Search Results

Search found 13889 results on 556 pages for 'results'.

Page 59/556 | < Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >

  • DirectorySearch.PageSize = 2 doesn't work

    - by Bero
    using (DirectorySearcher srch = new DirectorySearcher(String.Format("(memberOf= {0})",p_Target.DistinguishedName))) { srch.PageSize = 2; SearchResultCollection results = results = srch.FindAll(); int count = results.Count; } count = 3 (THREE) and not 2. Why is that? I don't want to have all results in just one page. I know that PageSize = 2 is silly small but I set that value in this case just for testing purpose (in reality it will be more).

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Custom SNMP Cacti Data Source fails to update

    - by Andrew Wilkinson
    I'm trying to create a custom SNMP datasource for Cacti but despite everything I can check being correct, it is not creating the rrd file, or updating it even when I create it. Other, standard SNMP sources are working correctly so it's not SNMP or permissions that are the problem. I've created a new Data Query, which when I click on "Verbose Query" on the device screen returns the following: + Running data query [10]. + Found type = '3' [SNMP Query]. + Found data query XML file at '/volume1/web/cacti/resource/snmp_queries/syno_volume_stats.xml' + XML file parsed ok. + missing in XML file, 'Index Count Changed' emulated by counting oid_index entries + Executing SNMP walk for list of indexes @ '.1.3.6.1.2.1.25.2.3.1.3' Index Count: 8 + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.1' value: 'Physical memory' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.3' value: 'Virtual memory' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.6' value: 'Memory buffers' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.7' value: 'Cached memory' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.10' value: 'Swap space' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.31' value: '/' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.32' value: '/volume1' + Index found at OID: '.1.3.6.1.2.1.25.2.3.1.3.33' value: '/opt' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.1' results: '1' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.3' results: '3' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.6' results: '6' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.7' results: '7' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.10' results: '10' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.31' results: '31' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.32' results: '32' + index_parse at OID: '.1.3.6.1.2.1.25.2.3.1.3.33' results: '33' + Located input field 'index' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.3' + Found item [index='Physical memory'] index: 1 [from value] + Found item [index='Virtual memory'] index: 3 [from value] + Found item [index='Memory buffers'] index: 6 [from value] + Found item [index='Cached memory'] index: 7 [from value] + Found item [index='Swap space'] index: 10 [from value] + Found item [index='/'] index: 31 [from value] + Found item [index='/volume1'] index: 32 [from value] + Found item [index='/opt'] index: 33 [from value] + Located input field 'volsizeunit' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.4' + Found item [volsizeunit='1024 Bytes'] index: 1 [from value] + Found item [volsizeunit='1024 Bytes'] index: 3 [from value] + Found item [volsizeunit='1024 Bytes'] index: 6 [from value] + Found item [volsizeunit='1024 Bytes'] index: 7 [from value] + Found item [volsizeunit='1024 Bytes'] index: 10 [from value] + Found item [volsizeunit='4096 Bytes'] index: 31 [from value] + Found item [volsizeunit='4096 Bytes'] index: 32 [from value] + Found item [volsizeunit='4096 Bytes'] index: 33 [from value] + Located input field 'volsize' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.5' + Found item [volsize='1034712'] index: 1 [from value] + Found item [volsize='3131792'] index: 3 [from value] + Found item [volsize='1034712'] index: 6 [from value] + Found item [volsize='775904'] index: 7 [from value] + Found item [volsize='2097080'] index: 10 [from value] + Found item [volsize='612766'] index: 31 [from value] + Found item [volsize='1439812394'] index: 32 [from value] + Found item [volsize='1439812394'] index: 33 [from value] + Located input field 'volused' [walk] + Executing SNMP walk for data @ '.1.3.6.1.2.1.25.2.3.1.6' + Found item [volused='1022520'] index: 1 [from value] + Found item [volused='1024096'] index: 3 [from value] + Found item [volused='32408'] index: 6 [from value] + Found item [volused='775904'] index: 7 [from value] + Found item [volused='1576'] index: 10 [from value] + Found item [volused='148070'] index: 31 [from value] + Found item [volused='682377865'] index: 32 [from value] + Found item [volused='682377865'] index: 33 [from value] AS you can see it appears to be returning the correct data. I've also set up data templates and graph templates to display the data. The create graphs for a device screen shows the correct data, and when selecting one row can clicking create a new data source and graph are created. Unfortunately the data source is never updated. Increasing the poller log level shows that it appears to not even be querying the data source, despite it being used? What should my next steps to debug this issue be?

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • A ToDynamic() Extension Method For Fluent Reflection

    - by Dixin
    Recently I needed to demonstrate some code with reflection, but I felt it inconvenient and tedious. To simplify the reflection coding, I created a ToDynamic() extension method. The source code can be downloaded from here. Problem One example for complex reflection is in LINQ to SQL. The DataContext class has a property Privider, and this Provider has an Execute() method, which executes the query expression and returns the result. Assume this Execute() needs to be invoked to query SQL Server database, then the following code will be expected: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // Executes the query. Here reflection is required, // because Provider, Execute(), and ReturnValue are not public members. IEnumerable<Product> results = database.Provider.Execute(query.Expression).ReturnValue; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } Of course, this code cannot compile. And, no one wants to write code like this. Again, this is just an example of complex reflection. using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider PropertyInfo providerProperty = database.GetType().GetProperty( "Provider", BindingFlags.NonPublic | BindingFlags.GetProperty | BindingFlags.Instance); object provider = providerProperty.GetValue(database, null); // database.Provider.Execute(query.Expression) // Here GetMethod() cannot be directly used, // because Execute() is a explicitly implemented interface method. Assembly assembly = Assembly.Load("System.Data.Linq"); Type providerType = assembly.GetTypes().SingleOrDefault( type => type.FullName == "System.Data.Linq.Provider.IProvider"); InterfaceMapping mapping = provider.GetType().GetInterfaceMap(providerType); MethodInfo executeMethod = mapping.InterfaceMethods.Single(method => method.Name == "Execute"); IExecuteResult executeResult = executeMethod.Invoke(provider, new object[] { query.Expression }) as IExecuteResult; // database.Provider.Execute(query.Expression).ReturnValue IEnumerable<Product> results = executeResult.ReturnValue as IEnumerable<Product>; // Processes the results. foreach (Product product in results) { Console.WriteLine("{0}, {1}", product.ProductID, product.ProductName); } } This may be not straight forward enough. So here a solution will implement fluent reflection with a ToDynamic() extension method: IEnumerable<Product> results = database.ToDynamic() // Starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue; C# 4.0 dynamic In this kind of scenarios, it is easy to have dynamic in mind, which enables developer to write whatever code after a dot: using (NorthwindDataContext database = new NorthwindDataContext()) { // Constructs the query. IQueryable<Product> query = database.Products.Where(product => product.ProductID > 0) .OrderBy(product => product.ProductName) .Take(2); // database.Provider dynamic dynamicDatabase = database; dynamic results = dynamicDatabase.Provider.Execute(query).ReturnValue; } This throws a RuntimeBinderException at runtime: 'System.Data.Linq.DataContext.Provider' is inaccessible due to its protection level. Here dynamic is able find the specified member. So the next thing is just writing some custom code to access the found member. .NET 4.0 DynamicObject, and DynamicWrapper<T> Where to put the custom code for dynamic? The answer is DynamicObject’s derived class. I first heard of DynamicObject from Anders Hejlsberg's video in PDC2008. It is very powerful, providing useful virtual methods to be overridden, like: TryGetMember() TrySetMember() TryInvokeMember() etc.  (In 2008 they are called GetMember, SetMember, etc., with different signature.) For example, if dynamicDatabase is a DynamicObject, then the following code: dynamicDatabase.Provider will invoke dynamicDatabase.TryGetMember() to do the actual work, where custom code can be put into. Now create a type to inherit DynamicObject: public class DynamicWrapper<T> : DynamicObject { private readonly bool _isValueType; private readonly Type _type; private T _value; // Not readonly, for value type scenarios. public DynamicWrapper(ref T value) // Uses ref in case of value type. { if (value == null) { throw new ArgumentNullException("value"); } this._value = value; this._type = value.GetType(); this._isValueType = this._type.IsValueType; } public override bool TryGetMember(GetMemberBinder binder, out object result) { // Searches in current type's public and non-public properties. PropertyInfo property = this._type.GetTypeProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in explicitly implemented properties for interface. MethodInfo method = this._type.GetInterfaceMethod(string.Concat("get_", binder.Name), null); if (method != null) { result = method.Invoke(this._value, null).ToDynamic(); return true; } // Searches in current type's public and non-public fields. FieldInfo field = this._type.GetTypeField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // Searches in base type's public and non-public properties. property = this._type.GetBaseProperty(binder.Name); if (property != null) { result = property.GetValue(this._value, null).ToDynamic(); return true; } // Searches in base type's public and non-public fields. field = this._type.GetBaseField(binder.Name); if (field != null) { result = field.GetValue(this._value).ToDynamic(); return true; } // The specified member is not found. result = null; return false; } // Other overridden methods are not listed. } In the above code, GetTypeProperty(), GetInterfaceMethod(), GetTypeField(), GetBaseProperty(), and GetBaseField() are extension methods for Type class. For example: internal static class TypeExtensions { internal static FieldInfo GetBaseField(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeField(name) ?? @base.GetBaseField(name); } internal static PropertyInfo GetBaseProperty(this Type type, string name) { Type @base = type.BaseType; if (@base == null) { return null; } return @base.GetTypeProperty(name) ?? @base.GetBaseProperty(name); } internal static MethodInfo GetInterfaceMethod(this Type type, string name, params object[] args) { return type.GetInterfaces().Select(type.GetInterfaceMap).SelectMany(mapping => mapping.TargetMethods) .FirstOrDefault( method => method.Name.Split('.').Last().Equals(name, StringComparison.Ordinal) && method.GetParameters().Count() == args.Length && method.GetParameters().Select( (parameter, index) => parameter.ParameterType.IsAssignableFrom(args[index].GetType())).Aggregate( true, (a, b) => a && b)); } internal static FieldInfo GetTypeField(this Type type, string name) { return type.GetFields( BindingFlags.GetField | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( field => field.Name.Equals(name, StringComparison.Ordinal)); } internal static PropertyInfo GetTypeProperty(this Type type, string name) { return type.GetProperties( BindingFlags.GetProperty | BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic).FirstOrDefault( property => property.Name.Equals(name, StringComparison.Ordinal)); } // Other extension methods are not listed. } So now, when invoked, TryGetMember() searches the specified member and invoke it. The code can be written like this: dynamic dynamicDatabase = new DynamicWrapper<NorthwindDataContext>(ref database); dynamic dynamicReturnValue = dynamicDatabase.Provider.Execute(query.Expression).ReturnValue; This greatly simplified reflection. ToDynamic() and fluent reflection To make it even more straight forward, A ToDynamic() method is provided: public static class DynamicWrapperExtensions { public static dynamic ToDynamic<T>(this T value) { return new DynamicWrapper<T>(ref value); } } and a ToStatic() method is provided to unwrap the value: public class DynamicWrapper<T> : DynamicObject { public T ToStatic() { return this._value; } } In the above TryGetMember() method, please notice it does not output the member’s value, but output a wrapped member value (that is, memberValue.ToDynamic()). This is very important to make the reflection fluent. Now the code becomes: IEnumerable<Product> results = database.ToDynamic() // Here starts fluent reflection. .Provider.Execute(query.Expression).ReturnValue .ToStatic(); // Unwraps to get the static value. With the help of TryConvert(): public class DynamicWrapper<T> : DynamicObject { public override bool TryConvert(ConvertBinder binder, out object result) { result = this._value; return true; } } ToStatic() can be omitted: IEnumerable<Product> results = database.ToDynamic() .Provider.Execute(query.Expression).ReturnValue; // Automatically converts to expected static value. Take a look at the reflection code at the beginning of this post again. Now it is much much simplified! Special scenarios In 90% of the scenarios ToDynamic() is enough. But there are some special scenarios. Access static members Using extension method ToDynamic() for accessing static members does not make sense. Instead, DynamicWrapper<T> has a parameterless constructor to handle these scenarios: public class DynamicWrapper<T> : DynamicObject { public DynamicWrapper() // For static. { this._type = typeof(T); this._isValueType = this._type.IsValueType; } } The reflection code should be like this: dynamic wrapper = new DynamicWrapper<StaticClass>(); int value = wrapper._value; int result = wrapper.PrivateMethod(); So accessing static member is also simple, and fluent of course. Change instances of value types Value type is much more complex. The main problem is, value type is copied when passing to a method as a parameter. This is why ref keyword is used for the constructor. That is, if a value type instance is passed to DynamicWrapper<T>, the instance itself will be stored in this._value of DynamicWrapper<T>. Without the ref keyword, when this._value is changed, the value type instance itself does not change. Consider FieldInfo.SetValue(). In the value type scenarios, invoking FieldInfo.SetValue(this._value, value) does not change this._value, because it changes the copy of this._value. I searched the Web and found a solution for setting the value of field: internal static class FieldInfoExtensions { internal static void SetValue<T>(this FieldInfo field, ref T obj, object value) { if (typeof(T).IsValueType) { field.SetValueDirect(__makeref(obj), value); // For value type. } else { field.SetValue(obj, value); // For reference type. } } } Here __makeref is a undocumented keyword of C#. But method invocation has problem. This is the source code of TryInvokeMember(): public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (binder == null) { throw new ArgumentNullException("binder"); } MethodInfo method = this._type.GetTypeMethod(binder.Name, args) ?? this._type.GetInterfaceMethod(binder.Name, args) ?? this._type.GetBaseMethod(binder.Name, args); if (method != null) { // Oops! // If the returnValue is a struct, it is copied to heap. object resultValue = method.Invoke(this._value, args); // And result is a wrapper of that copied struct. result = new DynamicWrapper<object>(ref resultValue); return true; } result = null; return false; } If the returned value is of value type, it will definitely copied, because MethodInfo.Invoke() does return object. If changing the value of the result, the copied struct is changed instead of the original struct. And so is the property and index accessing. They are both actually method invocation. For less confusion, setting property and index are not allowed on struct. Conclusions The DynamicWrapper<T> provides a simplified solution for reflection programming. It works for normal classes (reference types), accessing both instance and static members. In most of the scenarios, just remember to invoke ToDynamic() method, and access whatever you want: StaticType result = someValue.ToDynamic()._field.Method().Property[index]; In some special scenarios which requires changing the value of a struct (value type), this DynamicWrapper<T> does not work perfectly. Only changing struct’s field value is supported. The source code can be downloaded from here, including a few unit test code.

    Read the article

  • jQuery line 67 saying "TypeError: 'undefined' is not a function."

    - by dfdf
    var dbShell; function doLog(s){ /* setTimeout(function(){ console.log(s); }, 3000); */ } function dbErrorHandler(err){ alert("DB Error: "+err.message + "\nCode="+err.code); } function phoneReady(){ doLog("phoneReady"); //First, open our db dbShell = window.openDatabase("SimpleNotes", 2, "SimpleNotes", 1000000); doLog("db was opened"); //run transaction to create initial tables dbShell.transaction(setupTable,dbErrorHandler,getEntries); doLog("ran setup"); } //I just create our initial table - all one of em function setupTable(tx){ doLog("before execute sql..."); tx.executeSql("CREATE TABLE IF NOT EXISTS notes(id INTEGER PRIMARY KEY,title,body,updated)"); doLog("after execute sql..."); } //I handle getting entries from the db function getEntries() { //doLog("get entries"); dbShell.transaction(function(tx) { tx.executeSql("select id, title, body, updated from notes order by updated desc",[],renderEntries,dbErrorHandler); }, dbErrorHandler); } function renderEntries(tx,results){ doLog("render entries"); if (results.rows.length == 0) { $("#mainContent").html("<p>You currently do not have any notes.</p>"); } else { var s = ""; for(var i=0; i<results.rows.length; i++) { s += "<li><a href='edit.html?id="+results.rows.item(i).id + "'>" + results.rows.item(i).title + "</a></li>"; } $("#noteTitleList").html(s); $("#noteTitleList").listview("refresh"); } } function saveNote(note, cb) { //Sometimes you may want to jot down something quickly.... if(note.title == "") note.title = "[No Title]"; dbShell.transaction(function(tx) { if(note.id == "") tx.executeSql("insert into notes(title,body,updated) values(?,?,?)",[note.title,note.body, new Date()]); else tx.executeSql("update notes set title=?, body=?, updated=? where id=?",[note.title,note.body, new Date(), note.id]); }, dbErrorHandler,cb); } function init(){ document.addEventListener("deviceready", phoneReady, false); //handle form submission of a new/old note $("#editNoteForm").live("submit",function(e) { var data = {title:$("#noteTitle").val(), body:$("#noteBody").val(), id:$("#noteId").val() }; saveNote(data,function() { $.mobile.changePage("index.html",{reverse:true}); }); e.preventDefault(); }); //will run after initial show - handles regetting the list $("#homePage").live("pageshow", function() { getEntries(); }); //edit page logic needs to know to get old record (possible) $("#editPage").live("pageshow", function() { var loc = $(this).data("url"); if(loc.indexOf("?") >= 0) { var qs = loc.substr(loc.indexOf("?")+1,loc.length); var noteId = qs.split("=")[1]; //load the values $("#editFormSubmitButton").attr("disabled","disabled"); dbShell.transaction( function(tx) { tx.executeSql("select id,title,body from notes where id=?",[noteId],function(tx,results) { $("#noteId").val(results.rows.item(0).id); $("#noteTitle").val(results.rows.item(0).title); $("#noteBody").val(results.rows.item(0).body); $("#editFormSubmitButton").removeAttr("disabled"); }); }, dbErrorHandler); } else { $("#editFormSubmitButton").removeAttr("disabled"); } }); } Dats my code, awfully long, huh? Well anyways I got most of it from here, however I get an error on line 67 saying "TypeError: 'undefined' is not a function.". I'm using Steroids (phonegap-like) and testing dis on an iPhone simulator. I'm sure it uses some cordova for the database work. Thank you for your help :-)

    Read the article

  • PHP hooks information and help needed

    - by sea_1987
    Background I am realtively new to hooks, and I have been asked to use a hook to populate a view with some data, currently the view gathers it data from a function that is in the model, and becuase the whole object is being passed to the view I can access the function. The function looks like this, public function numCVInSector($k) { $this->load->model('SYSector'); $sectorModel = new SYSector(); $cvs = $sectorModel->fetchRelatedCV($k); $cvs = $cvs[0]['count']; if($cvs == "0") { return false; } else { return $cvs; } } it call's a query in the model that looks like this, public function fetchRelatedCV($k) { $sql = "SELECT sector_id, COUNT(sector_id) as count FROM sy_user_sectors WHERE sector_id = $k"; //print_r($sql); $query = $this->db->query($sql); return $query->result_array(); } $k is the id of element that is in the view. The Problem I have been asked to use a hook that is in the parent of the model the hook is called post populate, now I have very little idea of what a hook is or how to use one to implement my function. Could some one give me some advice, the code where the hook is original made looks like this, public function populate($where = array()) { $results = array( "success" => false, "is_error" => false, "error_code" => "", "error_message" => "" ); if(empty($where) && empty($this->aliases['id'])){ $results['is_error'] = true; $results['error_message'] = 'No criteria.'; return $results; } // [hook] $this->prePopulate(); $where = count($where) > 0 ? $where : array('id' => $this->aliases['id']); $query = $this->db->get_where($this->tableName, $where, 1); if($query->num_rows() < 1){ $results['error_message'] = 'Empty results.'; return $results; } foreach($query->result_array() as $row){ foreach($this->aliases as $key => $val){ $this->aliases[$key] = $row[$key]; } } // [hook] $this->postPopulate(); // Presume success $results['success'] = true; return $results; } I have been asked to use the postPopulate hook. public function postPopulate() { $args = $this->getHookArgs('post_populate'); if(!is_array($args)){ // $this->fb->log($args, 'bad args'); return false; } // code here... // Convert dates to front end formats. foreach($this->frontEndDateFields as $fieldName => $dateFormat){ $dateRes = mlib_du_getFormattedMySQLDate($this->aliases[$fieldName], $dateFormat); if($dateRes != false){ $this->aliases[$fieldName] = $dateRes; } } return true; }

    Read the article

  • Android - Create a custom multi-line ListView bound to an ArrayList

    - by Bill Osuch
    The Android HelloListView tutorial shows how to bind a ListView to an array of string objects, but you'll probably outgrow that pretty quickly. This post will show you how to bind the ListView to an ArrayList of custom objects, as well as create a multi-line ListView. Let's say you have some sort of search functionality that returns a list of people, along with addresses and phone numbers. We're going to display that data in three formatted lines for each result, and make it clickable. First, create your new Android project, and create two layout files. Main.xml will probably already be created by default, so paste this in: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"  android:orientation="vertical"  android:layout_width="fill_parent"   android:layout_height="fill_parent">  <TextView   android:layout_height="wrap_content"   android:text="Custom ListView Contents"   android:gravity="center_vertical|center_horizontal"   android:layout_width="fill_parent" />   <ListView    android:id="@+id/ListView01"    android:layout_height="wrap_content"    android:layout_width="fill_parent"/> </LinearLayout> Next, create a layout file called custom_row_view.xml. This layout will be the template for each individual row in the ListView. You can use pretty much any type of layout - Relative, Table, etc., but for this we'll just use Linear: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"  android:orientation="vertical"  android:layout_width="fill_parent"   android:layout_height="fill_parent">   <TextView android:id="@+id/name"   android:textSize="14sp"   android:textStyle="bold"   android:textColor="#FFFF00"   android:layout_width="wrap_content"   android:layout_height="wrap_content"/>  <TextView android:id="@+id/cityState"   android:layout_width="wrap_content"   android:layout_height="wrap_content"/>  <TextView android:id="@+id/phone"   android:layout_width="wrap_content"   android:layout_height="wrap_content"/> </LinearLayout> Now, add an object called SearchResults. Paste this code in: public class SearchResults {  private String name = "";  private String cityState = "";  private String phone = "";  public void setName(String name) {   this.name = name;  }  public String getName() {   return name;  }  public void setCityState(String cityState) {   this.cityState = cityState;  }  public String getCityState() {   return cityState;  }  public void setPhone(String phone) {   this.phone = phone;  }  public String getPhone() {   return phone;  } } This is the class that we'll be filling with our data, and loading into an ArrayList. Next, you'll need a custom adapter. This one just extends the BaseAdapter, but you could extend the ArrayAdapter if you prefer. public class MyCustomBaseAdapter extends BaseAdapter {  private static ArrayList<SearchResults> searchArrayList;    private LayoutInflater mInflater;  public MyCustomBaseAdapter(Context context, ArrayList<SearchResults> results) {   searchArrayList = results;   mInflater = LayoutInflater.from(context);  }  public int getCount() {   return searchArrayList.size();  }  public Object getItem(int position) {   return searchArrayList.get(position);  }  public long getItemId(int position) {   return position;  }  public View getView(int position, View convertView, ViewGroup parent) {   ViewHolder holder;   if (convertView == null) {    convertView = mInflater.inflate(R.layout.custom_row_view, null);    holder = new ViewHolder();    holder.txtName = (TextView) convertView.findViewById(R.id.name);    holder.txtCityState = (TextView) convertView.findViewById(R.id.cityState);    holder.txtPhone = (TextView) convertView.findViewById(R.id.phone);    convertView.setTag(holder);   } else {    holder = (ViewHolder) convertView.getTag();   }      holder.txtName.setText(searchArrayList.get(position).getName());   holder.txtCityState.setText(searchArrayList.get(position).getCityState());   holder.txtPhone.setText(searchArrayList.get(position).getPhone());   return convertView;  }  static class ViewHolder {   TextView txtName;   TextView txtCityState;   TextView txtPhone;  } } (This is basically the same as the List14.java API demo) Finally, we'll wire it all up in the main class file: public class CustomListView extends Activity {     @Override     public void onCreate(Bundle savedInstanceState) {         super.onCreate(savedInstanceState);         setContentView(R.layout.main);                 ArrayList<SearchResults> searchResults = GetSearchResults();                 final ListView lv1 = (ListView) findViewById(R.id.ListView01);         lv1.setAdapter(new MyCustomBaseAdapter(this, searchResults));                 lv1.setOnItemClickListener(new OnItemClickListener() {          @Override          public void onItemClick(AdapterView<?> a, View v, int position, long id) {           Object o = lv1.getItemAtPosition(position);           SearchResults fullObject = (SearchResults)o;           Toast.makeText(ListViewBlogPost.this, "You have chosen: " + " " + fullObject.getName(), Toast.LENGTH_LONG).show();          }          });     }         private ArrayList<SearchResults> GetSearchResults(){      ArrayList<SearchResults> results = new ArrayList<SearchResults>();            SearchResults sr1 = new SearchResults();      sr1.setName("John Smith");      sr1.setCityState("Dallas, TX");      sr1.setPhone("214-555-1234");      results.add(sr1);            sr1 = new SearchResults();      sr1.setName("Jane Doe");      sr1.setCityState("Atlanta, GA");      sr1.setPhone("469-555-2587");      results.add(sr1);            sr1 = new SearchResults();      sr1.setName("Steve Young");      sr1.setCityState("Miami, FL");      sr1.setPhone("305-555-7895");      results.add(sr1);            sr1 = new SearchResults();      sr1.setName("Fred Jones");      sr1.setCityState("Las Vegas, NV");      sr1.setPhone("612-555-8214");      results.add(sr1);            return results;     } } Notice that we first get an ArrayList of SearchResults objects (normally this would be from an external data source...), pass it to the custom adapter, then set up a click listener. The listener gets the item that was clicked, converts it back to a SearchResults object, and does whatever it needs to do. Fire it up in the emulator, and you should wind up with something like this:

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • Adding UCM as a search source in Windows Explorer

    - by kyle.hatlestad
    A customer recently pointed out to me that Windows 7 supports federated search within Windows Explorer. This means you can perform searches to external sources such as Google, Flickr, YouTube, etc right from within Explorer. While we do have the Desktop Integration Suite which offers searching within Explorer, I thought it would be interesting to look into this method which would not require any client software to implement. Basically, federated searching hooks up in Windows Explorer through the OpenSearch protocol. A Search Connector Descriptor file is run and it installs the search provider. The file is a .osdx file which is an OpenSearch Description document. It describes the search provider you are hooking up to along with the URL for the query. If those results can come back as an RSS or ATOM feed, then you're all set. So the first step is to install the RSS Feeds component from the UCM Samples page on OTN. If you're on 11g, I've found the RSS Feeds works just fine on that version too. Next, you want to perform a Quick Search with a particular search term and then copy the RSS link address for that search result. Here is what an example URL might looks like: http://server:16200/cs/idcplg?IdcService=GET_SCS_FEED&feedName=search_results&QueryText=%28+%3cqsch%3eoracle%3c%2fqsch %3e+%29&SortField=dInDate&SortOrder=Desc&ResultCount=20&SearchQueryFormat= Universal&SearchProviders=server& Now you want to create a new text file and start out with this information: <?xml version="1.0" encoding="UTF-8"?><OpenSearchDescription xmlns:ms-ose="http://schemas.microsoft.com/opensearchext/2009/"> <ShortName></ShortName> <Description></Description> <Url type="application/rss+xml" template=""/> <Url type="text/html" template=""/> </OpenSearchDescription> Enter a ShortName and Description. The ShortName will be the value used when displaying the search provider in Explorer. In the template attribute for the first Url element, enter the URL copied previously. You will then need to convert the ampersand symbols to '&' to make them XML compliant. Finally, you'll want to switch out the search term with '{searchTerms}'. For the second Url element, you can do the same thing except you want to copy the UCM search results URL from the page of results. That URL will look something like: http://server:16200/cs/idcplg?IdcService=GET_SEARCH_RESULTS&SortField=dInDate&SortOrder=Desc&ResultCount=20&QueryText=%3Cqsch%3Eoracle%3C%2Fqsch%3E&listTemplateId= &ftx=1&SearchQueryFormat=Universal&TargetedQuickSearchSelection= &MiniSearchText=oracle Again, convert the ampersand symbols and replace the search term with '{searchTerms}'. When complete, save the file with the .osdx extension. The completed file should look like: <?xml version="1.0" encoding="UTF-8"?> <OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:ms-ose="http://schemas.microsoft.com/opensearchext/2009/"> <ShortName>Universal Content Management</ShortName> <Description>OpenSearch for UCM via Windows 7 Search Federation.</Description> <Url type="application/rss+xml" template="http://server:16200/cs/idcplg?IdcService=GET_SCS_FEED&amp;feedName=search_results&amp;QueryText=%28+%3Cqsch%3E{searchTerms}%3C%2fqsch%3E+%29&amp;SortField=dInDate&amp;SortOrder=Desc&amp;ResultCount=200&amp;SearchQueryFormat=Universal"/> <Url type="text/html" template="http://server:16200/cs/idcplg?IdcService=GET_SEARCH_RESULTS&amp;SortField=dInDate&amp;SortOrder=Desc&amp;ResultCount=20&amp;QueryText=%3Cqsch%3E{searchTerms}%3C%2Fqsch%3E&amp;listTemplateId=&amp;ftx=1&amp;SearchQueryFormat=Universal&amp;TargetedQuickSearchSelection=&amp;MiniSearchText={searchTerms}"/> </OpenSearchDescription> After you save the file, simply double-click it to create the provider. It will ask if you want to add the search connector to Windows. Click Add and it will add it to the Searches folder in your user folder as well as your Favorites. Now just click on the search icon and in the upper right search box, enter your term. As you are typing, it begins executing searches and the results will come back in Explorer. Now when you double-click on an item, it will try and download the web viewable for viewing. You also have the ability to save the search, just as you would in UCM. And there is a link to Search On Website which will launch your browser and go directly to the search results page there. And with some tweaks to the RSS component, you can make the results a bit more interesting. It supports the Media RSS standard, so you can pass along the thumbnail of the documents in the results. To enable this, edit the rss_resources.htm file in the RSS Feeds component. In the std_rss_feed_begin resource include, add the namespace 'xmlns:media="http://search.yahoo.com/mrss/' to the rss definition: <rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:sy="http://purl.org/rss/1.0/modules/syndication/" xmlns:media="http://search.yahoo.com/mrss/"> Next, in the rss_channel_item_with_thumb include, below the closing image element, add this element: </images> <media:thumbnail url="<$if strIndexOf(thumbnailUrl, "@t") > 0 or strIndexOf(thumbnailUrl, "@g") > 0 or strIndexOf(thumbnailUrl, "@p") > 0$><$rssHttpHost$><$thumbnailUrl$><$elseif dGif$><$HttpWebRoot$>images/docgifs/<$dGif$><$endif$>" /> <description> This and lots of other tweaks can be done to the RSS component to help extend it for optimum use in Explorer. Hopefully this can get you started. *Note: This post also applies to Universal Records Management (URM).

    Read the article

  • Timeout Considerations for Solicit Response – Part 2

    - by Michael Stephenson
    To follow up a previous article about timeouts and how they can affect your application I have extended the sample we were using to include WCF. I will execute some test scenarios and discuss the results. The sample We begin by consuming exactly the same web service which is sitting on a remote server. This time I have created a .net 3.5 application which will consume the web service using the basichttp binding. To show you the configuration for the consumption of this web service please refer to the below diagram. You can see like before we also have the connectionManagement element in the configuration file. I have added a WCF service reference (also using the asynchronous proxy methods) and have the below code sample in the application which will asynchronously make the web service calls and handle the responses on a call back method invoked by a delegate. If you have read the previous article you will notice that the code is almost the same.   Sample 1 – WCF with Default Timeouts In this test I set about recreating the same scenario as previous where we would run the test but this time using WCF as the messaging component. For the first test I would use the default configuration settings which WCF had setup when we added a reference to the web service. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"   The Test We simulated 21 calls to the web service Test Results The client-side trace is as follows:   The server-side trace is as follows: Some observations on the results are as follows: The timeouts happened quicker than in the previous tests because some calls were timing out before they attempted to connect to the server The first few calls that timed out did actually connect to the server and did execute successfully on the server   Test 2 – Increase Open Connection Timeout & Send Timeout In this test I wanted to increase both the send and open timeout values to try and give everything a chance to go through. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:10:00"   The Test We simulated 21 calls to the web service   Test Results The client side trace for this test was   The server-side trace for this test was: Some observations on this test are: This test proved if the timeouts are high enough everything will just go through   Test 3 – Increase just the Send Timeout In this test we wanted to increase just the send timeout. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:10:00"   The Test We simulated 21 calls to the web service   Test Results The below is the client side trace The below is the server side trace Some observations on this test are: In this test from both the client and server perspective everything ran through fine The open connection timeout did not seem to have any effect   Test 4 – Increase Just the Open Connection Timeout In this test I wanted to validate the change to the open connection setting by increasing just this on its own. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"   The Test We simulated 21 calls to the web service Test Results The client side trace was The server side trace was Some observations on this test are: In this test you can see that the open connection which relates to opening the channel timeout increase was not the thing which stopped the calls timing out It's the send of data which is timing out On the server you can see that the successful few calls were fine but there were also a few calls which hit the server but timed out on the client You can see that not all calls hit the server which was one of the problems with the WSE and ASMX options   Test 5 – Smaller Increase in Send Timeout In this test I wanted to make a smaller increase to the send timeout than previous just to prove that it was the key setting which was controlling what was timing out. The timeout values for this test are: openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:02:30"   The Test We simulated 21 calls to the web service Test Results The client side trace was   The server side trace was Some observations on this test are: You can see that most of the calls got through fine On the client you can see that call 20 timed out but still hit the server and executed fine.   Summary At this point between the two articles we have quite a lot of scenarios showing the different way the timeout setting have played into our original performance issue, and now we can see how WCF could offer an improved way to handle the problem. To summarise the differences in the timeout properties for the three technology stacks: ASMX The timeout value only applies to the execution time of your request on the server. The timeout does not consider how long your code might be waiting client side to get a connection. WSE The timeout value includes both the time to obtain a connection and also the time to execute the request. A timeout will not be thrown as an error until an attempt to connect to the server is made. This means a 40 second timeout setting may not throw the error until 60 seconds when the connection to the server is made. If the connection to the server is made you should be aware that your message will be processed and you should design for this. WCF The WCF send timeout is the setting most equivalent to the settings we were looking at previously. Like WSE this setting the counter includes the time to get a connection as well as the time to execute on a server. Unlike WSE and ASMX an error will be thrown as soon as the send timeout from making your call from user code has elapsed regardless of whether we are waiting for a connection or have an open connection to the server. This may to a user appear to have better latency in getting an error response compared to WSE or ASMX.

    Read the article

  • Make CSV from list of string in LINQ

    - by CmdrTallen
    Hi I would like to take a list collection and generate a single csv line. So take this; List<string> MakeStrings() { List<string> results = new List<string>(); results.add("Bob"); results.add("Nancy"); results.add("Joe"); results.add("Jack"); } string ContactStringsTogether(List<string> parts) { StringBuilder sb = new StringBuilder(); foreach (string part in parts) { if (sb.Length > 0) sb.Append(", "); sb.Append(part); } return sb.ToString(); } This returns "Bob,Nancy,Joe,Jack" Looking for help on the LINQ to do this in a single statement. Thanks!

    Read the article

  • Find key of parent in array / PHP

    - by 106691756905536410593
    Perhaps someone can help me out with this one: I'm using a basic search function to find an array deep within an array. The problem is, once that array is found, I'd also like to return it's parent key. Is there a PHP function that can determine the parent key of an array? Below is an example of the Search Function... Ideally I'd like to return the array that is found, as well as it's parent key. function search($array, $key, $value){ $results = array(); if (is_array($array)){ if ($array[$key] == $value){ $results[] = $array; } foreach ($array as $subarray){ $results = array_merge($results, search($subarray, $key, $value)); } } return $results; }

    Read the article

  • Unable to save to wincache from cakePHP shell

    - by Phillaf
    I'm trying to retrieve the weather from wunderground.com through their API, and store it in wincache. For testing purposes I made this function in the News model: public function updateWeather(){ $results = file_get_contents('http://api.wunderground.com/api/**api_key**/conditions/q/CA/Montreal.json'); $results = json_decode($results); return Cache::write('weather', $results); } It works fine when I call this from the controller. However, I can't figure why that same function doesn't work when called from the console. I made this shell in order to eventually add this to windows task scheduler. class WeatherShell extends AppShell { public $uses = array('News'); public function main() { $this->News->updateWeather(); } } When running this, I see that $results is correctly populated. I get 'true' from Cache::write(), however, I get 'false' when trying to read. What subtlety am I missing?

    Read the article

  • Optimizing a Soundex Query for finding similar names

    - by xkingpin
    My application will offer a list of suggestions for English names that "sound like" a given typed name. The query will need to be optimized and return results as quick as possible. Which option would be most optimal for returning results quickly. (Or your own suggestion if you have one) A. Generate the Soundex Hash and store it in the "Names" table then do something like the following: (This saves generating the soundex hash for at least every row in my db per query right?) select name from names where NameSoundex = Soundex('Ann') B. Use the Difference function (This must generate the soundex for every name in the table?) select name from names where Difference(name, 'Ann') = 3 C. Simple comparison select name from names where Soundex(name) = Soundex('Ann') Option A seems like to me it would be the fastest to return results because it only generates the Soundex for one string then compares to an indexed column "NameSoundex" Option B should give more results than option A because the name does not have to be an exact match of the soundex, but could be slower Assuming my table could contain millions of rows, what would yield the best results?

    Read the article

  • python, wrapping class returning the average of the wrapped members

    - by João Portela
    The title isn't very clear but I'll try to explain. Having this class: class Wrapped(object): def method_a(self): # do some operations return n def method_b(self): # also do some operations return n I wan't to have a class that performs the same way as this one: class Wrapper(object): def __init__(self): self.ws = [Wrapped(1),Wrapped(2),Wrapped(3)] def method_a(self): results=[Wrapped.method_a(w) for w in self.ws] sum_ = sum(results,0.0) average = sum_/len(self.ws) return average def method_b(self): results=[Wrapped.method_b(w) for w in self.ws] sum_ = sum(results,0.0) average = sum_/len(self.ws) return average obviously this is not the actual problem at hand (it is not only two methods), and this code is also incomplete (only included the minimum to explain the problem). So, what i am looking for is a way to obtain this behavior. Meaning, whichever method is called in the wrapper class, call that method for all the Wrapped class objects and return the average of their results. Can it be done? how? Thanks in advance. ps-didn't know which tags to include...

    Read the article

  • Removing a result from Queryset

    - by Enrico
    Is there a simple way to discard/remove the last result in a queryset without affecting the db? I am trying to paginate results in Django, but don't know the total number of objects for a given query. I was planning on using next/previous or older/newer links, so I only need to know if this is the first and/or last page. First is easy to check. To check for the last page I can compare the number of results with the pagesize or make a second query. The first method fails to detect the last page when the number of results in the last set equals the pagesize (ie 100 records get broken into 10 pages with the last page containing exactly 10 results) and I would like to avoid making a second query. My current thought is that I should fetch pagesize + 1 results from the db. If the queryset length equals 11, I know this is not the last page and I want to discard the last result in the queryset before passing the queryset to the template.

    Read the article

  • Error while trying to parse a website url using python . how to debug it ?

    - by mekasperasky
    #!/usr/bin/python import json import urllib from BeautifulSoup import BeautifulSoup from BeautifulSoup import BeautifulStoneSoup import BeautifulSoup def showsome(searchfor): query = urllib.urlencode({'q': searchfor}) url = 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&%s' % query search_response = urllib.urlopen(url) search_results = search_response.read() results = json.loads(search_results) data = results['responseData'] print 'Total results: %s' % data['cursor']['estimatedResultCount'] hits = data['results'] print 'Top %d hits:' % len(hits) for h in hits: print ' ', h['url'] resp = urllib.urlopen(h['url']) res = resp.read() soup = BeautifulSoup(res) print soup.prettify() print 'For more results, see %s' % data['cursor']['moreResultsUrl'] showsome('sachin') What is the wrong in this code ? Note all the 4 links that I am getting out of the search , I am feeding it back to extract the contents out of it , and then use BeautifulSoup to parse it . How should I go about it ?

    Read the article

  • Doing a generic <sql:query> in Grails

    - by melling
    This is a generic way to select data from a table and show the results in an HTML table using JSP taglibs. What is the generic way to do this in Grails? That is, take a few lines of SQL and generate an HTML table from scratch in Grails, including the column names as headers. <sql:query var="results" dataSource="${dsource}" select * from foo </sql:query (# of rows: ${results.rowCount}) <table border="1" <!-- column headers -- <tr bgcolor=cyan <c:forEach var="columnName" items="${results.columnNames}" <th<c:out value="${columnName}"/</th </c:forEach </tr <!-- column data -- <c:forEach var="row" items="${results.rowsByIndex}" <tr <c:forEach var="column" items="${row}" <td<c:out value="${column}"/</td </c:forEach </tr </c:forEach </table The solution to this was answered in another StackOverFlow question. http://stackoverflow.com/questions/425294/sql-database-views-in-grails IF SOMEONE WRITES A GOOD ANSWER, I'LL ACCEPT IT. I would like a 100% acceptance on all of my questions.

    Read the article

  • Powershell - Select the values of one property on all objects of an array

    - by Sylvain Reverdy
    Sorry, I'm still a noob on Powershell and I could not find an answer on Internet... Let's say we have an array of objects $objects. Let's say these objects have a "Name" property. This is what I want to do $results = @() $objects | %{ $results += $_.Name } this works but can it be done on a better way? If I do something like : $results = objects | Select Name $results is an array of objects having a Name property. I want $results to contain an array of Names So, is there a better way ? Thx a lot

    Read the article

  • Paginating with SQL ROW_NUMBER

    - by Kelsey Thorpe
    I want to return search results in paginated format. However I can't seem to successfully get the first 10 results of my query. The problem is the 'RowNum' returned are like 405, 687, 1024 etc. I want them to be renumbered as 1,2,3,4,5 etc., so that when I specify between rows 1 and 20 i get the first 20 search results. Instead, because the numbers are larger, I get no results between 1 and 10. If i change RowNum condition to: AND RowNum < 20000 I get plenty of results Here's the sql: SELECT * FROM ( SELECT ROW_NUMBER() OVER ( ORDER BY DocumentID ) AS RowNum, * FROM Table ) AS RowConstrainedResult WHERE RowNum >= 1 AND RowNum < 20 AND Title LIKE '%diabetes%' AND Title LIKE '%risk%' Any help appreciated.

    Read the article

  • Grails: Duplicates & unique constraint validation

    - by rukoche
    OK here is stripped down version of what I have in my app Artist domain: class Artist { String name Date lastMined def artistService static transients = ['artistService'] static hasMany = [events: Event] static constraints = { name(unique: true) lastMined(nullable: true) } def mine() { artistService.mine(this) } } Event domain: class Event { String name String details String country String town String place String url String date static belongsTo = [Artist] static hasMany = [artists: Artist] static constraints = { name(unique: true) url(unique: true) } } ArtistService: class ArtistService { def results = [ [ name:"name", details:"details", country:"country", town:"town", place:"place", url:"url", date:"date" ] ] def mine(Artist artist) { results << results[0] // now we have a duplicate results.each { def event = new Event(it) if (event.validate()) { if (artist.events.find{ it.name == event.name }) { log.info "grrr! valid duplicate name: ${event.name}" } artist.addToEvents(event) } } artist.lastMined = new Date() if (artist.events) { artist.save(flush: true) } } } In theory event.validate() should return false and event will not be added to artist, but it doesn't.. which results in DB exception on artist.save() Although I noticed that if duplicate event is persisted first everything works as intended. Is it bug or feature? :P

    Read the article

  • How to get the records using order by and so on

    - by paulrajj
    I have a table categories containing categories id having the records of 1 to 20. when i am doing the search query by using the IN function in mysql i got the results. but i am struggling to get the results using order by. The limit may be vary for every search as this is one of the input value. For example I have tried this query to find out the search results, select * from categories where category in (20,16,12,8) order by rand(), id limit 0,6 this query is executed and the results are in random category_id. the results will be, 8 12 16 20 and following this, another two records must be 8 12 If category_id contains only one record for 8 then, it should follow from 12,16. How can i achieve this ? thanks in advance.

    Read the article

  • gmaps Address Component Types get country name

    - by gmapsuser
    hi .. iam trying to get the country name using the Address Component Types available from gmaps V3. i dont know how i can get it the right way.. http://code.google.com/apis/maps/documentation/javascript/services.html#GeocodingAddressTypes iam trying to alert the country name liks here : alert(results[1].address_component[country]); and here`s the code.. any help is really appreciated..thanks function codeLatLng() { var input = document.getElementById("latlng").value; var latlngStr = input.split(",",2); var lat = parseFloat(latlngStr[0]); var lng = parseFloat(latlngStr[1]); var latlng = new google.maps.LatLng(lat, lng); if (geocoder) { geocoder.geocode({'latLng': latlng}, function(results, status) { if (status == google.maps.GeocoderStatus.OK) { if (results[1]) { alert(results[1].address_component[country]); } else { alert("No results found"); } } else { alert("Geocoder failed due to: " + status); } }); } }

    Read the article

  • Lucene case sensitive & insensitive search

    - by zvikico
    I have a Lucene index which is currently case sensitive. I want to add the option of having a case insensitive search as a fall-back. This means that results that match the case will get more weight and will appear first. For example, if the number of results is limited to 10, and there are 10 matches which match my case, this is enough. If I only found 7 results, I can add 3 more results from the case-insensitive search. My case is actually more complex, since I have items with different weights. Ideally, having a match with "wrong" case will add some weight. Needless to say, I do not want duplicate results. One possible approach is to have 2 indexes. One with case and one without and search both. Naturally, there's some redundancy here, since I need to index twice. Is there a better solution? Ideas?

    Read the article

< Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >