Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 591/1274 | < Previous Page | 587 588 589 590 591 592 593 594 595 596 597 598  | Next Page >

  • What are some good resources for creating a game engine in XNA?

    - by Glasser
    I'm currently a student game programmer working on an indie project. We have a team of eleven people (five programmers, four artists, and two audio designers) aboard, all working hard to help design this game. We've been meeting for months now and so far we have a pretty buffed out Game Design Document as well as much audio/visual concept art. Our programmers are itching to progress on our own end. Each person in our programming team is well versed in C++, but is very familiar with C#. We have enough experience and skill that we're confident that we will be successful with our game, and we're looking to build our own game engine in XNA as it seems like it would be worth our time and effort in the end. The game itself will be a 2D beat 'em up style game to be released over xbox live and the PC. It's play style will be similar to that of Castle Crashers or Scott Pilgrim vs The World. We want to design the game engine to allow us to better implement our assets into the game as well as to simplify the creation of design elements/mechanics. Currently between our programmers, we have books such as "XNA 4.0" and "Game Coding Complete, Third Edition," but we'd still like more information on both XNA and (especially) building a game engine from scratch. What are any other good books, websites, or resources we could use to further map out and program our game engine?

    Read the article

  • Coordinate and positioning problem on iOS with cocos2d-x

    - by Vexille
    I'm using cocos2d-x alongside with Marmalade and running some tests and tutorials before starting an actual project with them. So far things are working reasonably well on the windows simulator, Android and even on Blackberry's Playbook, but on iOS devices (iPhone and iPad) the positioning seems to be off. To make things clearer, I put together a scene that just draws an image in the middle of the screen. It worked as expected on everything else, but this is the result I got on an iPhone: To get the coordinates for the center of the screen I'm using the VisibleRect class from the TestCpp sample. It just uses sharedOpenGLView to get the visible size and visible origin, and calculate the center from that. CCSprite* test = CCSprite::create("Ball.png", CCRectMake(0, 0, 80, 80) ); test->setPosition( ccp(VisibleRect::center().x, VisibleRect::center().y) ); this->addChild(test); Also I have a noBorder policy set on AppDelegate: CCEGLView::sharedOpenGLView()->setDesignResolutionSize(designSize.width, designSize.height, kResolutionNoBorder); One funny thing is that I tried to deploy the TestCpp sample project to some iOS devices and it worked reasonably well on the iPhone, but on the iPad the application was only being drawn on a small portion of the screen - just like what happened on the iPhone when I tried using the ShowAll policy.

    Read the article

  • GestureListener's fling method doesn't get called

    - by nosferat
    I'm using SimpleGestureDetector from the libgdx-users Wiki as my InputProcessor. I set it in the created() method: Gdx.input.setInputProcess(new SimpleDirectionGestureDetector(charController)); charController is my class which implements the DirectionListener interface defined in the SimpleDirectionGestureDetector class and it is responsible for moving the player character. However the character doesn't change direction when I'm performing a fling action in any direction. I've checked and the fling() method in the SimpleDirectionGesture class doesn't get called and I have no idea why, since everything seems good. What am I doing wrong?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Simple thruster like behaviour when rotating sprite

    - by ensamgud
    I'm prototyping some 2D game concepts with XNA and have added some basic keyboard inputs to control a triangle sprite. When I press key up the sprite accelerates in it's current facing direction, when I release the key it brakes down. For rotation, when I press left/right keys I rotate the sprite. Currently the sprite immedately changes direction when I rotate it. What I want is for it to keep moving in the same direction when I rotate, until I hit key up, adding thrust in whatever direction the sprite is pointing at. This would simulate thrusters on a classic space shooter like Asteroids. I'm adding an image to describe the behaviour I'm after and some code samples of how I'm doing things at the moment. This is my player struct, holding information of the sprite. public struct PlayerData { public Vector2 Position; // where to draw the sprite public Vector2 Direction; // travel direction of sprite public float Angle; // rotation of sprite public float Velocity; public float Acceleration; public float Decelleration; public float RotationAcceleration; public float RotationDecceleration; public float TopSpeed; public float Scale; } This is how I'm currently handling thrusting / braking (when pressing/releasing key up) (simplified, removed some bounds checking etc): player.Velocity += player.Acceleration * 0.1f; player.Velocity -= player.Acceleration * 0.1f; And when I rotate the sprite left and right: player.Angle -= player.RotationAcceleration * 0.1f; player.Angle += player.RotationAcceleration * 0.1f; This runs in the update loop, keeps the direction updated and updates the position: Vector2 up = new Vector2(0f, -1f); Matrix rotMatrix = Matrix.CreateRotationZ(player.Angle); player.Direction = Vector2.Transform(up, rotMatrix); player.Direction *= player.Velocity; player.Position += player.Direction; I am following along various beginner tutorials and haven't found any describing this, but I have tried some on my own without success. Do I need to change my velocity and acceleration fields to Vectors instead of floats to accomplish this type of movement? I realise my Angle and the Direction vector is currently tied together and I need to disconnect these somehow to be able to rotate freely without changing the direction of the movement, but I can't quite figure out how to do this while keeping the acceleration/decceleration functional. Would appreciate an explanation rather than pure code samples. Thanks,

    Read the article

  • Remove enemy when bullet hits enemy

    - by jordi12100
    For my education I have to make a basic game in HTML5 canvas. The game is a shooter game. When you can move left - right and space is shoot. When I shoot the bullets will move up. The enemy moves down. When the bullet hits the enemy the enemy has to dissapear and it will gain +1 score. But the enemy will dissapear after it comes up the screen. Demo: http://jordikroon.nl/test.html space = shoot + enemy shows up This is my code: for (i=0;i<enemyX.length;i++) { if(enemyX[i] > canvas.height) { enemyY.splice(i,1); enemyX.splice(i,1); } else { enemyY[i] += 5; moveEnemy(enemyX[i],enemyY[i]); } } for (i=0;i<bulletX.length;i++) { if(bulletY[i] < 0) { bulletY.splice(i,1); bulletX.splice(i,1); } else { bulletY[i] -= 5; moveBullet(bulletX[i],bulletY[i]); for (ib=0;ib<enemyX.length;ib++) { if(bulletX[i] + 50 < enemyX[ib] || enemyX[ib] + 50 < bulletX[i] || bulletY[i] + 50 < enemyY[ib] || enemyY[ib] + 50 < bulletY[i]) { ++score; enemyY.splice(i,1); enemyX.splice(i,1); } } } } Objects: function moveBullet(posX,posY) { //console.log(posY); ctx.arc(posX, (posY-150), 10, 0 , 2 * Math.PI, false); } function moveEnemy(posX,posY) { ctx.rect(posX, posY, 50, 50); ctx.fillStyle = '#ffffff'; ctx.fill(); }

    Read the article

  • How to implement Fog Of War with an shader?

    - by Cambrano
    Okay, I'm creating a RTS game and want to implement an AgeOfEmpires-like Fog Of War(FOW). That means a tile(or pixel) can be: 0% transparent (unexplored) 50% transparent black (explored but not in viewrange) 100% transparent(explored and in viewrange) RTS means I'll have many explorers (NPCs, buildings, ...). Okay, so I have an 2d array of bytes byte[,] explored. The byte value correlates the transparency. The question is, how do I pass this array to my shader? Well I think it is not possible to pass an entire array. So: what technique shall I use to let my shader know if a pixel/tile is visible or not?

    Read the article

  • Different bounding volumes for culling and collision detection

    - by Serthy
    Should an object in a 3D-engine use different bounding volumes for collision-detection (broad-phase) and culling? Basically class renderBounds and class physBounds versus class boundingVolume? Each of this classes then could either contain the same type of volumes (AABB's, kDOP's, sphere's etc.) or a special fitting one for the particular object. (note: without considering of using an external physics engine)

    Read the article

  • How can I simulate a rigid body bounced from a wall in 3D world?

    - by HyperGroups
    How can I simulate a rigid sword bounced from a wall and hit the ground (like in physical world)? I want to use this for a simple animation. I can detect the figure and the size of the sword (maybe needed in doing bounce). Rotation can be controlled by quaternions/matrix/euler angles. It should turn the head and do rotations and fly to the ground. How can I simulate this physical process? Maybe what I need is an equation and some parameters? I need these data, and would combine them into my movie file, I use Mathematica to do the thing that generate the movie file(If I have the data, I can also export it into a 3DSMax script for example).

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • Rendering Texture Quad to Screen or FBO (OpenGL ES)

    - by Usman.3D
    I need to render the texture on the iOS device's screen or a render-to-texture frame buffer object. But it does not show any texture. It's all black. (I am loading texture with image myself for testing purpose) //Load texture data UIImage *image=[UIImage imageNamed:@"textureImage.png"]; GLuint width = FRAME_WIDTH; GLuint height = FRAME_HEIGHT; //Create context void *imageData = malloc(height * width * 4); CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, 4 * width, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big); CGColorSpaceRelease(colorSpace); //Prepare image CGContextClearRect(context, CGRectMake(0, 0, width, height)); CGContextDrawImage(context, CGRectMake(0, 0, width, height), image.CGImage); glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); Simple Texture Quad drawing code mentioned here //Bind Texture, Bind render-to-texture FBO and then draw the quad const float quadPositions[] = { 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1.0, 0.0 }; const float quadTexcoords[] = { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 }; // stop using VBO glBindBuffer(GL_ARRAY_BUFFER, 0); // setup buffer offsets glVertexAttribPointer(ATTRIB_VERTEX, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), quadPositions); glVertexAttribPointer(ATTRIB_TEXCOORD0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), quadTexcoords); // ensure the proper arrays are enabled glEnableVertexAttribArray(ATTRIB_VERTEX); glEnableVertexAttribArray(ATTRIB_TEXCOORD0); //Bind Texture and render-to-texture FBO. glBindTexture(GL_TEXTURE_2D, GLid); //Actually wanted to render it to render-to-texture FBO, but now testing directly on default FBO. //glBindFramebuffer(GL_FRAMEBUFFER, textureFBO[pixelBuffernum]); // draw glDrawArrays(GL_TRIANGLES, 0, 2*3); What am I doing wrong in this code? P.S. I'm not familiar with shaders yet, so it is difficult for me to make use of them right now.

    Read the article

  • How was 20Q made?

    - by Dan the Man
    Ever since I was a kid, I've wondered how they made the 20Q electronic game. In this game, which is it's on device, you think of an object, thing, or animal (e.g. a potato or a donkey), once you mentally choose your thing, the device goes through a series of questions such as: Is it larger than a loaf of bread? Is it found outdoors? Is it used for recreation? For each of the questions you can answer yes, no, maybe, or unknown. The way I've always thought of it to work was with immense, nested conditionals (if statements). But, I don't think that would be very likely as it would be terribly difficult to understand while coding it. I'm not looking for a discussion as SE doesn't allow it; I'm looking for concrete knowledge or solutions.

    Read the article

  • most efficient AABB vs Ray collision algorithms

    - by Asher Einhorn
    Is there a known 'most efficient' algorithm for AABB vs Ray collision detection? I recently stumbled accross Arvo's AABB vs Sphere collision algorithm, and I am wondering if there is a similarly noteworthy algorithm for this. One must have condition for this algorithm is that I need to have the option of querying the result for the distance from the ray's origin to the point of collision. having said this, if there is another, faster algorithm which does not return distance, then in addition to posting one that does, also posting that algorithm would be very helpful indeed. Please also state what the function's return argument is, and how you use it to return distance or a 'no-collision' case. For example, does it have an out parameter for the distance as well as a bool return value? or does it simply return a float with the distance, vs a value of -1 for no collision? (For those that don't know: AABB = Axis Aligned Bounding Box)

    Read the article

  • Android 2D terrain scrolling

    - by Nikola Ninkovic
    I want to make infinite 2D terrain based on my algorithm.Then I want to move it along Y axis (to the left) This is how I did it : public class Terrain { Queue<Integer> _bottom; Paint _paint; Bitmap _texture; Point _screen; int _numberOfColumns = 100; int _columnWidth = 20; public Terrain(int screenWidth, int screenHeight, Bitmap texture) { _bottom = new LinkedList<Integer>(); _screen = new Point(screenWidth, screenHeight); _numberOfColumns = screenWidth / 6; _columnWidth = screenWidth / _numberOfColumns; for(int i=0;i<=_numberOfColumns;i++) { // Generate terrain point and put it into _bottom queue } _paint = new Paint(); _paint.setStyle(Paint.Style.FILL); _paint.setShader(new BitmapShader(texture, Shader.TileMode.REPEAT, Shader.TileMode.REPEAT)); } public void update() { _bottom.remove(); // Algorithm calculates next point _bottom.add(nextPoint); } public void draw(Canvas canvas) { Iterator<Integer> i = _bottom.iterator(); int counter = 0; Path path = new Path(); path.moveTo(0, _screen.y); while (i.hasNext()) { path.lineTo(counter, _screen.y-i.next()); counter += _columnWidth; } path.lineTo(_screen.x, _screen.y); path.lineTo(0, _screen.y); canvas.drawPath(path2, _paint); } } The problem is that the game is too 'fast', so I tried with pausing thread with Thread.sleep(50); in run() method of my game thread but then it looks too torn. Well, is there any way to slow down drawing of my terrain ?

    Read the article

  • Multiple objects listening for the same key press

    - by xiaohouzi79
    I want to learn the best way to implement this: I have a hero and an enemy on the screen. Say the hero presses "k" to get out a knife, I want the enemy to react in a certain way. Now, if in my game loop I have a listener for the key press event and I identify a "k" was pressed, the quick and easy way would be to do: // If K pressed // hero.getOoutKnife() // enemy.getAngry() But what is commonly done in more complex games, where say I have 10 types of character on screen and they all need to react in a unique way when the letter "k" is pressed? I can think of a bunch of hacky ways to do this, but would love to know how it should be done properly. I am using C++, but I'm not looking for a code implementation, just some ideas on how it should be done the right way.

    Read the article

  • What causes the iOS OpenGLES driver to allocate extra memory?

    - by Martin Linklater
    I'm trying to optimize the memory usage of our iOS game and I'm puzzled about when/why the iOS GLES driver allocates extra memory at runtime... When I run our game through Instruments with the OpenGL ES Driver instrument the gartUsedBytes value can fluctuate quite wildly. We preload all our textures and build the buffer objects up front, so it's not the game engine requesting extra memory from GL. Currently we are manually requesting around 50MB of GL memory, yet the gartUsedBytes value sits at around 90MB most of the time, peaking at 125MB from time to time. It seems to be linked to what you are rendering that frame - our PVS only submits VBO's for visible meshes. Can anyone shed some light on what the driver is doing in the background ? Like I said earlier, all our game engine allocations are done on level load, so in theory there shouldn't be any fluctuation on GL memory usage while the level is running. Thanks.

    Read the article

  • Accessing managers from game entities/components

    - by Boreal
    I'm designing an entity-component engine in C# right now, and all components need to have access to the global event manager, which sends off inter-entity events (every entity also has a local event manager). I'd like to be able to simply call functions like this: GlobalEventManager.Publish("Foo", new EventData()); GlobalEventManager.Subscribe("Bar", OnBarEvent); without having to do this: class HealthComponent { private EventManager globalEventManager; public HealthComponent(EventManager gEM) { globalEventManager = gEM; } } // later on... EventManager globalEventManager = new EventManager(); Entity playerEntity = new Entity(); playerEntity.AddComponent(new HealthComponent(globalEventManager)); How can I accomplish this? EDIT: I solved it by creating a singleton called GlobalEventManager. It derives from the local EventManager class and I use it like this: GlobalEventManager.Instance.Publish("Foo", new EventData());

    Read the article

  • Very slow direct3D texture sampling

    - by __dominic
    Hi, So I'm writing a small game using Direct3D 9 and I'm using multitexturing for the terrain. All I'm doing is sampling 3 textures and a blend map and getting the overall color from the three textures based on the color channels from the blend map. Anyway, I am getting a massive frame rate drop when I sample more than 1 texture, I'm going from 120+ fps to just under 50. This is the HLSL code responsible for the slow down: float3 ground = tex2D(GroundTex, multiTex).rgb; float3 stone = tex2D(StoneTex, multiTex).rgb; float3 grass = tex2D(GrassTex, multiTex).rgb; float3 blend = tex2D(BlendMapTex, blendMap).rgb; Am I doing it wrong ? If anyone has any info or tips about texture sampling or anything, that would be nice. Thanks.

    Read the article

  • HLSL 5 interpolation issues

    - by metredigm
    I'm having issues with the depth components of my shadowmapping shaders. The shadow map rendering shader is fine, and works very well. The world rendering shader is more problematic. The only value which seems to definitely be off is the pixel's position from the light's perspective, which I pass in parallel to the position. struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; The reason that I used the semantic 'TEXCOORD2' on the light's pixel position is because I believe that the problem lies with Direct3D's interpolation of values between shaders, and I started trying random semantics and also forcing linear and noperspective interpolations. In the world rendering shader, I observed in the pixel shader that the Z value of light_pos was always extremely close to, but less than the W value. This resulted in a depth result of 0.999 or similar for every pixel. Here is the vertex shader code : struct Vertex { float3 position : POSITION; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; cbuffer Camera : register (b0) { matrix world; matrix view; matrix projection; }; cbuffer Light : register (b1) { matrix light_world; matrix light_view; matrix light_projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), world); output.position = mul(output.position, view); output.position = mul(output.position, projection); output.world_pos = mul(float4(input.position, 1.0f), world); output.world_pos = mul(output.world_pos, light_view); output.world_pos = mul(output.world_pos, light_projection); output.texcoord = input.texcoord; output.normal = input.normal; return output; } I suspect interpolation to be the culprit, as I used the camera matrices in place of the light matrices in the vertex shader, and had the same problem. The problem is evident as both of the same vectors were passed to a pixel from the VS, but only one of them showed a change in the PS. I have already thoroughly debugged the matrices' validity, the cbuffers' validity, and the multiplicative validity. I'm very stumped and have been trying to solve this for quite some time. Misc info : The light projection matrix and the camera projection matrix are the same, generated from D3DXMatrixPerspectiveFovLH(), with an FOV of 60.0f * 3.141f / 180.0f, a near clipping plane of 0.1f, and a far clipping plane of 1000.0f. Any ideas on what is happening? (This is a repost from my question on Stack Overflow)

    Read the article

  • how does the rectangle bounds (x,y,width,height) in libgdx work

    - by JG22
    I cant work out how to use the rectangle bounds in libgdx I am currently using the superJumper example and have 2or 3 examples with that are pause Bounds = new Rectangle(320 - 64, 480 - 64, 64, 64); this is the pause button in the top right corner resume Bounds = new Rectangle(160 - 96, 240, 192, 36); this is a rectangle resume button in the middle of the page in the menu that comes up when the pause button is pressed. basically my question is aimed at the 360 -64 and 160 -96 because I don't know why this is used I need to create a rectangle that covers the left side of the screen and the same on the right because I want to create a on screen buttons, I have already created the does for these buttons and I have managed to get them to work but I can move the rectangles to where I want. Thank you If you can help

    Read the article

  • Repairing back-facing triangles without user input

    - by LTR
    My 3D application works with user-imported 3D models. Frequently, those models have a few vertices facing into the wrong direction. (For example, there is a 3D roof and a few triangles of that roof are facing inside the building). I want to repair those automatically. We can make several assumptions about these 3D models: they are completely closed without holes, and the camera is always on the outside. My idea: Shoot 500 rays from every triangle outwards into all directions. From the back side of the triangle, all rays will hit another part of the model. From the front side, at least one ray will hit nothing. Is there a better algorithm? Are there any papers about something like this?

    Read the article

  • Best way to go for simple online multi-player games?

    - by Mr_CryptoPrime
    I want to create a trivia game for my website. The graphic design does not have to be too fancy, probably no more advanced than a typical flash game. It needs to be secure because I want users to be able to play for real money. It also needs to run fast so users don't spend their time frustrated with game freezing. Compatibility, as with almost all online products, is key because of the large target market. I am most acquainted with Java programming, but I don't want to do it in Java if there is something much better. I am assuming I will have to utilize a variety of different languages in order for everything to come together. If someone could point out the main structure of everything so I could get a good start that would be great! 1) Language choice for simple secure online multiplayer games? 2) Perhaps use a database like MySQL, stored on a secure server for the trivia questions? 3) Free educational resources and even simpler projects to practice? Any ideas or suggestions would be helpful...Thanks!

    Read the article

  • Interaction using Kinect in XNA

    - by Sweta Dwivedi
    So i have written a program to play a sound file when ever my RightHand.Joint touches the 3D model . . It goes like this . . even though the code works somehow but not very accurate . . for example it will play the sound when my hand is slightly under my 3D object not exactly on my 3D object . How do i make it more accurate? here is the code . . (HandX & HandY is the values coming from the Skeleton data RightHand.Joint.X etc) and also this calculation doesnt work with Animated Sprites..which i need to do foreach (_3DModel s in Solar) { float x = (float)Math.Floor(((handX * 0.5f) + 0.5f) * (resolution.X)); float y = (float)Math.Floor(((handY * -0.5f) + 0.5f) * (resolution.Y)); float z = (float)Math.Floor((handZ) / 4 * 20000); if (Math.Sqrt(Math.Pow(x - s.modelPosition.X, 2) + Math.Pow(y - s.modelPosition.Y, 2)) < 15) { //Exit(); PlaySound("hyperspace_activate"); Console.WriteLine("1" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } else { Console.WriteLine("2" + "handx:" + x + "," + " " + "modelPos.X:" + s.modelPosition.X + "," + " " + "handY:" + y + "modelPos.Y:" + s.modelPosition.Y); } }

    Read the article

  • How do I draw a scrolling background?

    - by droidmachine
    How can I draw background tile in my 2D side-scrolling game? Is that loop logical for OpenGL es? My tile 2400x480. Also I want to use parallax scrolling for my game. batcher.beginBatch(Assets.background); for(int i=0; i<100; i++) batcher.drawSprite(0+2400*i, 240, 2400, 480, Assets.backgroundRegion); batcher.endBatch(); UPDATE And thats my onDrawFrame.I'm sending deltaTime for fps control. public void onDrawFrame(GL10 gl) { GLGameState state = null; synchronized(stateChanged) { state = this.state; } if(state == GLGameState.Running) { float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f; startTime = System.nanoTime(); screen.update(deltaTime); screen.present(deltaTime); } if(state == GLGameState.Paused) { screen.pause(); synchronized(stateChanged) { this.state = GLGameState.Idle; stateChanged.notifyAll(); } } if(state == GLGameState.Finished) { screen.pause(); screen.dispose(); synchronized(stateChanged) { this.state = GLGameState.Idle; stateChanged.notifyAll(); } } }

    Read the article

  • Using glReadBuffer/glReadPixels returns black image instead of the actual image only on Intel cards

    - by cloudraven
    I have this piece of code glReadBuffer( GL_FRONT ); glReadPixels( 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, buffer ); Which works just perfectly in all the Nvidia and AMD GPUs I have tried, but it fails in almost every single Intel built-in video that I have tried. It actually works in a very old 945GME, but fails in all the others. Instead of getting a screenshot I am actually getting a black screen. If it helps, I am working with the Doom3 Engine, and that code is derived from the built-in screen capture code. By the way, even with the original game I cannot do screen capture on those intel devices anyway. My guess is that they are not implementing the standard correctly or something. Is there a workaround for this?

    Read the article

< Previous Page | 587 588 589 590 591 592 593 594 595 596 597 598  | Next Page >