restored in "Restore View" phase and then any apply request/validation/update model phase fails and skips to "Render response" that Render response only passes restored view without any changes to client? Managed Bean: package cz.test; import javax.faces.bean.ManagedBean; import javax.faces.bean.RequestScoped; @ManagedBean @RequestScoped public class TesterBean { // Simple DataStore (in real world EJB) private static String storedSomeValue = null; private String someValue; public TesterBean() { } public String storeValue() { storedSomeValue = someValue; return "index"; } public String eraseValue() { storedSomeValue = null; return "index"; } public String getSomeValue() { someValue = storedSomeValue; return someValue; } public void setSomeValue(String someValue) { this.someValue = someValue; } } Composite component: <?xml version='1.0' encoding='ISO-8859-1' ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core" xmlns:composite="http://java.sun.com/jsf/composite" xmlns:c="http://java.sun.com/jsp/jstl/core"> <!-- INTERFACE --> <composite:interface> <composite:attribute name="currentBehaviour" type="java.lang.String" required="true"/> <composite:attribute name="fieldValue" required="true"/> </composite:interface> <!-- IMPLEMENTATION --> <composite:implementation> <h:panelGrid columns="3"> <c:choose> <c:when test="#{cc.attrs.currentBehaviour == 'READONLY'}" > <h:outputText id="fieldValue" value="#{cc.attrs.fieldValue}"> </h:outputText> </c:when> <c:when test="#{cc.attrs.currentBehaviour == 'MANDATORY'}" > <h:inputText id="fieldValue" value="#{cc.attrs.fieldValue}" required="true"> <f:attribute name="requiredMessage" value="Field is mandatory"/> <c:if test="#{empty cc.attrs.fieldValue}"> <f:attribute name="style" value="background-color: yellow;"/> </c:if> </h:inputText>&nbsp;* </c:when> <c:when test="#{cc.attrs.currentBehaviour == 'OPTIONAL'}" > <h:inputText id="fieldValue" value="#{cc.attrs.fieldValue}"> </h:inputText> </c:when> </c:choose> <h:message for="fieldValue" style="color:red;" /> </h:panelGrid> </composite:implementation> Page: <?xml version='1.0' encoding='UTF-8' ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html" xmlns:ez="http://java.sun.com/jsf/composite/components"> <h:head> <title>Testing page</title> </h:head> <h:body> <h:form> <h:outputText value="Some value:"/> <ez:field-component currentBehaviour="MANDATORY" fieldValue="#{testerBean.someValue}"/> <h:commandButton value="Store" action="#{testerBean.storeValue}"/> <h:commandButton value="Erase" action="#{testerBean.eraseValue}" immediate="true"/> </h:form> <br/><br/> <b>Why is field's background color not set to yellow?</b> <ol> <li>NOTICE: Field has yellow background color (mandatory field with no value)</li> <li>Fill in any value (eg. "Hello") and press Store</li> <li>NOTICE: Yellow background disappeared (as mandatory field has value)</li> <li>Clear text in the field and press Store</li> <li><b>QUESTION: Why is field's background color not set to yellow?</b></li> <li>Press Erase</li> <li>NOTICE: Field has yellow background color (mandatory field with no value)</li> </ol> </h:body>

    Read the article

  • Is there a recommended way to use the Observer pattern in MVP using GWT?

    - by Tomislav Nakic-Alfirevic
    I am thinking about implementing a user interface according to the MVP pattern using GWT, but have doubts about how to proceed. These are (some of) my goals: - the presenter knows nothing about the UI technology (i.e. uses nothing from com.google.*) - the view knows nothing about the model or the presenter - the model knows nothing of the view or the presenter (...obviously) I would place an interface between the view and the presenter and use the Observer pattern to decouple the two: the view generates events and the presenter gets notified. What confuses me is that java.util.Observer and java.util.Observable are not supported in GWT. This suggests that what I'm doing is not the recommended way to do it, as far as GWT is concerned, which leads me to my questions: what is the recommended way to implement MVP using GWT, specifically with the above goals in mind? How would you do it?

    Read the article

  • Is this a well known design pattern? what is it's name

    - by GenEric35
    Hi I have seen this often in code, but when I speak of it i don't know the name of such 'pattern' I have a method with 2 arguments that calls an overloaded method that has 3 arguments and intentionality sets the 3rd one to empty string. public DoWork(string name, string phoneNumber) { CreateContact(name, phoneNumber, string.Empty) } public DoWork(string name, string phoneNumber, string emailAddress) { //do the work } The reason I'm doing this is I to not duplicate code, and allow the existing callers to still call the method that has only 2 parameters. I have associate a few tags to this question, but it probably fit in more categories of questions. Is this a pattern, and does it have a name?

    Read the article

  • Stream classes ... design, pattern for creating views over streams

    - by ToxicAvenger
    A question regarding the design of stream classes - I need a pattern to create independent views over a single stream instance (in my case for reading). A view would be a consecutive part of the stream. The problem I have with the stream classes is that the state (reading or writing) is coupled with the underlying data/storage. So if I need to partition a stream into different segments (whether segments overlap or not doesn't matter), I cannot easily create views over the stream, the views would store start and end position. Because reading from a view - which would translate to reading from the underlying stream adjusted based on the start/end positions - would change the state of the underlying stream instance. So what I could do is take a read on a view instance, adjust the Position of the stream, read the chunks I need. But I cannot do that concurrently. Why is it designed in such a way, and what kind of pattern could I implement to create independet views over a single stream instance which would allow to read/write independently (and concurrently)?

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

  • Cloud to On-Premise Connectivity Patterns

    - by Rajesh Raheja
    Do you have a requirement to convert an Opportunity in Salesforce.com to an Order/Quote in Oracle E-Business Suite? Or maybe you want the creation of an Oracle RightNow Incident to trigger an on-premise Oracle E-Business Suite Service Request creation for RMA and Field Scheduling? If so, read on. In a previous blog post, I discussed integrating TO cloud applications, however the use cases above are the reverse i.e. receiving data FROM cloud applications (SaaS) TO on-premise applications/databases that sit behind a firewall. Oracle SOA Suite is assumed to be on-premise with with Oracle Service Bus as the mediation and virtualization layer. The main considerations for the patterns are are security i.e. shielding enterprise resources; and scalability i.e. minimizing firewall latency. Let me use an analogy to help visualize the patterns: the on-premise system is your home - with your most valuable possessions - and the SaaS app is your favorite on-line store which regularly ships (inbound calls) various types of parcels/items (message types/service operations). You need the items at home (on-premise) but want to safe guard against misguided elements of society (internet threats) who may masquerade as postal workers and vandalize property (denial of service?). Let's look at the patterns. Pattern: Pull from Cloud The on-premise system polls from the SaaS apps and picks up the message instead of having it delivered. This may be done using Oracle RightNow Object Query Language or SOAP APIs. This is particularly suited for certain integration approaches wherein messages are trickling in, can be centralized and batched e.g. retrieving event notifications on an hourly schedule from the Oracle Messaging Service. To compare this pattern with the home analogy, you are avoiding any deliveries to your home and instead go to the post office/UPS/Fedex store to pick up your parcel. Every time. Pros: On-premise assets not exposed to the Internet, firewall issues avoided by only initiating outbound connections Cons: Polling mechanisms may affect performance, may not satisfy near real-time requirements Pattern: Open Firewall Ports The on-premise system exposes the web services that needs to be invoked by the cloud application. This requires opening up firewall ports, routing calls to the appropriate internal services behind the firewall. Fusion Applications uses this pattern, and auto-provisions the services on the various virtual hosts to secure the topology. This works well for service integration, but may not suffice for large volume data integration. Using the home analogy, you have now decided to receive parcels instead of going to the post office every time. A door mail slot cut out allows the postman can drop small parcels, but there is still concern about cutting new holes for larger packages. Pros: optimal pattern for near real-time needs, simpler administration once the service is provisioned Cons: Needs firewall ports to be opened up for new services, may not suffice for batch integration requiring direct database access Pattern: Virtual Private Networking The on-premise network is "extended" to the cloud (or an intermediary on-demand / managed service offering) using Virtual Private Networking (VPN) so that messages are delivered to the on-premise system in a trusted channel. Using the home analogy, you entrust a set of keys with a neighbor or property manager who receives the packages, and then drops it inside your home. Pros: Individual firewall ports don't need to be opened, more suited for high scalability needs, can support large volume data integration, easier management of one connection vs a multitude of open ports Cons: VPN setup, specific hardware support, requires cloud provider to support virtual private computing Pattern: Reverse Proxy / API Gateway The on-premise system uses a reverse proxy "API gateway" software on the DMZ to receive messages. The reverse proxy can be implemented using various mechanisms e.g. Oracle API Gateway provides firewall and proxy services along with comprehensive security, auditing, throttling benefits. If a firewall already exists, then Oracle Service Bus or Oracle HTTP Server virtual hosts can provide reverse proxy implementations on the DMZ. Custom built implementations are also possible if specific functionality (such as message store-n-forward) is needed. In the home analogy, this pattern sits in between cutting mail slots and handing over keys. Instead, you install (and maintain) a mailbox in your home premises outside your door. The post office delivers the parcels in your mailbox, from where you can securely retrieve it. Pros: Very secure, very flexible Cons: Introduces a new software component, needs DMZ deployment and management Pattern: On-Premise Agent (Tunneling) A light weight "agent" software sits behind the firewall and initiates the communication with the cloud, thereby avoiding firewall issues. It then maintains a bi-directional connection either with pull or push based approaches using (or abusing, depending on your viewpoint) the HTTP protocol. Programming protocols such as Comet, WebSockets, HTTP CONNECT, HTTP SSH Tunneling etc. are possible implementation options. In the home analogy, a resident receives the parcel from the postal worker by opening the door, however you still take precautions with chain locks and package inspections. Pros: Light weight software, IT doesn't need to setup anything Cons: May bypass critical firewall checks e.g. virus scans, separate software download, proliferation of non-IT managed software Conclusion The patterns above are some of the most commonly encountered ones for cloud to on-premise integration. Selecting the right pattern for your project involves looking at your scalability needs, security restrictions, sync vs asynchronous implementation, near real-time vs batch expectations, cloud provider capabilities, budget, and more. In some cases, the basic "Pull from Cloud" may be acceptable, whereas in others, an extensive VPN topology may be well justified. For more details on the Oracle cloud integration strategy, download this white paper.

    Read the article

< Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >