Search Results

Search found 3423 results on 137 pages for 'glm math'.

Page 58/137 | < Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >

  • Python to C# Conversion of RGBA values not working

    - by clangers
    I'm currently converting some python code to C#, and I'm having an issue with the RGBA C# libraries # Original Python Code: d = math.sqrt( (x - size/2.0)**2 + (y - size/2.0)**2 ) rgbVal = int(200*d/md + 50) rgba = (0,0,0, 255 - rgbVal) img.putpixel((x,y), rgba) // My C# Code double d = Math.Sqrt(Math.Pow((x - DotSize / 2.0), 2) + Math.Pow((y - DotSize / 2.0), 2)); int rgbVal = (int) (200 * d / md + 50); Color color = Color.FromArgb(255 - rgbVal, 0, 0, 0); // ** ERROR ** img.SetPixel(x,y, color); At both instances of the code d is equal to 106 and md is equal to 53. However the resulting rgbVal value is 450. This would obviously mean that 255 - 450 is -195, which causes an error to be thrown as each individual value must be between 0 and 255. Anyone have any idea how I can fix this. Please note that the data is the same when running both the python and C# versions.

    Read the article

  • Accessing local variable doesn't improve performance

    - by NicMagnier
    The short version Why is this code: var index = (Math.floor(y / scale) * img.width + Math.floor(x / scale)) * 4; More performant than this one? var index = Math.floor(ref_index) * 4; The long version This week, the author of Impact js published an article about some rendering issue: http://www.phoboslab.org/log/2012/09/drawing-pixels-is-hard In the article there was the source of a function to scale an image by accessing pixels in the canvas. I wanted to suggest some traditional ways to optimize this kind of code so that the scaling would be shorter at loading time. But after testing it my result was most of the time worst that the original function. Guessing this was the JavaScript engine that was doing some smart optimization I tried to understand a bit more what was going on so I did a bunch of test. But my results are quite confusing and I would need some help to understand what's going on. I have a test page here: http://www.mx981.com/stuff/resize_bench/test.html jsPerf: http://jsperf.com/local-variable-due-to-the-scope-lookup To start the test, click the picture and the results will appear in the console. There are three different versions: The original code: for( var y = 0; y < heightScaled; y++ ) { for( var x = 0; x < widthScaled; x++ ) { var index = (Math.floor(y / scale) * img.width + Math.floor(x / scale)) * 4; var indexScaled = (y * widthScaled + x) * 4; scaledPixels.data[ indexScaled ] = origPixels.data[ index ]; scaledPixels.data[ indexScaled+1 ] = origPixels.data[ index+1 ]; scaledPixels.data[ indexScaled+2 ] = origPixels.data[ index+2 ]; scaledPixels.data[ indexScaled+3 ] = origPixels.data[ index+3 ]; } } jsPerf: http://jsperf.com/so-accessing-local-variable-doesn-t-improve-performance One of my attempt to optimize it: var ref_index = 0; var ref_indexScaled = 0 var ref_step = 1 / scale; for( var y = 0; y < heightScaled; y++ ) { for( var x = 0; x < widthScaled; x++ ) { var index = Math.floor(ref_index) * 4; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index ]; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index+1 ]; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index+2 ]; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index+3 ]; ref_index+= ref_step; } } jsPerf: http://jsperf.com/so-accessing-local-variable-doesn-t-improve-performance The same optimized code but with recalculating the index variable each time (Hybrid) var ref_index = 0; var ref_indexScaled = 0 var ref_step = 1 / scale; for( var y = 0; y < heightScaled; y++ ) { for( var x = 0; x < widthScaled; x++ ) { var index = (Math.floor(y / scale) * img.width + Math.floor(x / scale)) * 4; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index ]; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index+1 ]; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index+2 ]; scaledPixels.data[ ref_indexScaled++ ] = origPixels.data[ index+3 ]; ref_index+= ref_step; } } jsPerf: http://jsperf.com/so-accessing-local-variable-doesn-t-improve-performance The only difference in the two last one is the calculation of the 'index' variable. And to my surprise the optimized version is slower in most browsers (except opera). Results of personal testing (not the jsPerf tests): Opera Original: 8668ms Optimized: 932ms Hybrid: 8696ms Chrome Original: 139ms Optimized: 145ms Hybrid: 136ms Safari Original: 433ms Optimized: 853ms Hybrid: 451ms Firefox Original: 343ms Optimized: 422ms Hybrid: 350ms After digging around, it seems an usual good practice is to access mainly local variable due to the scope lookup. Because The optimized version only call one local variable it should be faster that the Hybrid code which call multiple variable and object in addition to the various operation involved. So why the "optimized" version is slower? I thought that it might be because some JavaScript engine don't optimize the Optimized version because it is not hot enough but after using --trace-opt in chrome, it seems all version are properly compiled by V8. At this point I am a bit clueless and wonder if somebody would know what is going on? I did also some more test cases in this page: http://www.mx981.com/stuff/resize_bench/index.html

    Read the article

  • CSM shadow errors when models are split

    - by KaiserJohaan
    I'm getting closer to fixing CSM, but there seems to be one more issue at hand. At certain angles, the models will be caught/split between two shadow map cascades, like below. first depth split second depth split - here you can see the model is caught between the splits How does one fix this? Increase the overlapping boundaries between the splits? Or is the frustrum erronous? CameraFrustrum CalculateCameraFrustrum(const float fovDegrees, const float aspectRatio, const float minDist, const float maxDist, const Mat4& cameraViewMatrix, Mat4& outFrustrumMat) { CameraFrustrum ret = { Vec4(1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, 1.0f, 0.0f, 1.0f), Vec4(-1.0f, 1.0f, 0.0f, 1.0f), Vec4(-1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, -1.0f, 1.0f, 1.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, -1.0f, 1.0f, 1.0f), }; const Mat4 perspectiveMatrix = PerspectiveMatrixFov(fovDegrees, aspectRatio, minDist, maxDist); const Mat4 invMVP = glm::inverse(perspectiveMatrix * cameraViewMatrix); outFrustrumMat = invMVP; for (Vec4& corner : ret) { corner = invMVP * corner; corner /= corner.w; } return ret; } Mat4 CreateDirLightVPMatrix(const CameraFrustrum& cameraFrustrum, const Vec3& lightDir) { Mat4 lightViewMatrix = glm::lookAt(Vec3(0.0f), -glm::normalize(lightDir), Vec3(0.0f, -1.0f, 0.0f)); Vec4 transf = lightViewMatrix * cameraFrustrum[0]; float maxZ = transf.z, minZ = transf.z; float maxX = transf.x, minX = transf.x; float maxY = transf.y, minY = transf.y; for (uint32_t i = 1; i < 8; i++) { transf = lightViewMatrix * cameraFrustrum[i]; if (transf.z > maxZ) maxZ = transf.z; if (transf.z < minZ) minZ = transf.z; if (transf.x > maxX) maxX = transf.x; if (transf.x < minX) minX = transf.x; if (transf.y > maxY) maxY = transf.y; if (transf.y < minY) minY = transf.y; } Mat4 viewMatrix(lightViewMatrix); viewMatrix[3][0] = -(minX + maxX) * 0.5f; viewMatrix[3][1] = -(minY + maxY) * 0.5f; viewMatrix[3][2] = -(minZ + maxZ) * 0.5f; viewMatrix[0][3] = 0.0f; viewMatrix[1][3] = 0.0f; viewMatrix[2][3] = 0.0f; viewMatrix[3][3] = 1.0f; Vec3 halfExtents((maxX - minX) * 0.5, (maxY - minY) * 0.5, (maxZ - minZ) * 0.5); return OrthographicMatrix(-halfExtents.x, halfExtents.x, halfExtents.y, -halfExtents.y, halfExtents.z, -halfExtents.z) * viewMatrix; }

    Read the article

  • gluLookAt vectors and FPS-style camera

    - by Kevin Pamplona
    I am attempting to implemented an FPS-style camera by updating three vectors: EYE, DIR, UP. These vectors are the same that are used by gluLookAt (since gluLookAt is specified by the position of the camera, the direction it is looking at, and an up vector). I have already implemented the left-right and up-down strafing movements, but I'm having a lot of trouble understanding the math behind making the camera look-around while remaining stationary. In this case, the EYE vector remains the same, while I must update DIR and UP. Below is the code I tried, but it doesn't seem to work properly. Any suggestions? Thanks. void Transform::left(float degrees, vec3& dir, vec3& up) { vec3 axis; axis = glm::normalize(up); mat3 R = rotate(-degrees, axis); dir = R*dir; dir = R*up; }; void Transform::up(float degrees, vec3& dir, vec3& up) { vec3 axis; axis=glm::normalize(glm::cross(dir,up)); mat3 R = rotate(-degrees, axis); dir = R*dir-; up = R*up; };

    Read the article

  • OpenGL multiple threads, variable handling [closed]

    - by toeplitz
    I have written an OpenGL program which runs in the following way: Main: - Initialize SDL - Create thread which has the OpenGL context: - Renderloop - Set camera (view) matrix with glUniform. - glDrawElements() .... etc. - Swapbuffers(); - Main SDL loop handling input events and such. - Update camera matrix of type glm::mat4. This is how I pass my camera object to the class that handles opengl. Camera *cam = new Camera(); gl.setCam(cam); where void setCam(Camera *camera) { this->camera = camera; } For rendering in the opengl context thread, this happens: glm::mat4 modelView = camera->view * model; glUniformMatrix4fv(shader->bindUniform("modelView"), 1, GL_FALSE, glm::value_ptr(modelView)); In the main program where my SDL and other things are handles I then recompute the view matrix. This his working fine without me using any mutex locks. Is this correct? On the other hand, I add objects to my scene by an "upload queue" and in this case I have to mutex lock my upload queue vector (vector class type) when adding items to it or else the program crashes. In summary: I recompute my matrix in a different thread and then use it in the opengl thread without any mutex lock. Why is this working? Edit: I think my question is similar to what was asked here: Should I lock a variable in one thread if I only need it's value in other threads, and why does it work if I don't?, only in my case it is even more simple with only one matrix being changed.

    Read the article

  • How to implement a simple bullet trajectory

    - by AirieFenix
    I searched and searched and although it's a fair simple question, I don't find the proper answer but general ideas (which I already have). I have a top-down game and I want to implement a gun which shoots bullets that follow a simple path (no physics nor change of trajectory, just go from A to B thing). a: vector of the position of the gun/player. b: vector of the mouse position (cross-hair). w: the vector of the bullet's trajectory. So, w=b-a. And the position of the bullet = [x=x0+speed*time*normalized w.x , y=y0+speed*time * normalized w.y]. I have the constructor: public Shot(int shipX, int shipY, int mouseX, int mouseY) { //I get mouse with Gdx.input.getX()/getY() ... this.shotTime = TimeUtils.millis(); this.posX = shipX; this.posY = shipY; //I used aVector = aVector.nor() here before but for some reason didn't work float tmp = (float) (Math.pow(mouseX-shipX, 2) + Math.pow(mouseY-shipY, 2)); tmp = (float) Math.sqrt(Math.abs(tmp)); this.vecX = (mouseX-shipX)/tmp; this.vecY = (mouseY-shipY)/tmp; } And here I update the position and draw the shot: public void drawShot(SpriteBatch batch) { this.lifeTime = TimeUtils.millis() - this.shotTime; //position = positionBefore + v*t this.posX = this.posX + this.vecX*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); this.posY = this.posY + this.vecY*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); ... } Now, the behavior of the bullet seems very awkward, not going exactly where my mouse is (it's like the mouse is 30px off) and with a random speed. I know I probably need to open the old algebra book from college but I'd like somebody says if I'm in the right direction (or points me to it); if it's a calculation problem, a code problem or both. Also, is it possible that Gdx.input.getX() gives me non-precise position? Because when I draw the cross-hair it also draws off the cursor position. Sorry for the long post and sorry if it's a very basic question. Thanks!

    Read the article

  • Applications: The Mathematics of Movement, Part 2

    - by TechTwaddle
    In part 1 of this series we saw how we can make the marble move towards the click point, with a fixed speed. In this post we’ll see, first, how to get rid of Atan2(), sine() and cosine() in our calculations, and, second, reducing the speed of the marble as it approaches the destination, so it looks like the marble is easing into it’s final position. As I mentioned in one of the previous posts, this is achieved by making the speed of the marble a function of the distance between the marble and the destination point. Getting rid of Atan2(), sine() and cosine() Ok, to be fair we are not exactly getting rid of these trigonometric functions, rather, replacing one form with another. So instead of writing sin(?), we write y/length. You see the point. So instead of using the trig functions as below, double x = destX - marble1.x; double y = destY - marble1.y; //distance between destination and current position, before updating marble position distanceSqrd = x * x + y * y; double angle = Math.Atan2(y, x); //Cos and Sin give us the unit vector, 6 is the value we use to magnify the unit vector along the same direction incrX = speed * Math.Cos(angle); incrY = speed * Math.Sin(angle); marble1.x += incrX; marble1.y += incrY; we use the following, double x = destX - marble1.x; double y = destY - marble1.y; //distance between destination and marble (before updating marble position) lengthSqrd = x * x + y * y; length = Math.Sqrt(lengthSqrd); //unit vector along the same direction as vector(x, y) unitX = x / length; unitY = y / length; //update marble position incrX = speed * unitX; incrY = speed * unitY; marble1.x += incrX; marble1.y += incrY; so we replaced cos(?) with x/length and sin(?) with y/length. The result is the same.   Adding oomph to the way it moves In the last post we had the speed of the marble fixed at 6, double speed = 6; to make the marble decelerate as it moves, we have to keep updating the speed of the marble in every frame such that the speed is calculated as a function of the length. So we may have, speed = length/12; ‘length’ keeps decreasing as the marble moves and so does speed. The Form1_MouseUp() function remains the same as before, here is the UpdatePosition() method, private void UpdatePosition() {     double incrX = 0, incrY = 0;     double lengthSqrd = 0, length = 0, lengthSqrdNew = 0;     double unitX = 0, unitY = 0;     double speed = 0;     double x = destX - marble1.x;     double y = destY - marble1.y;     //distance between destination and marble (before updating marble position)     lengthSqrd = x * x + y * y;     length = Math.Sqrt(lengthSqrd);     //unit vector along the same direction as vector(x, y)     unitX = x / length;     unitY = y / length;     //speed as a function of length     speed = length / 12;     //update marble position     incrX = speed * unitX;     incrY = speed * unitY;     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;     }     //distance between destination and marble (after updating marble position)     x = destX - (marble1.x);     y = destY - (marble1.y);     lengthSqrdNew = x * x + y * y;     /*      * End Condition:      * 1. If there is not much difference between lengthSqrd and lengthSqrdNew      * 2. If the marble has moved more than or equal to a distance of totLenToTravel (see Form1_MouseUp)      */     x = startPosX - marble1.x;     y = startPosY - marble1.y;     double totLenTraveledSqrd = x * x + y * y;     if ((int)totLenTraveledSqrd >= (int)totLenToTravelSqrd)     {         System.Console.WriteLine("Stopping because Total Len has been traveled");         timer1.Enabled = false;     }     else if (Math.Abs((int)lengthSqrd - (int)lengthSqrdNew) < 4)     {         System.Console.WriteLine("Stopping because no change in Old and New");         timer1.Enabled = false;     } } A point to note here is that, in this implementation, the marble never stops because it travelled a distance of totLenToTravelSqrd (first if condition). This happens because speed is a function of the length. During the final few frames length becomes very small and so does speed; and so the amount by which the marble shifts is quite small, and the second if condition always hits true first. I’ll end this series with a third post. In part 3 we will cover two things, one, when the user clicks, the marble keeps moving in that direction, rebounding off the screen edges and keeps moving forever. Two, when the user clicks on the screen, the marble moves towards it, with it’s speed reducing by every frame. It doesn’t come to a halt when the destination point is reached, instead, it continues to move, rebounds off the screen edges and slowly comes to halt. The amount of time that the marble keeps moving depends on how far the user clicks from the marble. I had mentioned this second situation here. Finally, here’s a video of this program running,

    Read the article

  • Learn programming backwards, or "so I failed the FizzBuzz test. Now what?"

    - by moraleida
    A Little Background I'm 28 today, and I've never had any formal training in software development, but I do have two higher education degrees equivalent to a B.A in Public Relations and an Executive MBA focused on Project Management. I've worked on those fields for about 6 years total an then, 2,5 years ago I quit/lost my job and decided to shift directions. After a month thinking things through I decided to start freelancing developing small websites in WordPress. I self-learned my way into it and today I can say I run a humble but successful career developing themes and plugins from scratch for my clients - mostly agencies outsourcing some of their dev work for medium/large websites. But sometimes I just feel that not having studied enough math, or not having a formal understanding of things really holds me behind when I have to compete or work with more experienced developers. I'm constantly looking for ways to learn more but I seem to lack the basics. Unfortunately, spending 4 more years in Computer Science is not an option right now, so I'm trying to learn all I can from books and online resources. This method is never going to have NASA employ me but I really don't care right now. My goal is to first pass the bar and to be able to call myself a real programmer. I'm currently spending my spare time studying Java For Programmers (to get a hold on a language everyone says is difficult/demanding), reading excerpts of Code Complete (to get hold of best practices) and also Code: The Hidden Language of Computer Hardware and Software (to grasp the inner workings of computers). TL;DR So, my current situation is this: I'm basically capable of writing any complete system in PHP (with the help of Google and a few books), integrating Ajax, SQL and whatnot, and maybe a little slower than an experienced dev would expect due to all the research involved. But I was stranded yesterday trying to figure out (not Google) a solution for the FizzBuzz test because I didn't have the if($n1 % $n2 == 0) method modulus operator memorized. What would you suggest as a good way to solve this dilemma? What subjects/books should I study that would get me solving problems faster and maybe more "in a programmers way"? EDIT - Seems that there was some confusion about what did I not know to solve FizzBuzz. Maybe I didn't express myself right: I knew the steps needed to solve the problem. What I didn't memorize was the modulus operator. The problem was in transposing basic math to the program, not in knowing basic math. I took the test for fun, after reading about it on Coding Horror. I just decided it was a good base-comparison line between me and formally-trained devs. I just used this as an example of how not having dealt with math in a computer environment before makes me lose time looking up basic things like modulus operators to be able to solve simple problems.

    Read the article

  • Creating a frozen bubble clone

    - by Vaughan Hilts
    This photo illustrates the environment: http://i.imgur.com/V4wbp.png I'll shoot the cannon, it'll bounce off the wall and it's SUPPOSED to stick to the bubble. It does at pretty much every other angle. The problem is always reproduced here, when hit off the wall into those bubbles. It also exists in other cases, but I'm not sure what triggers it. What actually happens: The ball will sometimes set to the wrong cell, and my "dropping" code will detect it as a loner and drop it off the stage. *There are many implementations of "Frozen Bubble" on the web, but I can't for the life of me find a good explanation as to how the algorithm for the "Bubble Sticking" works. * I see this: http://www.wikiflashed.com/wiki/BubbleBobble https://frozenbubblexna.svn.codeplex.com/svn/FrozenBubble/ But I can't figure out the algorithims... could anyone explain possibly the general idea behind getting the balls to stick? Code in question: //Counstruct our bounding rectangle for use var nX = currentBall.x + ballvX * gameTime; var nY = currentBall.y - ballvY * gameTime; var movingRect = new BoundingRectangle(nX, nY, 32, 32); var able = false; //Iterate over the cells and draw our bubbles for (var x = 0; x < 8; x++) { for (var y = 0; y < 12; y++) { //Get the bubble at this layout var bubble = bubbleLayout[x][y]; var rowHeight = 27; //If this slot isn't empty, draw if (bubble != null) { var bx = 0, by = 0; if (y % 2 == 0) { bx = x * 32 + 270; by = y * 32 + 45; } else { bx = x * 32 + 270 + 16; by = y * 32 + 45; } //Check var targetBox = new BoundingRectangle(bx, by, 32, 32); if (targetBox.intersects(movingRect)) { able = true; } } } } cellY = Math.round((currentBall.y - 45) / 32); if (cellY % 2 == 0) cellX = Math.round((currentBall.x - 270) / 32); else cellX = Math.round((currentBall.x - 270 - 16) / 32); Any ideas are very much welcome. Things I've tried: Flooring and Ceiling values Changing the wall bounce to a lower value Slowing down the ball None of these seem to affect it. Is there something in my math I'm not getting?

    Read the article

  • draw bullet at the end of the barrel

    - by Alberto
    excuse my awkwardness, i have this code: [syntax="java"] int x2 = (int) (canon.getSceneCenterCoordinates()[0] + LENGTH_SPRITE/2* Math.cos(canon.getRotation())); int y2 = (int) (canon.getSceneCenterCoordinates()[1] + LENGTH_SPRITE/2* Math.sin(canon.getRotation())); projectile = new Sprite( (float) x2, (float) y2, mProjectileTextureRegion,this.getVertexBufferObjectManager() ); mMainScene.attachChild(projectile); [/syntax] and the bullet are drawn around the cannon in circle.. but not from the end of cannon :( help!

    Read the article

  • Best way to implement a simple bullet trajectory

    - by AirieFenix
    I searched and searched and although it's a fair simple question, I don't find the proper answer but general ideas (which I already have). I have a top-down game and I want to implement a gun which shoots bullets that follow a simple path (no physics nor change of trajectory, just go from A to B thing). a: vector of the position of the gun/player. b: vector of the mouse position (cross-hair). w: the vector of the bullet's trajectory. So, w=b-a. And the position of the bullet = [x=x0+speed*time*normalized w.x , y=y0+speed*time * normalized w.y]. I have the constructor: public Shot(int shipX, int shipY, int mouseX, int mouseY) { //I get mouse with Gdx.input.getX()/getY() ... this.shotTime = TimeUtils.millis(); this.posX = shipX; this.posY = shipY; //I used aVector = aVector.nor() here before but for some reason didn't work float tmp = (float) (Math.pow(mouseX-shipX, 2) + Math.pow(mouseY-shipY, 2)); tmp = (float) Math.sqrt(Math.abs(tmp)); this.vecX = (mouseX-shipX)/tmp; this.vecY = (mouseY-shipY)/tmp; } And here I update the position and draw the shot: public void drawShot(SpriteBatch batch) { this.lifeTime = TimeUtils.millis() - this.shotTime; //position = positionBefore + v*t this.posX = this.posX + this.vecX*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); this.posY = this.posY + this.vecY*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); ... } Now, the behavior of the bullet seems very awkward, not going exactly where my mouse is (it's like the mouse is 30px off) and with a random speed. I know I probably need to open the old algebra book from college but I'd like somebody says if I'm in the right direction (or points me to it); if it's a calculation problem, a code problem or both. Also, is it possible that Gdx.input.getX() gives me non-precise position? Because when I draw the cross-hair it also draws off the cursor position. Sorry for the long post and sorry if it's a very basic question. Thanks!

    Read the article

  • Collision Detection for 2D

    - by Bhaskar
    I am working on a simple game, where I need to do a collision detection of two Texture2D. The code I have written is: bool perPixelCollission = false; Texture2D texture1 = sprite1.Texture; Texture2D texture2 = sprite1.Texture; Vector2 position1 = new Vector2(sprite1.CurrentScope.X, sprite1.CurrentScope.Y); Vector2 position2 = new Vector2(sprite2.CurrentScope.X, sprite2.CurrentScope.Y); uint[] bitsA = new uint[texture1.Width * texture1.Height]; uint[] bitsB = new uint[texture2.Width * texture2.Height]; Rectangle texture1Rectangle = new Rectangle(Convert.ToInt32(position1.X), Convert.ToInt32(position1.Y), texture1.Width, texture1.Height); Rectangle texture2Rectangle = new Rectangle(Convert.ToInt32(position2.X), Convert.ToInt32(position2.Y), texture2.Width, texture2.Height); texture1.GetData<uint>(bitsA); texture2.GetData<uint>(bitsB); int x1 = Math.Max(texture1Rectangle.X, texture2Rectangle.X); int x2 = Math.Min(texture1Rectangle.X + texture1Rectangle.Width, texture2Rectangle.X + texture2Rectangle.Width); int y1 = Math.Max(texture1Rectangle.Y, texture2Rectangle.Y); int y2 = Math.Min(texture1Rectangle.Y + texture1Rectangle.Height, texture2Rectangle.Y + texture2Rectangle.Height); for (int y = y1; y < y2; ++y) { for (int x = x1; x < x2; ++x) { if (((bitsA[(x - texture1Rectangle.X) + (y - texture1Rectangle.Y) * texture1Rectangle.Width] & 0xFF000000) >> 24) > 20 && ((bitsB[(x - texture2Rectangle.X) + (y - texture2Rectangle.Y) * texture2Rectangle.Width] & 0xFF000000) >> 24) > 20) { perPixelCollission = true; break; } } // Reduce amount of looping by breaking out of this. if (perPixelCollission) { break; } } return perPixelCollission; But this code is really making the game slow. Where can I get some very good collision detection tutorial and code? What is wrong in this code?

    Read the article

  • How do I randomly generate a top-down 2D level with separate sections and is infinite?

    - by Bagofsheep
    I've read many other questions/answers about random level generation but most of them deal with either randomly/proceduraly generating 2D levels viewed from the side or 3D levels. What I'm trying to achieve is sort of like you were looking straight down on a Minecraft map. There is no height, but the borders of each "biome" or "section" of the map are random and varied. I already have basic code that can generate a perfectly square level with the same tileset (randomly picking segments from the tileset image), but I've encountered a major issue for wanting the level to be infinite: Beyond a certain point, the tiles' positions become negative on one or both of the axis. The code I use to only draw tiles the player can see relies on taking the tiles position and converting it to the index number that represents it in the array. As you well know, arrays cannot have a negative index. Here is some of my code: This generates the square (or rectangle) of tiles: //Scale is in tiles public void Generate(int sX, int sY) { scaleX = sX; scaleY = sY; for (int y = 0; y <= scaleY; y++) { tiles.Add(new List<Tile>()); for (int x = 0; x <= scaleX; x++) { tiles[tiles.Count - 1].Add(tileset.randomTile(x * tileset.TileSize, y * tileset.TileSize)); } } } Before I changed the code after realizing an array index couldn't be negative my for loops looked something like this to center the map around (0, 0): for (int y = -scaleY / 2; y <= scaleY / 2; y++) for (int x = -scaleX / 2; x <= scaleX / 2; x++) Here is the code that draws the tiles: int startX = (int)Math.Floor((player.Position.X - (graphics.Viewport.Width) - tileset.TileSize) / tileset.TileSize); int endX = (int)Math.Ceiling((player.Position.X + (graphics.Viewport.Width) + tileset.TileSize) / tileset.TileSize); int startY = (int)Math.Floor((player.Position.Y - (graphics.Viewport.Height) - tileset.TileSize) / tileset.TileSize); int endY = (int)Math.Ceiling((player.Position.Y + (graphics.Viewport.Height) + tileset.TileSize) / tileset.TileSize); for (int y = startY; y < endY; y++) { for (int x = startX; x < endX; x++) { if (x >= 0 && y >= 0 && x <= scaleX && y <= scaleY) tiles[y][x].Draw(spriteBatch); } } So to summarize what I'm asking: First, how do I randomly generate a top-down 2D map with different sections (not chunks per se, but areas with different tile sets) and second, how do I get past this negative array index issue?

    Read the article

  • Increase moving speed of body

    - by Siddharth
    How to move ball speedily on the screen using box2d in libGDX? public class Box2DDemo implements ApplicationListener { private SpriteBatch batch; private TextureRegion texture; private World world; private Body groundDownBody, groundUpBody, groundLeftBody, groundRightBody, ballBody; private BodyDef groundBodyDef1, groundBodyDef2, groundBodyDef3, groundBodyDef4, ballBodyDef; private PolygonShape groundDownPoly, groundUpPoly, groundLeftPoly, groundRightPoly; private CircleShape ballPoly; private Sprite sprite; private FixtureDef fixtureDef; private Vector2 ballPosition; private Box2DDebugRenderer renderer; Vector2 vector2; @Override public void create() { texture = new TextureRegion(new Texture( Gdx.files.internal("img/red_ring.png"))); sprite = new Sprite(texture); sprite.setOrigin(sprite.getWidth() / 2, sprite.getHeight() / 2); batch = new SpriteBatch(); world = new World(new Vector2(0.0f, -10.0f), false); groundBodyDef1 = new BodyDef(); groundBodyDef1.type = BodyType.StaticBody; groundBodyDef1.position.x = 0.0f; groundBodyDef1.position.y = 0.0f; groundDownBody = world.createBody(groundBodyDef1); groundBodyDef2 = new BodyDef(); groundBodyDef2.type = BodyType.StaticBody; groundBodyDef2.position.x = 0f; groundBodyDef2.position.y = Gdx.graphics.getHeight(); groundUpBody = world.createBody(groundBodyDef2); groundBodyDef3 = new BodyDef(); groundBodyDef3.type = BodyType.StaticBody; groundBodyDef3.position.x = 0f; groundBodyDef3.position.y = 0f; groundLeftBody = world.createBody(groundBodyDef3); groundBodyDef4 = new BodyDef(); groundBodyDef4.type = BodyType.StaticBody; groundBodyDef4.position.x = Gdx.graphics.getWidth(); groundBodyDef4.position.y = 0f; groundRightBody = world.createBody(groundBodyDef4); groundDownPoly = new PolygonShape(); groundDownPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.density = 0f; fixtureDef.restitution = 1f; fixtureDef.friction = 0f; fixtureDef.shape = groundDownPoly; fixtureDef.filter.groupIndex = 0; groundDownBody.createFixture(fixtureDef); groundUpPoly = new PolygonShape(); groundUpPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundUpPoly; fixtureDef.filter.groupIndex = 0; groundUpBody.createFixture(fixtureDef); groundLeftPoly = new PolygonShape(); groundLeftPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundLeftPoly; fixtureDef.filter.groupIndex = 0; groundLeftBody.createFixture(fixtureDef); groundRightPoly = new PolygonShape(); groundRightPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundRightPoly; fixtureDef.filter.groupIndex = 0; groundRightBody.createFixture(fixtureDef); ballPoly = new CircleShape(); ballPoly.setRadius(16f); fixtureDef = new FixtureDef(); fixtureDef.shape = ballPoly; fixtureDef.density = 1f; fixtureDef.friction = 1f; fixtureDef.restitution = 1f; ballBodyDef = new BodyDef(); ballBodyDef.type = BodyType.DynamicBody; ballBodyDef.position.x = (int) 200; ballBodyDef.position.y = (int) 200; ballBody = world.createBody(ballBodyDef); // ballBody.setLinearVelocity(200f, 200f); // ballBody.applyLinearImpulse(new Vector2(250f, 250f), // ballBody.getLocalCenter()); ballBody.createFixture(fixtureDef); renderer = new Box2DDebugRenderer(true, false, false); } @Override public void dispose() { ballPoly.dispose(); groundLeftPoly.dispose(); groundUpPoly.dispose(); groundDownPoly.dispose(); groundRightPoly.dispose(); world.destroyBody(ballBody); world.dispose(); } @Override public void pause() { } @Override public void render() { world.step(1f/30f, 3, 3); Gdx.gl.glClearColor(1f, 1f, 1f, 1f); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); batch.begin(); vector2 = ballBody.getLinearVelocity(); System.out.println("X=" + vector2.x + " Y=" + vector2.y); ballPosition = ballBody.getPosition(); renderer.render(world,batch.getProjectionMatrix()); // int preX = (int) (vector2.x / Math.abs(vector2.x)); // int preY = (int) (vector2.y / Math.abs(vector2.y)); // // if (Math.abs(vector2.x) == 0.0f) // ballBody1.setLinearVelocity(1.4142137f, vector2.y); // else if (Math.abs(vector2.x) < 1.4142137f) // ballBody1.setLinearVelocity(preX * 5, vector2.y); // // if (Math.abs(vector2.y) == 0.0f) // ballBody1.setLinearVelocity(vector2.x, 1.4142137f); // else if (Math.abs(vector2.y) < 1.4142137f) // ballBody1.setLinearVelocity(vector2.x, preY * 5); batch.draw(sprite, (ballPosition.x - (texture.getRegionWidth() / 2)), (ballPosition.y - (texture.getRegionHeight() / 2))); batch.end(); } @Override public void resize(int arg0, int arg1) { } @Override public void resume() { } } I implement above code but I can not achieve higher moving speed of the ball

    Read the article

  • Why does my goblin only choose a walk direction once?

    - by Eogcloud
    I'm working on a simpe 2d canvas game that has a small goblin sprite who I want to get pathing around the screen. What I originally tried was a random roll that would choose a direction, the goblin would walk that direction. It didnt work effectively, he sort of wobbled in one spot. Here's my current apporach but he only runs in a rundom direction and doesnt change. What am I doing wrong? Here's all the relevant code to the goblin object and movement. var goblin = { speed: 100, pos: [0, 0], dir: 1, changeDir: true, stepCount: 0, stepTotal: 0, sprite: new Sprite( goblinImage, [0,0], [30,45], 6, [0,1,2,3,2,1], true) }; function getNewDir(){ goblin.dir = Math.floor(Math.random()*4)+1; }; function checkGoblinMovement(){ if(goblin.changeDir){ goblin.changeDir = false; goblin.stepCount = 0; goblin.stepTotal = Math.floor(Math.random*650)+1; getNewDir(); } else { if(goblin.stepCount === goblin.stepTotal){ goblin.changeDir = true; } } }; function update(delta){ healthCheck(); if(isGameOver){ gameOver(); } if(!isGameOver){ updateCharLevel(); keyboardInput(delta); moveGoblin(delta); checkGoblinMovement(); goblin.sprite.update(delta); //update sprites if(mainChar.kills!=0 && bloodReady){ for(var i=0; i<bloodArray.length; i++){ bloodArray[i].sprite.update(delta); } } //collision detection if(collision(mainChar, goblin)) { combatOutcome(combatEvent()); combatCleanup(); } } }; function main(){ var now = Date.now(); var delta = (now - then)/1000; if(!isGameOver){ update(delta); } draw(); then = now; }; function moveGoblin(delta){ goblin.stepCount++; if(goblin.dir === 1){ goblin.pos[1] -= goblin.speed * delta* 2; if(goblin.pos[1] <= 85){ goblin.pos[1] = 86; } } if(goblin.dir === 2){ goblin.pos[1] += goblin.speed * delta; if(goblin.pos[1] > 530){ goblin.pos[1] = 531; } } if(goblin.dir === 3){ goblin.pos[0] -= goblin.speed * delta; if(goblin.pos[0] < 0){ goblin.pos[0] = 1; } } if(goblin.dir === 4){ goblin.pos[0] += goblin.speed * delta* 2; if(goblin.pos[0] > 570){ goblin.pos[0] = 571; } } };

    Read the article

  • way to do if(x > x2) x = x2 with rotation?

    - by CyanPrime
    Alright, so I got this walking code, and some collision detection, now the collision detection returns a Vector3f of the closest point on the triangle that the projected position is at (pos + move), so then I project my position again in the walking method/function and if the projected position's x is the nearest point'x the projected position's x becomes the nearist point's x. same with their z points, but if I'm moving in a different direction from 0 degrees XZ how would I rotate the equation/condition? Here is what I got so far, and it's not working, as I go through walls, and such. Vector3f move = new Vector3f(0,0,0); move.x = (float)-Math.cos(Math.toRadians(yaw)); move.z = (float)-Math.sin(Math.toRadians(yaw)); // System.out.println("slopeNormal.z: " + slopeNormal.z + "move.z: " + move.z); move.normalise(); move.scale(movementSpeed * delta); float horizontaldotproduct = move.x * slopeNormal.x + move.z * slopeNormal.z; move.y = -horizontaldotproduct * slopeNormal.y; Vector3f dest = colCheck(pos, move, model, drawDist, movementSpeed, delta); Vector3f projPos = new Vector3f(pos); Vector3f.add(projPos, move, projPos); if(projPos.x > 0 && dest.x > 0 && projPos.x < dest.x) projPos.x = dest.x; else if(projPos.x < 0 && dest.x < 0 && projPos.x > dest.x) projPos.x = dest.x; if(projPos.z > 0 && dest.z > 0 && projPos.z < dest.z) projPos.z = dest.z; else if(projPos.z < 0 && dest.z < 0 && projPos.z > dest.z) projPos.z = dest.z; pos = new Vector3f(projPos);

    Read the article

  • LWJGL: Camera distance from image plane?

    - by Rogem
    Let me paste some code before I ask the question... public static void createWindow(int[] args) { try { Display.setFullscreen(false); DisplayMode d[] = Display.getAvailableDisplayModes(); for (int i = 0; i < d.length; i++) { if (d[i].getWidth() == args[0] && d[i].getHeight() == args[1] && d[i].getBitsPerPixel() == 32) { displayMode = d[i]; break; } } Display.setDisplayMode(displayMode); Display.create(); } catch (Exception e) { e.printStackTrace(); System.exit(0); } } public static void initGL() { GL11.glEnable(GL11.GL_TEXTURE_2D); GL11.glShadeModel(GL11.GL_SMOOTH); GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); GL11.glClearDepth(1.0); GL11.glEnable(GL11.GL_DEPTH_TEST); GL11.glDepthFunc(GL11.GL_LEQUAL); GL11.glMatrixMode(GL11.GL_PROJECTION); GL11.glLoadIdentity(); GLU.gluPerspective(45.0f, (float) displayMode.getWidth() / (float) displayMode.getHeight(), 0.1f, 100.0f); GL11.glMatrixMode(GL11.GL_MODELVIEW); GL11.glHint(GL11.GL_PERSPECTIVE_CORRECTION_HINT, GL11.GL_NICEST); } So, with the camera and screen setup out of the way, I can now ask the actual question: How do I know what the camera distance is from the image plane? I also would like to know what the angle between the image plane's center normal and a line drawn from the middle of one of the edges to the camera position is. This will be used to consequently draw a vector from the camera's position through the player's click-coordinates to determine the world coordinates they clicked (or could've clicked). Also, when I set the camera coordinates, do I set the coordinates of the camera or do I set the coordinates of the image plane? Thank you for your help. EDIT: So, I managed to solve how to calculate the distance of the camera... Here's the relevant code... private static float getScreenFOV(int dim) { if (dim == 0) { float dist = (float) Math.tan((Math.PI / 2 - Math.toRadians(FOV_Y))/2) * 0.5f; float FOV_X = 2 * (float) Math.atan(getScreenRatio() * 0.5f / dist); return FOV_X; } else if (dim == 1) { return FOV_Y; } return 0; } FOV_Y is the Field of View that one defines in gluPerspective (float fovy in javadoc). This seems to be (and would logically be) for the height of the screen. Now I just need to figure out how to calculate that vector.

    Read the article

  • Seeking an C/C++ OBJ geometry read/write that does not modify the representation

    - by Blake Senftner
    I am seeking a means to read and write OBJ geometry files with logic that does not modify the geometry representation. i.e. read geometry, immediately write it, and a diff of the source OBJ and the one just written will be identical. Every OBJ writing utility I've been able to find online fails this test. I am writing small command line tools to modify my OBJ geometries, and I need to write my results, not just read the geometry for rendering purposes. Simply needing to write the geometry knocks out 95% of the OBJ libraries on the web. Also, many of the popular libraries modify the geometry representation. For example, Nat Robbin's GLUT library includes the GLM library, which both converts quads to triangles, as well as reverses the topology (face ordering) of the geometry. It's still the same geometry, but if your tool chain expects a given topology, such as for rigging or morph targets, then GLM is useless. I'm not rendering in these tools, so dependencies like OpenGL or GLUT make no sense. And god forbid, do not "optimize" the geometry! Redundant vertices are on purpose for maintaining oneself on cache with our weird little low memory mobile devices.

    Read the article

  • why is glVertexAttribDivisor crashing?

    - by 2am
    I am trying to render some trees with instancing. This is rather weird, but before sleeping yesterday night, I checked the code, and it was in a running state, when I got up this morning, it is crashing when I am calling glVertexAttribDivisor I haven't changed any code since yesterday. Here is how I am sending data to GPU for instancing. glGenBuffers(1, &iVBO); glBindBuffer(GL_ARRAY_BUFFER, iVBO); glBufferData(GL_ARRAY_BUFFER, (ml_instance->i_positions.size()*sizeof(glm::vec4)) , NULL, GL_STATIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (ml_instance->i_positions.size()*sizeof(glm::vec4)), &ml_instance->i_positions[0]); And then in vertex specification-- glBindBuffer(GL_ARRAY_BUFFER, iVBO); glVertexAttribPointer(i_positions, 4, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(i_positions); glVertexAttribDivisor(i_positions,1); // **THIS IS WHERE THE PROGRAM CRASHES** glDrawElementsInstanced(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0,TREES_INSTANCE_COUNT); I have checked ml_instance->i_positions, it has all the data that needs to render. I have checked the value of i_positions in vertex shader, it is the same as whatever I have defined there. I am little out of ideas here, everything looks pretty much fine. What am I missing?

    Read the article

  • Using JS script for "raining images". Can't seem to hide pre-loaded image

    - by user1813605
    I am trying to hide an image in a script pre-loading on the page. Below script makes images "rain" down the screen onClick. It functions well, but it displays the pre-loaded image itself on the page before the button is clicked. I'm trying to hide the image until the button is pressed. If anyone has any insight on how to hide the image until the function dispenseMittens() runs, I'd be eternally grateful :) Thanks! <script language="javascript"> var pictureSrc = 'mitten.gif'; //the location of the mittens var pictureWidth = 40; //the width of the mittens var pictureHeight = 46; //the height of the mittens var numFlakes = 10; //the number of mittens var downSpeed = 0.01; var lrFlakes = 10; var EmergencyMittens = false; //safety checks. Browsers will hang if this is wrong. If other values are wrong there will just be errors if( typeof( numFlakes ) != 'number' || Math.round( numFlakes ) != numFlakes || numFlakes < 1 ) { numFlakes = 10; } //draw the snowflakes for( var x = 0; x < numFlakes; x++ ) { if( document.layers ) { //releave NS4 bug document.write('<layer id="snFlkDiv'+x+'"><img src="'+pictureSrc+'" height="'+pictureHeight+'" width="'+pictureWidth+'" alt="*" border="0"></layer>'); } else { document.write('<div style="position:absolute;" id="snFlkDiv'+x+'"><img src="'+pictureSrc+'" height="'+pictureHeight+'" width="'+pictureWidth+'" alt="*" border="0"></div>'); } } //calculate initial positions (in portions of browser window size) var xcoords = new Array(), ycoords = new Array(), snFlkTemp; for( var x = 0; x < numFlakes; x++ ) { xcoords[x] = ( x + 1 ) / ( numFlakes + 1 ); do { snFlkTemp = Math.round( ( numFlakes - 1 ) * Math.random() ); } while( typeof( ycoords[snFlkTemp] ) == 'number' ); ycoords[snFlkTemp] = x / numFlakes; } //now animate function mittensFall() { if( !getRefToDivNest('snFlkDiv0') ) { return; } var scrWidth = 0, scrHeight = 0, scrollHeight = 0, scrollWidth = 0; //find screen settings for all variations. doing this every time allows for resizing and scrolling if( typeof( window.innerWidth ) == 'number' ) { scrWidth = window.innerWidth; scrHeight = window.innerHeight; } else { if( document.documentElement && ( document.documentElement.clientWidth || document.documentElement.clientHeight ) ) { scrWidth = document.documentElement.clientWidth; scrHeight = document.documentElement.clientHeight; } else { if( document.body && ( document.body.clientWidth || document.body.clientHeight ) ) { scrWidth = document.body.clientWidth; scrHeight = document.body.clientHeight; } } } if( typeof( window.pageYOffset ) == 'number' ) { scrollHeight = pageYOffset; scrollWidth = pageXOffset; } else { if( document.body && ( document.body.scrollLeft || document.body.scrollTop ) ) { scrollHeight = document.body.scrollTop; scrollWidth = document.body.scrollLeft; } else { if( document.documentElement && ( document.documentElement.scrollLeft || document.documentElement.scrollTop ) ) { scrollHeight = document.documentElement.scrollTop; scrollWidth = document.documentElement.scrollLeft; } } } //move the snowflakes to their new position for( var x = 0; x < numFlakes; x++ ) { if( ycoords[x] * scrHeight > scrHeight - pictureHeight ) { ycoords[x] = 0; } var divRef = getRefToDivNest('snFlkDiv'+x); if( !divRef ) { return; } if( divRef.style ) { divRef = divRef.style; } var oPix = document.childNodes ? 'px' : 0; divRef.top = ( Math.round( ycoords[x] * scrHeight ) + scrollHeight ) + oPix; divRef.left = ( Math.round( ( ( xcoords[x] * scrWidth ) - ( pictureWidth / 2 ) ) + ( ( scrWidth / ( ( numFlakes + 1 ) * 4 ) ) * ( Math.sin( lrFlakes * ycoords[x] ) - Math.sin( 3 * lrFlakes * ycoords[x] ) ) ) ) + scrollWidth ) + oPix; ycoords[x] += downSpeed; } } //DHTML handlers function getRefToDivNest(divName) { if( document.layers ) { return document.layers[divName]; } //NS4 if( document[divName] ) { return document[divName]; } //NS4 also if( document.getElementById ) { return document.getElementById(divName); } //DOM (IE5+, NS6+, Mozilla0.9+, Opera) if( document.all ) { return document.all[divName]; } //Proprietary DOM - IE4 return false; } function dispenseMittens() { if (EmergencyMittens) { window.clearInterval(EmergencyMittens); } else { EmergencyMittens = window.setInterval('mittensFall();',100); } } </script>

    Read the article

  • Glibc importance of error ...

    - by Oz123
    Hi Everyone, I am following LFS 6.7, and I reached the point where I compile glibc-2.12.1 . I mounted the LFS partition with the atime option: here is a confirm on that I think: /dev/sdb1 on /mnt /lfs type ext4 (rw) I get the following errors on making the test, and I have no clue if I should try to resolve them, or just ignore them and go on ... rpc/types.h sunrpc/rpc/svc_auth.h sunrpc/rpcsvc/bootparam.h sysvipc/sys/ipc.h \ sysvipc/sys/msg.h sysvipc/sys/sem.h sysvipc/sys/shm.h termios/termios.h \ termios/sys/termios.h termios/sys/ttychars.h time/time.h time/sys/time.h \ time/sys/timeb.h wcsmbs/wchar.h wctype/wctype.h > \ /sources/glibc-build/begin-end-check.out make[1]: Target `check' not remade because of errors. make[1]: Leaving directory `/sources/glibc-2.12.1' make: *** [check] Error 2 root:/sources/glibc-build# grep Error glibc-check-log make[2]: *** [/sources/glibc-build/math/test-float.out] Error 1 make[2]: *** [/sources/glibc-build/math/test-ifloat.out] Error 1 make[1]: *** [math/tests] Error 2 make[2]: [/sources/glibc-build/posix/annexc.out] Error 1 (ignored) make: *** [check] Error 2 thanks in advance, Oz

    Read the article

  • Is there a Windows or Linux equivalent of Soulver calculator application?

    - by Shevek
    I've just been shown a brilliant calculator app called Soulver which is only available on Mac OS X Maths on a Mac as it should be Soulver is a new kind of calculator application which uses a simple yet powerful word-processor style interface instead of the traditional "button" approach to doing math. Main Features No equals button - Soulver instantly calculates as you type. Multiple lines - Soulver lets you do math over multiple lines and edit previous expressions. Flexible to words - Soulver doesn't mind if you include words or labels between numbers. Basic functions - Soulver includes every standard calculator function, like sin(), cos() & tan() Clever English functions - Soulver includes some "English" math functions. For instance you can type "10% off $200" and get $180 Floating palettes - Soulver's answer & stats palettes will give you conversions and statistics on your work as your type Save your work - like a word processor, Soulver allows you to save and reopen your work This is a fantastic concept and I would really like to find it's equivalent for Windows and/or Linux. Any suggestions?

    Read the article

  • Disable MathML output of eLyXer

    - by Gryllida
    eLyXer is a standalone LyX to HTML converter. In the resulting file, equations are formatted as MathML, and the file itself starts with an XML tag. This causes two problems: LibreOffice does not read the XML file (it can read HTML files, but not XHTML). I am unable to copy and paste the equations into a document editor such as LibreOffice with the goal of subsequent conversion into .doc, because .doc files do not support MathML. The eLyXer help page mentions an option to only use simple math, but there is no option to set math equations to output as images. And I already set Document Settings Output Math equations Format: images in LyX, which presumably is saved in the lyx document somewhere. A web search did not come up with any solutions.

    Read the article

  • Scaling an image using the mouse in C#

    - by Gaax
    Hey guys... I'm trying to use the position of the mouse to calculate the scaling factor for scaling an image. Basically, the further you get away from the center of the image, the bigger it gets; and the closer to the center you get, the smaller it gets. I have some code so far but it's acting really strange and I have absolutely no more ideas. First I'll let you know, one thing I was trying to do is average out 5 distances to get a more smooth resize animation. Here's my code: private void pictureBoxScale_MouseMove(object sender, MouseEventArgs e) { if (rotateScaleMode && isDraggingToScale) { // For Scaling int sourceWidth = pictureBox1.Image.Width; int sourceHeight = pictureBox1.Image.Height; float dCurrCent = 0; // distance between the current mouse pos and the center of the image float dPrevCent = 0; // distance between the previous mouse pos and the center of the image System.Drawing.Point imgCenter = new System.Drawing.Point(); imgCenter.X = pictureBox1.Location.X + (sourceWidth / 2); imgCenter.Y = pictureBox1.Location.Y + (sourceHeight / 2); // Calculating the distance between the current mouse location and the center of the image dCurrCent = (float)Math.Sqrt(Math.Pow(e.X - imgCenter.X, 2) + Math.Pow(e.Y - imgCenter.Y, 2)); // Calculating the distance between the previous mouse location and the center of the image dPrevCent = (float)Math.Sqrt(Math.Pow(prevMouseLoc.X - imgCenter.X, 2) + Math.Pow(prevMouseLoc.Y - imgCenter.Y, 2)); if (smoothScaleCount < 5) { dCurrCentSmooth[smoothScaleCount] = dCurrCent; dPrevCentSmooth[smoothScaleCount] = dPrevCent; } if (smoothScaleCount == 4) { float currCentSum = 0; float prevCentSum = 0; for (int i = 0; i < 4; i++) { currCentSum += dCurrCentSmooth[i]; } for (int i = 0; i < 4; i++) { prevCentSum += dPrevCentSmooth[i]; } float scaleAvg = (currCentSum / 5) / (prevCentSum / 5); int destWidth = (int)(sourceWidth * scaleAvg); int destHeight = (int)(sourceHeight * scaleAvg); // If statement is for limiting the size of the image if (destWidth > (currentRotatedImage.Width / 2) && destWidth < (currentRotatedImage.Width * 3) && destHeight > (currentRotatedImage.Height / 2) && destWidth < (currentRotatedImage.Width * 3)) { AForge.Imaging.Filters.ResizeBilinear resizeFilter = new AForge.Imaging.Filters.ResizeBilinear(destWidth, destHeight); pictureBox1.Image = resizeFilter.Apply((Bitmap)currentRotatedImage); pictureBox1.Size = pictureBox1.Image.Size; pictureBox1.Refresh(); } smoothScaleCount = -1; } prevMouseLoc = e.Location; currentScaledImage = pictureBox1.Image; smoothScaleCount++; } }

    Read the article

  • Scaling an image using the mouse in a WinForms application?

    - by Gaax
    I'm trying to use the position of the mouse to calculate the scaling factor for scaling an image. Basically, the further you get away from the center of the image, the bigger it gets; and the closer to the center you get, the smaller it gets. I have some code so far but it's acting really strange and I have absolutely no more ideas. First I'll let you know, one thing I was trying to do is average out 5 distances to get a more smooth resize animation. Here's my code: private void pictureBoxScale_MouseMove(object sender, MouseEventArgs e) { if (rotateScaleMode && isDraggingToScale) { // For Scaling int sourceWidth = pictureBox1.Image.Width; int sourceHeight = pictureBox1.Image.Height; float dCurrCent = 0; // distance between the current mouse pos and the center of the image float dPrevCent = 0; // distance between the previous mouse pos and the center of the image System.Drawing.Point imgCenter = new System.Drawing.Point(); imgCenter.X = pictureBox1.Location.X + (sourceWidth / 2); imgCenter.Y = pictureBox1.Location.Y + (sourceHeight / 2); // Calculating the distance between the current mouse location and the center of the image dCurrCent = (float)Math.Sqrt(Math.Pow(e.X - imgCenter.X, 2) + Math.Pow(e.Y - imgCenter.Y, 2)); // Calculating the distance between the previous mouse location and the center of the image dPrevCent = (float)Math.Sqrt(Math.Pow(prevMouseLoc.X - imgCenter.X, 2) + Math.Pow(prevMouseLoc.Y - imgCenter.Y, 2)); if (smoothScaleCount < 5) { dCurrCentSmooth[smoothScaleCount] = dCurrCent; dPrevCentSmooth[smoothScaleCount] = dPrevCent; } if (smoothScaleCount == 4) { float currCentSum = 0; float prevCentSum = 0; for (int i = 0; i < 4; i++) { currCentSum += dCurrCentSmooth[i]; } for (int i = 0; i < 4; i++) { prevCentSum += dPrevCentSmooth[i]; } float scaleAvg = (currCentSum / 5) / (prevCentSum / 5); int destWidth = (int)(sourceWidth * scaleAvg); int destHeight = (int)(sourceHeight * scaleAvg); // If statement is for limiting the size of the image if (destWidth > (currentRotatedImage.Width / 2) && destWidth < (currentRotatedImage.Width * 3) && destHeight > (currentRotatedImage.Height / 2) && destWidth < (currentRotatedImage.Width * 3)) { AForge.Imaging.Filters.ResizeBilinear resizeFilter = new AForge.Imaging.Filters.ResizeBilinear(destWidth, destHeight); pictureBox1.Image = resizeFilter.Apply((Bitmap)currentRotatedImage); pictureBox1.Size = pictureBox1.Image.Size; pictureBox1.Refresh(); } smoothScaleCount = -1; } prevMouseLoc = e.Location; currentScaledImage = pictureBox1.Image; smoothScaleCount++; } }

    Read the article

< Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >