Search Results

Search found 23648 results on 946 pages for 'tab size'.

Page 599/946 | < Previous Page | 595 596 597 598 599 600 601 602 603 604 605 606  | Next Page >

  • A Guided Tour of Complexity

    - by JoshReuben
    I just re-read Complexity – A Guided Tour by Melanie Mitchell , protégé of Douglas Hofstadter ( author of “Gödel, Escher, Bach”) http://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109/ref=sr_1_1?ie=UTF8&qid=1339744329&sr=8-1 here are some notes and links:   Evolved from Cybernetics, General Systems Theory, Synergetics some interesting transdisciplinary fields to investigate: Chaos Theory - http://en.wikipedia.org/wiki/Chaos_theory – small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible. System Dynamics / Cybernetics - http://en.wikipedia.org/wiki/System_Dynamics – study of how feedback changes system behavior Network Theory - http://en.wikipedia.org/wiki/Network_theory – leverage Graph Theory to analyze symmetric  / asymmetric relations between discrete objects Algebraic Topology - http://en.wikipedia.org/wiki/Algebraic_topology – leverage abstract algebra to analyze topological spaces There are limits to deterministic systems & to computation. Chaos Theory definitely applies to training an ANN (artificial neural network) – different weights will emerge depending upon the random selection of the training set. In recursive Non-Linear systems http://en.wikipedia.org/wiki/Nonlinear_system – output is not directly inferable from input. E.g. a Logistic map: Xt+1 = R Xt(1-Xt) Different types of bifurcations, attractor states and oscillations may occur – e.g. a Lorenz Attractor http://en.wikipedia.org/wiki/Lorenz_system Feigenbaum Constants http://en.wikipedia.org/wiki/Feigenbaum_constants express ratios in a bifurcation diagram for a non-linear map – the convergent limit of R (the rate of period-doubling bifurcations) is 4.6692016 Maxwell’s Demon - http://en.wikipedia.org/wiki/Maxwell%27s_demon - the Second Law of Thermodynamics has only a statistical certainty – the universe (and thus information) tends towards entropy. While any computation can theoretically be done without expending energy, with finite memory, the act of erasing memory is permanent and increases entropy. Life & thought is a counter-example to the universe’s tendency towards entropy. Leo Szilard and later Claude Shannon came up with the Information Theory of Entropy - http://en.wikipedia.org/wiki/Entropy_(information_theory) whereby Shannon entropy quantifies the expected value of a message’s information in bits in order to determine channel capacity and leverage Coding Theory (compression analysis). Ludwig Boltzmann came up with Statistical Mechanics - http://en.wikipedia.org/wiki/Statistical_mechanics – whereby our Newtonian perception of continuous reality is a probabilistic and statistical aggregate of many discrete quantum microstates. This is relevant for Quantum Information Theory http://en.wikipedia.org/wiki/Quantum_information and the Physics of Information - http://en.wikipedia.org/wiki/Physical_information. Hilbert’s Problems http://en.wikipedia.org/wiki/Hilbert's_problems pondered whether mathematics is complete, consistent, and decidable (the Decision Problem – http://en.wikipedia.org/wiki/Entscheidungsproblem – is there always an algorithm that can determine whether a statement is true).  Godel’s Incompleteness Theorems http://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems  proved that mathematics cannot be both complete and consistent (e.g. “This statement is not provable”). Turing through the use of Turing Machines (http://en.wikipedia.org/wiki/Turing_machine symbol processors that can prove mathematical statements) and Universal Turing Machines (http://en.wikipedia.org/wiki/Universal_Turing_machine Turing Machines that can emulate other any Turing Machine via accepting programs as well as data as input symbols) that computation is limited by demonstrating the Halting Problem http://en.wikipedia.org/wiki/Halting_problem (is is not possible to know when a program will complete – you cannot build an infinite loop detector). You may be used to thinking of 1 / 2 / 3 dimensional systems, but Fractal http://en.wikipedia.org/wiki/Fractal systems are defined by self-similarity & have non-integer Hausdorff Dimensions !!!  http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension – the fractal dimension quantifies the number of copies of a self similar object at each level of detail – eg Koch Snowflake - http://en.wikipedia.org/wiki/Koch_snowflake Definitions of complexity: size, Shannon entropy, Algorithmic Information Content (http://en.wikipedia.org/wiki/Algorithmic_information_theory - size of shortest program that can generate a description of an object) Logical depth (amount of info processed), thermodynamic depth (resources required). Complexity is statistical and fractal. John Von Neumann’s other machine was the Self-Reproducing Automaton http://en.wikipedia.org/wiki/Self-replicating_machine  . Cellular Automata http://en.wikipedia.org/wiki/Cellular_automaton are alternative form of Universal Turing machine to traditional Von Neumann machines where grid cells are locally synchronized with their neighbors according to a rule. Conway’s Game of Life http://en.wikipedia.org/wiki/Conway's_Game_of_Life demonstrates various emergent constructs such as “Glider Guns” and “Spaceships”. Cellular Automatons are not practical because logical ops require a large number of cells – wasteful & inefficient. There are no compilers or general program languages available for Cellular Automatons (as far as I am aware). Random Boolean Networks http://en.wikipedia.org/wiki/Boolean_network are extensions of cellular automata where nodes are connected at random (not to spatial neighbors) and each node has its own rule –> they demonstrate the emergence of complex  & self organized behavior. Stephen Wolfram’s (creator of Mathematica, so give him the benefit of the doubt) New Kind of Science http://en.wikipedia.org/wiki/A_New_Kind_of_Science proposes the universe may be a discrete Finite State Automata http://en.wikipedia.org/wiki/Finite-state_machine whereby reality emerges from simple rules. I am 2/3 through this book. It is feasible that the universe is quantum discrete at the plank scale and that it computes itself – Digital Physics: http://en.wikipedia.org/wiki/Digital_physics – a simulated reality? Anyway, all behavior is supposedly derived from simple algorithmic rules & falls into 4 patterns: uniform , nested / cyclical, random (Rule 30 http://en.wikipedia.org/wiki/Rule_30) & mixed (Rule 110 - http://en.wikipedia.org/wiki/Rule_110 localized structures – it is this that is interesting). interaction between colliding propagating signal inputs is then information processing. Wolfram proposes the Principle of Computational Equivalence - http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html - all processes that are not obviously simple can be viewed as computations of equivalent sophistication. Meaning in information may emerge from analogy & conceptual slippages – see the CopyCat program: http://cognitrn.psych.indiana.edu/rgoldsto/courses/concepts/copycat.pdf Scale Free Networks http://en.wikipedia.org/wiki/Scale-free_network have a distribution governed by a Power Law (http://en.wikipedia.org/wiki/Power_law - much more common than Normal Distribution). They are characterized by hubs (resilience to random deletion of nodes), heterogeneity of degree values, self similarity, & small world structure. They grow via preferential attachment http://en.wikipedia.org/wiki/Preferential_attachment – tipping points triggered by positive feedback loops. 2 theories of cascading system failures in complex systems are Self-Organized Criticality http://en.wikipedia.org/wiki/Self-organized_criticality and Highly Optimized Tolerance http://en.wikipedia.org/wiki/Highly_optimized_tolerance. Computational Mechanics http://en.wikipedia.org/wiki/Computational_mechanics – use of computational methods to study phenomena governed by the principles of mechanics. This book is a great intuition pump, but does not cover the more mathematical subject of Computational Complexity Theory – http://en.wikipedia.org/wiki/Computational_complexity_theory I am currently reading this book on this subject: http://www.amazon.com/Computational-Complexity-Christos-H-Papadimitriou/dp/0201530821/ref=pd_sim_b_1   stay tuned for that review!

    Read the article

  • Adding Volcanos and Options - Earthquake Locator, part 2

    - by Bobby Diaz
    Since volcanos are often associated with earthquakes, and vice versa, I decided to show recent volcanic activity on the Earthquake Locator map.  I am pulling the data from a website created for a joint project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program, found here.  They provide a Weekly Volcanic Activity Report as an RSS feed.   I started implementing this new functionality by creating a new Volcano entity in the domain model and adding the following to the EarthquakeService class (I also factored out the common reading/parsing helper methods to a separate FeedReader class that can be used by multiple domain service classes):           private static readonly string VolcanoFeedUrl =             ConfigurationManager.AppSettings["VolcanoFeedUrl"];           /// <summary>         /// Gets the volcano data for the previous week.         /// </summary>         /// <returns>A queryable collection of <see cref="Volcano"/> objects.</returns>         public IQueryable<Volcano> GetVolcanos()         {             var feed = FeedReader.Load(VolcanoFeedUrl);             var list = new List<Volcano>();               if ( feed != null )             {                 foreach ( var item in feed.Items )                 {                     var quake = CreateVolcano(item);                     if ( quake != null )                     {                         list.Add(quake);                     }                 }             }               return list.AsQueryable();         }           /// <summary>         /// Creates a <see cref="Volcano"/> object for each item in the RSS feed.         /// </summary>         /// <param name="item">The RSS item.</param>         /// <returns></returns>         private Volcano CreateVolcano(SyndicationItem item)         {             Volcano volcano = null;             string title = item.Title.Text;             string desc = item.Summary.Text;             double? latitude = null;             double? longitude = null;               FeedReader.GetGeoRssPoint(item, out latitude, out longitude);               if ( !String.IsNullOrEmpty(title) )             {                 title = title.Substring(0, title.IndexOf('-'));             }             if ( !String.IsNullOrEmpty(desc) )             {                 desc = String.Join("\n\n", desc                         .Replace("<p>", "")                         .Split(                             new string[] { "</p>" },                             StringSplitOptions.RemoveEmptyEntries)                         .Select(s => s.Trim())                         .ToArray())                         .Trim();             }               if ( latitude != null && longitude != null )             {                 volcano = new Volcano()                 {                     Id = item.Id,                     Title = title,                     Description = desc,                     Url = item.Links.Select(l => l.Uri.OriginalString).FirstOrDefault(),                     Latitude = latitude.GetValueOrDefault(),                     Longitude = longitude.GetValueOrDefault()                 };             }               return volcano;         } I then added the corresponding LoadVolcanos() method and Volcanos collection to the EarthquakeViewModel class in much the same way I did with the Earthquakes in my previous article in this series. Now that I am starting to add more information to the map, I wanted to give the user some options as to what is displayed and allowing them to choose what gets turned off.  I have updated the MainPage.xaml to look like this:   <UserControl x:Class="EarthquakeLocator.MainPage"     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:d="http://schemas.microsoft.com/expression/blend/2008"     xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"     xmlns:basic="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"     xmlns:bing="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapControl"     xmlns:vm="clr-namespace:EarthquakeLocator.ViewModel"     mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480" >     <UserControl.Resources>         <DataTemplate x:Key="EarthquakeTemplate">             <Ellipse Fill="Red" Stroke="Black" StrokeThickness="1"                      Width="{Binding Size}" Height="{Binding Size}"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="{Binding UtcTime}" />                         <TextBlock Text="{Binding LocalTime}" />                         <TextBlock Text="{Binding DepthDesc}" />                     </StackPanel>                 </ToolTipService.ToolTip>             </Ellipse>         </DataTemplate>           <DataTemplate x:Key="VolcanoTemplate">             <Polygon Fill="Gold" Stroke="Black" StrokeThickness="1" Points="0,10 5,0 10,10"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center"                      MouseLeftButtonUp="Volcano_MouseLeftButtonUp">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="Click icon for more information..." />                     </StackPanel>                 </ToolTipService.ToolTip>             </Polygon>         </DataTemplate>     </UserControl.Resources>       <UserControl.DataContext>         <vm:EarthquakeViewModel AutoLoadData="True" />     </UserControl.DataContext>       <Grid x:Name="LayoutRoot">           <bing:Map x:Name="map" CredentialsProvider="--Your-Bing-Maps-Key--"                   Center="{Binding MapCenter, Mode=TwoWay}"                   ZoomLevel="{Binding ZoomLevel, Mode=TwoWay}">               <bing:MapItemsControl ItemsSource="{Binding Earthquakes}"                                   ItemTemplate="{StaticResource EarthquakeTemplate}" />               <bing:MapItemsControl ItemsSource="{Binding Volcanos}"                                   ItemTemplate="{StaticResource VolcanoTemplate}" />         </bing:Map>           <basic:TabControl x:Name="tabs" VerticalAlignment="Bottom" MaxHeight="25" Opacity="0.7">             <basic:TabItem Margin="90,0,-90,0" MouseLeftButtonUp="TabItem_MouseLeftButtonUp">                 <basic:TabItem.Header>                     <TextBlock x:Name="txtHeader" Text="Options"                                FontSize="13" FontWeight="Bold" />                 </basic:TabItem.Header>                   <StackPanel Orientation="Horizontal">                     <TextBlock Text="Earthquakes:" FontWeight="Bold" Margin="3" />                     <StackPanel Margin="3">                         <CheckBox Content=" &lt; 4.0"                                   IsChecked="{Binding ShowLt4, Mode=TwoWay}" />                         <CheckBox Content="4.0 - 4.9"                                   IsChecked="{Binding Show4s, Mode=TwoWay}" />                         <CheckBox Content="5.0 - 5.9"                                   IsChecked="{Binding Show5s, Mode=TwoWay}" />                     </StackPanel>                       <StackPanel Margin="10,3,3,3">                         <CheckBox Content="6.0 - 6.9"                                   IsChecked="{Binding Show6s, Mode=TwoWay}" />                         <CheckBox Content="7.0 - 7.9"                                   IsChecked="{Binding Show7s, Mode=TwoWay}" />                         <CheckBox Content="8.0 +"                                   IsChecked="{Binding ShowGe8, Mode=TwoWay}" />                     </StackPanel>                       <TextBlock Text="Other:" FontWeight="Bold" Margin="50,3,3,3" />                     <StackPanel Margin="3">                         <CheckBox Content="Volcanos"                                   IsChecked="{Binding ShowVolcanos, Mode=TwoWay}" />                     </StackPanel>                 </StackPanel>               </basic:TabItem>         </basic:TabControl>       </Grid> </UserControl> Notice that I added a VolcanoTemplate that uses a triangle-shaped Polygon to represent the Volcano locations, and I also added a second <bing:MapItemsControl /> tag to the map to bind to the Volcanos collection.  The TabControl found below the map houses the options panel that will present the user with several checkboxes so they can filter the different points based on type and other properties (i.e. Magnitude).  Initially, the TabItem is collapsed to reduce it's footprint, but the screen shot below shows the options panel expanded to reveal the available settings:     I have updated the Source Code and Live Demo to include these new features.   Happy Mapping!

    Read the article

  • Using Teleriks new LINQ implementation to create OData feeds

    This week Telerik released a new LINQ implementation that is simple to use and produces domain models very fast. Built on top of the enterprise grade OpenAccess ORM, you can connect to any database that OpenAccess can connect to such as: SQL Server, MySQL, Oracle, SQL Azure, VistaDB, etc. While this is a separate LINQ implementation from traditional OpenAccess Entites, you can use the visual designer without ever interacting with OpenAccess, however, you can always hook into the advanced ORM features like caching, fetch plan optimization, etc, if needed. Just to show off how easy our LINQ implementation is to use, I will walk you through building an OData feed using Data Services Update for .NET Framework 3.5 SP1. (Memo to Microsoft: P-L-E-A-S-E hire someone from Apple to name your products.) How easy is it? If you have a fast machine, are skilled with the mouse, and type fast, you can do this in about 60 seconds via three easy steps. (I promise in about 2-3 weeks that you can do this in less then 30 seconds. Stay tuned for that.)  Step 1 (15-20 seconds): Building your Domain Model In your web project in Visual Studio, right click on the project and select Add|New Item and select Telerik OpenAccess Domain Model as your item template. Give the file a meaningful name as well. Select your database type (SQL Server, SQL Azure, Oracle, MySQL, VistaDB, etc) and build the connection string. If you already have a Visual Studio connection string already saved, this step is trivial.  Then select your tables, enter a name for your model and click Finish. In this case I connected to Northwind and selected only Customers, Orders, and Order Details.  I named my model NorthwindEntities and will use that in my DataService. Step 2 (20-25 seconds): Adding and Configuring your Data Service In your web project in Visual Studio, right click on the project and select Add|New Item and select ADO .NET Data Service as your item template and name your service. In the code behind for your Data Service you have to make three small changes. Add the name of your Telerik Domain Model (entered in Step 1) as the DataService name (shown on line 6 below as NorthwindEntities) and uncomment line 11 and add a * to show all entities. Optionally if you want to take advantage of the DataService 3.5 updates, add line 13 (and change IDataServiceConfiguration to DataServiceConfiguration in line 9.) 1: using System.Data.Services; 2: using System.Data.Services.Common; 3:   4: namespace Telerik.RLINQ.Astoria.Web 5: { 6: public class NorthwindService : DataService<NorthwindEntities> 7: { 8: //change the IDataServiceConfigurationto DataServiceConfiguration 9: public static void InitializeService(DataServiceConfiguration config) 10: { 11: config.SetEntitySetAccessRule("*", EntitySetRights.All); 12: //take advantage of the "Astoria3.5 Update" features 13: config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; 14: } 15: } 16: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Step 3 (~30 seconds): Adding the DataServiceKeys You now have to tell your data service what are the primary keys of each entity. To do this you have to create a new code file and create a few partial classes. If you type fast, use copy and paste from your first entity,  and use a refactoring productivity tool, you can add these 6-8 lines of code or so in about 30 seconds. This is the most tedious step, but dont worry, Ive bribed some of the developers and our next update will eliminate this step completely. Just create a partial class for each entity you have mapped and add the attribute [DataServiceKey] on top of it along with the keys field name. If you have any complex properties, you will need to make them a primitive type, as I do in line 15. Create this as a separate file, dont manipulate the generated data access classes in case you want to regenerate them again later (even thought that would be much faster.) 1: using System.Data.Services.Common; 2:   3: namespace Telerik.RLINQ.Astoria.Web 4: { 5: [DataServiceKey("CustomerID")] 6: public partial class Customer 7: { 8: } 9:   10: [DataServiceKey("OrderID")] 11: public partial class Order 12: { 13: } 14:   15: [DataServiceKey(new string[] { "OrderID", "ProductID" })] 16: public partial class OrderDetail 17: { 18: } 19:   20: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Done! Time to run the service. Now, lets run the service! Select the svc file and right click and say View in Browser. You will see your OData service and can interact with it in the browser. Now that you have an OData service set up, you can consume it in one of the many ways that OData is consumed: using LINQ, the Silverlight OData client, Excel PowerPivot, or PhP, etc. Happy Data Servicing! Technorati Tags: Telerik,Astoria,Data Services Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • CodePlex Daily Summary for Sunday, April 04, 2010

    CodePlex Daily Summary for Sunday, April 04, 2010New ProjectsAcervo 2 - Gerenciador de coleções: Acervo 2 is a web application developed in ASP.NET 3.5 with Entity Framework, Coolite UI web controls and MySQL database that helps to catalog and ...AssemblyInfo Editor: AssemblyInfo Editor is a small Visual Studio 2010 extension I developed for my personal use mainly for automatically incrementing AssemblyVersion a...CommLine: It's a Command Line Interpreter. At the moment, it's a beta version, so I wait for developers that wanna help meFlowgraph Viewer: The flowgraph viewer enables users to view, build and share flowgraphs for the Crysis-franchise. It's built on Silverlight4, using MEF and Mvvmlight.Hash Calculator: WPF Windows 7 program to compute SHA1 & MD5 hash functions.MediaRSS library for .NET: This is a small set of libraries that allow you to create, read, and write MediaRSS files. By leveraging the syndication model object in .NET this...MEF Visualizer Tool: Helps to see what is going on inside the CompositionContainerone framework for developing asp.net project more elegent、flexible、and testable: if you are familiar with jsf、cdi、scoped javabean and work under asp.net, you may want to support aop and max flexibility and testability , all of ...Picasa Manager: A Silverlight Out Of Browser Application that Helps you manage your PicasaWeb albums in the easyest way possible.SharePhone: Windows Phone 7 library for connecting to SharePoint 2007/2010. Lets you work with SPWeb, SPList, reading/writing strong typed list items, user ...Silverlight Resource Extension: Silverlight Resource Extension. Extension silverlight project for use ResX resources and localize satellite dll.Silverlight Streamgraph: Streamgraph component for SilverlightTFTP Server: Managed TFTP server implementation, written in C#. Supports: - IPv4 and IPv6 - correct retry behavior. - TFTP options: block size, transfer size, a...Virtual UserGroup Video Helpers: This is a project that holds all the tools used by the C4MVC Virtual Usergroup. Tools written in C# and Powershell to automate, Live Meeting, Expr...xBlog: xBlog is a project to build a simple and extensible Blog Engine based on xml and linqXmlCodeEditor: XmlCodeEditor is a Silverlight 4 control based on RichTextControl that creates coloring and intellisense similar to the one in Visual Studio for ed...Zinc Launcher: Zinc Launcher is a simple Windows Media Center plugin that launches Zinc and attempts to manage the windows as seamlessly as possible. In addition ...New ReleasesAcervo 2 - Gerenciador de coleções: Acervo 2 - v1.0: Arquivos para implantação do sistema Acervo2 Aplicação web Web service Smart ClientAssemblyInfo Editor: Beta 1: Initial release of Assembly Info Editor. At this point, it is feature-complete and is relatively stable. There are undoubtedly some bugs to work o...Box2D.XNA: Box2D.XNA r70 Source Code and Solution: This version is synced to changeset 44697. This represents our official port of the C Box2D up to r70 on the Google Code project. With this versi...Boxee Launcher: Boxee Launcher Release 1.0.1.2: Will now stop Media Center playback before launching BoxeeBoxee Launcher: Boxee Launcher Release 1.0.1.3: Added a background window that attempts to display over the desktop and taskbar, and below Boxee and Media Center so that the desktop and taskbar a...CommLine: Beta Version 0.1: First Beta Of the AppCommLine: Source v0.1 Beta: Source Code C of 0.1 beta versionEncrypted Notes: Encrypted Notes 1.6.2: This is the latest version of Encrypted Notes (1.6.2), with general changes and improved randomness for the key generator. It has an installer that...Hash Calculator: HashCalculator: HashCalculator 1.0Hash Calculator: HashCalculator Source code: HashCalculator 1.0Hulu Launcher: Hulu Launcher 1.0.1.3: Added a background window that attempts to display over the desktop and taskbar, and below Hulu and Media Center so that the desktop and taskbar ar...Hulu Launcher: Hulu Launcher Release 1.0.1.2: Hulu Launcher will now stop playback in Media Center before launching Hulu Desktop.Innovative Games: 4.3 - Sprite Effects: Source code download for chapter 4.3 - "Sprite Effects"MediaRSS library for .NET: 0.1: Alpha release. Majority of MediaRSS spec is supported. A small set of unit test / sample code are included. A lightly tested CustomFormatter object...MEF Visualizer Tool: MEF Visualizer Tool 0.1: Help to see what going on in side CompositionContainer Container = new CompositionContainer( new AggregateCatalog( ...Ncqrs Framework - A CQRS framework for .NET: Ncqrs with sample application: This is the first release of the Ncqrs Framework. It contains the Ncqrs source code and a runnable sample application. All the code in this release...Rubik Cube's 3D Silverlight 3.0 Animated Solution: Rubik Cube 3D with Animated Solution: This project is a realization of Silverlight 3.0 Rubik Cube 3D with Animated Solution. The Solution is available for 3x3x3 cube, other features are...Scrabler: scrabler release 0.6.2.5: fixed a bug that werent executed some scriptsSharePhone: SharePhone: Initial release with basic functionality: Open SharePoint webs and subwebs Retrieve lists on SPWeb objects Read metadata/properties on lists ...SharePhone: SharePhone v.1.0.1: Fixed a bug that prevented saving list items to SharePointSharePoint Labs: SPLab4001A-FRA-Level100: SPLab4001A-FRA-Level100 This SharePoint Lab will teach you the first best practice you should apply when writing code with the SharePoint API. Lab ...Silverlight Resource Extension: ResourceExtension (alpha): Alpha version is not stable. Only for review.Silverlight Streamgraph: Port from processing.org: A port from the processing.org streamgraph. Code-heavy with very little XAML involved at this point.Theocratic Ministry School System: TMSS - Ver 1.1.1: What’s New! Added Menu Options 2010 Schedule Access 2007 Runtime There are still many uncompleted items so this is still a conceptual release....Theocratic Ministry School System: TMSS - Ver 1.1.2: Fixed the Schedule Import. Need needs to be tested. Click import button and make sure you can get the 2010 Schedule from the internet.thinktecture Starter STS (Community Edition): StarterSTS v1.0 RTW: Version 1.0 RTWTribe.Cache: Tribe.Cache Alpha - 0.2.0.0: Tribe.Cache Alpha - 0.2.0.0 - Now has sliding and absolute expiration on cache entries. Functional Alpha Release - But do not use in productionTwitterVB - A .NET Twitter Library: TwitterVB-2.3.1: This is mostly a minor release that adds br.st URL shortening to the menu (API key from http://br.st required)Virtu: Virtu 0.8.1: Source Requirements.NET Framework 3.5 with Service Pack 1 Visual Studio 2008 with Service Pack 1, or Visual C# 2008 Express Edition with Service Pa...Visual Studio DSite: Advanced C++ Calculator: An advanced visual c 2008 calculator that can do all your basic operations, plus some advanced mathematical functions. Source Code Only.xnaWebcam: xnaWebcam 0.3: xnaWebcam 0.3 Version 0.3: -ResolutionSet: 400x300 (Default), 800x600, 1024x720 -Settings Window got Icon -Settings Window Changes -DevConsole.cs ...Most Popular ProjectsRawrWBFS ManagerMicrosoft SQL Server Product Samples: DatabaseASP.NET Ajax LibrarySilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesDotNetNuke® Community EditionMost Active ProjectsGraffiti CMSnopCommerce. Open Source online shop e-commerce solution.RawrFacebook Developer ToolkitjQuery Library for SharePoint Web ServicesLINQ to TwitterBlogEngine.NETN2 CMSBase Class LibrariesFarseer Physics Engine

    Read the article

  • Recover Deleted Files on an NTFS Hard Drive from a Ubuntu Live CD

    - by Trevor Bekolay
    Accidentally deleting a file is a terrible feeling. Not being able to boot into Windows and undelete that file makes that even worse. Fortunately, you can recover deleted files on NTFS hard drives from an Ubuntu Live CD. To show this process, we created four files on the desktop of a Windows XP machine, and then deleted them. We then booted up the same machine with the bootable Ubuntu 9.10 USB Flash Drive that we created last week. Once Ubuntu 9.10 boots up, open a terminal by clicking Applications in the top left of the screen, and then selecting Accessories > Terminal. To undelete our files, we first need to identify the hard drive that we want to undelete from. In the terminal window, type in: sudo fdisk –l and press enter. What you’re looking for is a line that ends with HPSF/NTFS (under the heading System). In our case, the device is “/dev/sda1”. This may be slightly different for you, but it will still begin with /dev/. Note this device name. If you have more than one hard drive partition formatted as NTFS, then you may be able to identify the correct partition by the size. If you look at the second line of text in the screenshot above, it reads “Disk /dev/sda: 136.4 GB, …” This means that the hard drive that Ubuntu has named /dev/sda is 136.4 GB large. If your hard drives are of different size, then this information can help you track down the right device name to use. Alternatively, you can just try them all, though this can be time consuming for large hard drives. Now that you know the name Ubuntu has assigned to your hard drive, we’ll scan it to see what files we can uncover. In the terminal window, type: sudo ntfsundelete <HD name> and hit enter. In our case, the command is: sudo ntfsundelete /dev/sda1 The names of files that can recovered show up in the far right column. The percentage in the third column tells us how much of that file can be recovered. Three of the four files that we originally deleted are showing up in this list, even though we shut down the computer right after deleting the four files – so even in ideal cases, your files may not be recoverable. Nevertheless, we have three files that we can recover – two JPGs and an MPG. Note: ntfsundelete is immediately available in the Ubuntu 9.10 Live CD. If you are in a different version of Ubuntu, or for some other reason get an error when trying to use ntfsundelete, you can install it by entering “sudo apt-get install ntfsprogs” in a terminal window. To quickly recover the two JPGs, we will use the * wildcard to recover all of the files that end with .jpg. In the terminal window, enter sudo ntfsundelete <HD name> –u –m *.jpg which is, in our case, sudo ntfsundelete /dev/sda1 –u –m *.jpg The two files are recovered from the NTFS hard drive and saved in the current working directory of the terminal. By default, this is the home directory of the current user, though we are working in the Desktop folder. Note that the ntfsundelete program does not make any changes to the original NTFS hard drive. If you want to take those files and put them back in the NTFS hard drive, you will have to move them there after they are undeleted with ntfsundelete. Of course, you can also put them on your flash drive or open Firefox and email them to yourself – the sky’s the limit! We have one more file to undelete – our MPG. Note the first column on the far left. It contains a number, its Inode. Think of this as the file’s unique identifier. Note this number. To undelete a file by its Inode, enter the following in the terminal: sudo ntfsundelete <HD name> –u –i <Inode> In our case, this is: sudo ntfsundelete /dev/sda1 –u –i 14159 This recovers the file, along with an identifier that we don’t really care about. All three of our recoverable files are now recovered. However, Ubuntu lets us know visually that we can’t use these files yet. That’s because the ntfsundelete program saves the files as the “root” user, not the “ubuntu” user. We can verify this by typing the following in our terminal window: ls –l We want these three files to be owned by ubuntu, not root. To do this, enter the following in the terminal window: sudo chown ubuntu <Files> If the current folder has other files in it, you may not want to change their owner to ubuntu. However, in our case, we only have these three files in this folder, so we will use the * wildcard to change the owner of all three files. sudo chown ubuntu * The files now look normal, and we can do whatever we want with them. Hopefully you won’t need to use this tip, but if you do, ntfsundelete is a nice command-line utility. It doesn’t have a fancy GUI like many of the similar Windows programs, but it is a powerful tool that can recover your files quickly. See ntfsundelete’s manual page for more detailed usage information Similar Articles Productive Geek Tips Reset Your Ubuntu Password Easily from the Live CDUse Ubuntu Live CD to Backup Files from Your Dead Windows ComputerCreate a Bootable Ubuntu 9.10 USB Flash DriveCreate a Bootable Ubuntu USB Flash Drive the Easy WayGuide to Using Check Disk in Windows Vista TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Windows 7 Easter Theme YoWindoW, a real time weather screensaver Optimize your computer the Microsoft way Stormpulse provides slick, real time weather data Geek Parents – Did you try Parental Controls in Windows 7? Change DNS servers on the fly with DNS Jumper

    Read the article

  • Life Technologies: Making Life Easier to Manage

    - by Michael Snow
    12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} When we’re thinking about customer engagement, we’re acutely aware of all the forces at play competing for our customer’s attention. Solutions that make life easier for our customers draw attention to themselves. We tend to engage more when there is a distinct benefit and we can take a deep breath and accept that there is hope in the world and everything isn’t designed to frustrate us and make our lives miserable. (sigh…) When products are designed to automate processes that were consuming hours of our time with no relief in sight, they deserve to be recognized. One of our recent Oracle Fusion Middleware Innovation Award Winners in the WebCenter category, Life Technologies, has recently posted a video promoting their “award winning” solution. The Oracle Innovation Awards are part of the overall Oracle Excellence awards given to customers for innovation with Oracle products. More info here. Their award nomination included this description: Life Technologies delivered the My Life Service Portal as part of a larger Digital Hub strategy. This Portal is the first of its kind in the biotechnology service providing industry. The Portal provides access to Life Technologies cloud based service monitoring system where all customer deployed instruments can be remotely monitored and proactively repaired. The portal provides alerts from these cloud based monitoring services directly to the customer and to Life Technologies Field Engineers. The Portal provides insight into the instruments and services customers purchased for the purpose of analyzing and anticipating future customer needs and creating targeted sales and service programs. This portal not only provides benefits for Life Technologies internal sales and service teams but provides customers a central place to track all pertinent instrument information including: instrument service history instrument status and previous activities instrument performance analytics planned service visits warranty/contract information discussion forums social networks for lab management and collaboration alerts and notifications on all of the above team scheduling for instrument usage promote optional reagents required to keep instruments performing From their website The Life Technologies Instruments & Services Portal Helps You Save Time and Gain Peace of Mind Introducing the new, award-winning, free online tool that enables easier management of your instrument use and care, faster response to requests for service or service quotes, and instant sharing of key instrument and service information with your colleagues. Now – this unto itself is obviously beneficial for their customers who were previously burdened with having to do all of these tasks separately, manually and inconsistently by nature. Now – all in one place and free to their customers – a portal that ties it all together. They now have built the platform to give their customers yet another reason to do business with them – Their headline on their product page says it all: “Life is now easier to manage - All your instrument use and care in one place – the no-cost, no-hassle Instruments and Services Portal.” Of course – it’s very convenient that the company name includes “Life” and now can also promote to their clients and prospects that doing business with them is easy and their sophisticated lab equipment is easy to manage. In an industry full of PhD’s – “Easy” isn’t usually the first word that comes to mind, but Life Technologies has now tied the word to their brand in a very eloquent way. Between our work lives and family or personal lives, getting any mono-focused minutes of dedicated attention has become such a rare occurrence in our current era of multi-tasking that those moments of focus are highly prized. So – when something is done really well – so well that it becomes captivating and urges sharing impulses – I take notice and dig deeper and most of the time I discover other gems not so hidden below the surface. And then I share with those I know would enjoy and understand. In the spirit of full disclosure, I must admit here that the first person I shared the videos below with was my daughter. She’s in her senior year of high school in the midst of her college search. She’s passionate about her academics and has already decided that she wants to study Neuroscience in college and like her mother will be in for the long haul to a PhD eventually. In a summer science program at Smith College 2 summers ago – she sent the family famous text to me – “I just dissected a sheep’s brain – wicked cool!” – This was followed by an equally memorable text this past summer in a research mentorship in Neuroscience at UConn – “Just sliced up some rat brain. Reminded me of a deli slicer at the supermarket… sorry I forgot to call last night…” So… needless to say – I knew I had an audience that would enjoy and understand these videos below and are now being shared among her science classmates and faculty. And evidently - so does Life Technologies! They’ve done a great job on these making them fun and something that will easily be shared among their customers social networks. They’ve created a neuro-archetypal character, “Ph.Diddy” and know that their world of clients in academics, research, and other institutions would understand and enjoy the “edutainment” value in this series of videos on their YouTube channel that pokes fun at the stereotypes while also promoting their products at the same time. They use their Facebook page for additional engagement with their clients and as another venue to promote these videos. Enjoy this one as well! More to be found here: http://www.youtube.com/lifetechnologies Stay tuned to this Oracle WebCenter blog channel. Tomorrow we'll be taking a look at another winner of the Innovation Awards, LADWP - helping to keep the citizens of Los Angeles engaged with their Water and Power provider.

    Read the article

  • Why won't fetchmail work all of a sudden?

    - by SirCharlo
    I ran a chmod 777 * on my home folder. (I know, I know. I'll never do it again.) Ever since then, fetchmail seems to be broken. I use it to fetch mail from an Exchange 2003 mailbox through DAVMail and OWA. The problem is that fetchmail complains about an "expunge mismatch" whenever I get a new message. It deletes the message from the Exchange mailbox, yet it never forwards it. There seems to be a problem somwhere along the mail processing, but I haven't been able to pinpoint where. Any help would be appreciated. Here are the relevant config files. ~/fetchmailrc: set no bouncemail defaults: antispam -1 batchlimit 100 poll localhost with protocol imap and port 1143 user domain\\user password Password is root no rewrite mda "/usr/bin/procmail -f %F -d %T"; ~/procmailrc: :0 * ^Subject.*ack | expand | sed -e 's/[ ]*$//g' | sed -e 's/^/ /' > /usr/local/nagios/libexec/mail_acknowledgement ~/.forward: | "/usr/bin/procmail" And here is the output when I run fetchmail -f /root/.fetchmailrc -vv: fetchmail: WARNING: Running as root is discouraged. Old UID list from localhost: <empty> Scratch list of UIDs: <empty> fetchmail: 6.3.19 querying localhost (protocol IMAP) at Tue 03 Jul 2012 09:46:36 AM EDT: poll started Trying to connect to 127.0.0.1/1143...connected. fetchmail: IMAP< * OK [CAPABILITY IMAP4REV1 AUTH=LOGIN] IMAP4rev1 DavMail 3.9.7-1870 server ready fetchmail: IMAP> A0001 CAPABILITY fetchmail: IMAP< * CAPABILITY IMAP4REV1 AUTH=LOGIN fetchmail: IMAP< A0001 OK CAPABILITY completed fetchmail: Protocol identified as IMAP4 rev 1 fetchmail: GSSAPI error gss_inquire_cred: Unspecified GSS failure. Minor code may provide more information fetchmail: GSSAPI error gss_inquire_cred: fetchmail: No suitable GSSAPI credentials found. Skipping GSSAPI authentication. fetchmail: If you want to use GSSAPI, you need credentials first, possibly from kinit. fetchmail: IMAP> A0002 LOGIN "domain\\user" * fetchmail: IMAP< A0002 OK Authenticated fetchmail: selecting or re-polling default folder fetchmail: IMAP> A0003 SELECT "INBOX" fetchmail: IMAP< * 1 EXISTS fetchmail: IMAP< * 1 RECENT fetchmail: IMAP< * OK [UIDVALIDITY 1] fetchmail: IMAP< * OK [UIDNEXT 344] fetchmail: IMAP< * FLAGS (\Answered \Deleted \Draft \Flagged \Seen $Forwarded Junk) fetchmail: IMAP< * OK [PERMANENTFLAGS (\Answered \Deleted \Draft \Flagged \Seen $Forwarded Junk)] fetchmail: IMAP< A0003 OK [READ-WRITE] SELECT completed fetchmail: 1 message waiting after first poll fetchmail: IMAP> A0004 EXPUNGE fetchmail: IMAP< A0004 OK EXPUNGE completed fetchmail: 1 message waiting after expunge fetchmail: IMAP> A0005 SEARCH UNSEEN fetchmail: IMAP< * SEARCH 1 fetchmail: 1 is unseen fetchmail: IMAP< A0005 OK SEARCH completed fetchmail: 1 is first unseen 1 message for domain\user at localhost. fetchmail: IMAP> A0006 FETCH 1 RFC822.SIZE fetchmail: IMAP< * 1 FETCH (UID 343 RFC822.SIZE 1350) fetchmail: IMAP< A0006 OK FETCH completed fetchmail: IMAP> A0007 FETCH 1 RFC822.HEADER fetchmail: IMAP< * 1 FETCH (UID 343 RFC822.HEADER {1350} reading message domain\user@localhost:1 of 1 (1350 header octets) fetchmail: about to deliver with: /usr/bin/procmail -f '[email protected]' -d 'root' # fetchmail: IMAP< fetchmail: IMAP< fetchmail: IMAP< Bonne journ=E9e.. fetchmail: IMAP< fetchmail: IMAP< Company Name fetchmail: IMAP< My Name fetchmail: IMAP< IT fetchmail: IMAP< Tel: (XXX) XXX-XXXX xXXX fetchmail: IMAP< www.domain.com=20 fetchmail: IMAP< fetchmail: IMAP< fetchmail: IMAP< -----Message d'origine----- fetchmail: IMAP< De=A0: User [mailto:[email protected]]=20 fetchmail: IMAP< Envoy=E9=A0: 2 juillet 2012 15:50 fetchmail: IMAP< =C0=A0: Informatique fetchmail: IMAP< Objet=A0: PROBLEM: photo fetchmail: IMAP< fetchmail: IMAP< Notification Type: PROBLEM fetchmail: IMAP< Author:=20 fetchmail: IMAP< Comment:=20 fetchmail: IMAP< fetchmail: IMAP< Host: Photos fetchmail: IMAP< Hostname: photo fetchmail: IMAP< State: DOWN fetchmail: IMAP< Address: XXX.XX.X.XX fetchmail: IMAP< fetchmail: IMAP< Date/Time: Mon Jul 2 15:49:38 EDT 2012 fetchmail: IMAP< fetchmail: IMAP< Info: CRITICAL - XXX.XX.X.XX: rta nan, lost 100% fetchmail: IMAP< fetchmail: IMAP< fetchmail: IMAP< ) fetchmail: IMAP< A0007 OK FETCH completed fetchmail: IMAP> A0008 FETCH 1 BODY.PEEK[TEXT] fetchmail: IMAP< * 1 FETCH (UID 343 BODY[TEXT] {539} (539 body octets) ******************************* fetchmail: IMAP< ) fetchmail: IMAP< A0008 OK FETCH completed flushed fetchmail: IMAP> A0009 STORE 1 +FLAGS (\Seen \Deleted) fetchmail: IMAP< * 1 FETCH (UID 343 FLAGS (\Seen \Deleted)) fetchmail: IMAP< * 1 EXPUNGE fetchmail: IMAP< A0009 OK STORE completed fetchmail: IMAP> A0010 EXPUNGE fetchmail: IMAP< A0010 OK EXPUNGE completed fetchmail: mail expunge mismatch (0 actual != 1 expected) fetchmail: IMAP> A0011 LOGOUT fetchmail: IMAP< * BYE Closing connection fetchmail: IMAP< A0011 OK LOGOUT completed fetchmail: client/server synchronization error while fetching from domain\user@localhost fetchmail: 6.3.19 querying localhost (protocol IMAP) at Tue 03 Jul 2012 09:46:36 AM EDT: poll completed Merged UID list from localhost: <empty> fetchmail: Query status=7 (ERROR) fetchmail: normal termination, status 7

    Read the article

  • SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution. This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution. The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB. The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark. The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading. The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function. The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading. The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function. The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*] The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*] The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase. [*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons. Performance Landscape The table lists the leading TPC-H @3000GB results for non-clustered systems. TPC-H @3000GB, Non-Clustered Systems System Processor P/C/T – Memory Composite(QphH) $/perf($/QphH) Power(QppH) Throughput(QthH) Database Available SPARC Enterprise M9000 3.0 GHz SPARC64 VII+ 64/256/256 – 1024 GB 386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11 SPARC T4-4 3.0 GHz SPARC T4 4/32/256 – 1024 GB 205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12 SPARC Enterprise M9000 2.88 GHz SPARC64 VII 32/128/256 – 512 GB 198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10 IBM Power 780 4.1 GHz POWER7 8/32/128 – 1024 GB 192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64/128 – 512 GB 162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10 P/C/T = Processors, Cores, Threads QphH = the Composite Metric (bigger is better) $/QphH = the Price/Performance metric in USD (smaller is better) QppH = the Power Numerical Quantity QthH = the Throughput Numerical Quantity The following table lists data load times and refresh function times during the power run. TPC-H @3000GB, Non-Clustered Systems Database Load & Database Refresh System Processor Data Loading(h:m:s) T4Advan RF1(sec) T4Advan RF2(sec) T4Advan SPARC T4-4 3.0 GHz SPARC T4 04:08:29 1.0x 67.1 1.0x 39.5 1.0x IBM Power 780 4.1 GHz POWER7 05:51:50 1.5x 147.3 2.2x 133.2 3.4x HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 08:35:17 2.1x 173.0 2.6x 126.3 3.2x Data Loading = database load time RF1 = power test first refresh transaction RF2 = power test second refresh transaction T4 Advan = the ratio of time to T4 time Complete benchmark results found at the TPC benchmark website http://www.tpc.org. Configuration Summary and Results Hardware Configuration: SPARC T4-4 server 4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads) 1024 GB memory 8 x internal SAS (8 x 300 GB) disk drives External Storage: 12 x Sun Storage 2540-M2 array storage, each with 12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Enterprise Edition Audited Results: Database Size: 3000 GB (Scale Factor 3000) TPC-H Composite: 205,792.0 QphH@3000GB Price/performance: $4.10/QphH@3000GB Available: 05/31/2012 Total 3 year Cost: $843,656 TPC-H Power: 190,325.1 TPC-H Throughput: 222,515.9 Database Load Time: 4:08:29 Benchmark Description The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC. TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system. The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor. Key Points and Best Practices Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests. The peak IO rate measured from the Oracle database was 17 GB/sec. Oracle Solaris 11 11/11 required very little system tuning. Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems. The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes. Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays. The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.) See Also Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Disclosure Statement TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • ASP.NET MVC 2 throws exception for ‘favicon.ico’

    - by nmarun
    I must be on fire or something – third blog in 2 days… awesome! Before I begin, in case you’re wondering, favicon.ico is the small image that appears to the left of your web address, once the page loads. In order to learn more about MVC or any thing for that matter, it’s better to look at the source itself. Since MVC is open source (at least some part of it is), I started looking at the source code that’s available for download. While doing so, I hit Steve Sanderson’s blog site where he explains in great detail the way to debug your app using ASP.NET MVC source code. For those who are not aware, Steve Sanderson’s book - Pro ASP.NET MVC Framework, is one of the best books to learn about MVC. Alrighty, I followed the article and I hit F5 to debug the default / unchanged MVC project. I put a breakpoint in the DefaultControllerFactory.cs, CreateController() method. To know a little more about this class and the method, read this. Sure enough, the control stopped at the breakpoint and I hit F5 again and the page rendered just fine. But then what’s this? The breakpoint was hit again, as if something else was being requested. I now hovered my mouse over the ‘controllerName’ parameter and it says – favicon.ico. This by itself was more than enough for me to raise my eye-brows, but what happened next just took the ground below my feet. Oh, oh, I’m sorry I’m just typing, no code, no image, so here are a couple of screen captures. The first one shows the request for the Home controller; I get ‘Home’ when I hover over the parameter: And here’s the one that shows the same for call for ‘favicon.ico’. So, I step through the code and when the control reaches line 91 – GetControllerInstance() method, I step in. This is when I had the ‘ground-losing’ experience. Wow, an exception is being thrown for this file and that too in RTM. For some reason MVC thinks, this as a controller and tries to run it through the MvcHandler and it hits this snag. So it seems like this will happen for any MVC 2 site and this did not happen for me in the previous version of MVC. Before I get to how to resolve it, here’s another way of reproducing this exception. Revert back all your changes that you did as mentioned in Steve’s blog above. Now, add a class to your MVC project and call it say, MyControllerFactory and let this inherit from DefaultControllerFactory class. (Read this for details on the DefaultControllerFactory class is and how it is used in a different context). Add an override for the CreateController() method and for the sake of this blog, just copy the same content from the DefaultControllerFactory class. The last step is to tell your MVC app to use the MyControllerFactory class instead of the default one. To do this, go to your Global.asax.cs file and add line 6 of the snippet below: 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4:   5: RegisterRoutes(RouteTable.Routes); 6: ControllerBuilder.Current.SetControllerFactory(new MyControllerFactory()); 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, you’re ready to reproduce the issue. Just F5 the project and when you hit the overridden CreateController() method for the second time, this is what it looks like for me: And continuing further gives me the same exception. I believe this is something that MS should fix, as not having ‘favicon.ico’ file will be common for most of the applications. So I think the when you create an MVC project, line 6 should be added by default by Visual Studio itself: 1: public class MvcApplication : System.Web.HttpApplication 2: { 3: public static void RegisterRoutes(RouteCollection routes) 4: { 5: routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); 6: routes.IgnoreRoute("favicon.ico"); 7:   8: routes.MapRoute( 9: "Default", // Route name 10: "{controller}/{action}/{id}", // URL with parameters 11: new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults 12: ); 13: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } There it is, that’s the solution to avoid the exception altogether. I tried this both IE8 and Firefox browsers and was able to successfully reproduce the error. Hope someone will look at this issue and find a fix. Just before I finish up, I found another ‘bug’, if you want to call it, with Visual Studio 2008. Remember how you could change what browser you want your application to run in by just right clicking on the .aspx file and choosing ‘Browse with…’? Seems like that’s missing when you’re working with an MVC project. In order to test the above bug in the other browser, I had to load a classic ASP.NET project, change the settings and then run my MVC project. Felt kinda ‘icky’, for lack of a better word.

    Read the article

  • Know more about Cache Buffer Handle

    - by Liu Maclean(???)
    ??????«latch free:cache buffer handles???SQL????»?????cache buffer handle latch?????,?????????: “?????pin?buffer header???????buffer handle,??buffer handle?????????cache buffer handles?,??????cache buffer handles??????,???????cache???buffer handles,?????(reserved set)?????????????_db_handles_cached(???5)???,?????????????????SQL??????????????????????,????pin??????,????????handle,?????????5?cached buffer handles???handle????????????????,Oracle?????????????????pin?”????“?buffer,????????????????handle???db_block_buffers/processes,????_cursor_db_buffers_pinned???????cache buffer handles?????,??????,????????????SQL,????cache?buffer handles?????????,??????????????,???????????/?????” ????T.ASKMACLEAN.COM????,??????cache Buffer handle?????: cache buffer handle ??: ------------------------------ | Buffer state object | ------------------------------ | Place to hang the buffer | ------------------------------ | Consistent Get? | ------------------------------ | Proc Owning SO | ------------------------------ | Flags(RIR) | ------------------------------ ???? cache buffer handle SO: 70000046fdfe530, type: 24, owner: 70000041b018630, flag: INIT/-/-/0×00(buffer) (CR) PR: 70000048e92d148 FLG: 0×500000lock rls: 0, class bit: 0kcbbfbp: [BH: 7000001c7f069b0, LINK: 70000046fdfe570]where: kdswh02: kdsgrp, why: 0BH (7000001c7f069b0) file#: 12 rdba: 0×03061612 (12/398866) class: 1 ba: 7000001c70ee000set: 75 blksize: 8192 bsi: 0 set-flg: 0 pwbcnt: 0dbwrid: 2 obj: 66209 objn: 48710 tsn: 6 afn: 12hash: [700000485f12138,700000485f12138] lru: [70000025af67790,700000132f69ee0]lru-flags: hot_bufferckptq: [NULL] fileq: [NULL] objq: [700000114f5dd10,70000028bf5d620]use: [70000046fdfe570,70000046fdfe570] wait: [NULL]st: SCURRENT md: SHR tch: 0flags: affinity_lockLRBA: [0x0.0.0] HSCN: [0xffff.ffffffff] HSUB: [65535]where: kdswh02: kdsgrp, why: 0 # Example:#   (buffer) (CR) PR: 37290 FLG:    0#   kcbbfbp    : [BH: befd8, LINK: 7836c] (WAITING) Buffer handle (X$KCBBF) kernel cache, buffer buffer_handles Query x$kcbbf  – lists all the buffer handles ???? _db_handles             System-wide simultaneous buffer operations ,no of buffer handles_db_handles_cached      Buffer handles cached each process , no of processes  default 5_cursor_db_buffers_pinned  additional number of buffers a cursor can pin at once_session_kept_cursor_pins       Number of cursors pins to keep in a session When a buffer is pinned it is attached to buffer state object. ??? ???????? cache buffer handles latch ? buffer pin???: SESSION A : SQL> select * from v$version; BANNER ---------------------------------------------------------------- Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bi PL/SQL Release 10.2.0.5.0 - Production CORE    10.2.0.5.0      Production TNS for Linux: Version 10.2.0.5.0 - Production NLSRTL Version 10.2.0.5.0 - Production SQL> create table test_cbc_handle(t1 int); Table created. SQL> insert into test_cbc_handle values(1); 1 row created. SQL> commit; Commit complete. SQL> select rowid from test_cbc_handle; ROWID ------------------ AAANO6AABAAAQZSAAA SQL> select * from test_cbc_handle where rowid='AAANO6AABAAAQZSAAA';         T1 ----------          1 SQL> select addr,name from v$latch_parent where name='cache buffer handles'; ADDR             NAME ---------------- -------------------------------------------------- 00000000600140A8 cache buffer handles SQL> select to_number('00000000600140A8','xxxxxxxxxxxxxxxxxxxx') from dual; TO_NUMBER('00000000600140A8','XXXXXXXXXXXXXXXXXXXX') ----------------------------------------------------                                           1610694824 ??cache buffer handles????parent latch ??? child latch ???SESSION A hold ??????cache buffer handles parent latch ???? oradebug call kslgetl ??, kslgetl?oracle??get latch??? SQL> oradebug setmypid; Statement processed. SQL> oradebug call kslgetl 1610694824 1; Function returned 1 ?????SESSION B ???: SQL> select * from v$latchholder;        PID        SID LADDR            NAME                                                                   GETS ---------- ---------- ---------------- ---------------------------------------------------------------- ----------         15        141 00000000600140A8 cache buffer handles                                                    119 cache buffer handles latch ???session A hold??,????????acquire cache buffer handle latch SQL> select * from test_cbc_handle where rowid='AAANO6AABAAAQZSAAA';         T1 ----------          1 ?????Server Process?????? read buffer, ????????"_db_handles_cached", ??process?cache 5? cache buffer handle ??"_db_handles_cached"=0,?process????5????cache buffer handle , ???? process ???pin buffer,???hold cache buffer handle latch??????cache buffer handle SQL> alter system set "_db_handles_cached"=0 scope=spfile; System altered. ????? shutdown immediate; startup; session A: SQL> oradebug setmypid; Statement processed. SQL> oradebug call kslgetl 1610694824 1; Function returned 1 session B: select * from test_cbc_handle where rowid='AAANO6AABAAAQZSAAA'; session B hang!! WHY? SQL> oradebug setmypid; Statement processed. SQL> oradebug dump systemstate 266; Statement processed.   SO: 0x11b30b7b0, type: 2, owner: (nil), flag: INIT/-/-/0x00   (process) Oracle pid=22, calls cur/top: (nil)/0x11b453c38, flag: (0) -             int error: 0, call error: 0, sess error: 0, txn error 0   (post info) last post received: 0 0 0               last post received-location: No post               last process to post me: none               last post sent: 0 0 0               last post sent-location: No post               last process posted by me: none     (latch info) wait_event=0 bits=8       holding    (efd=4) 600140a8 cache buffer handles level=3   SO: 0x11b305810, type: 2, owner: (nil), flag: INIT/-/-/0x00   (process) Oracle pid=10, calls cur/top: 0x11b455ac0/0x11b450a58, flag: (0) -             int error: 0, call error: 0, sess error: 0, txn error 0   (post info) last post received: 0 0 0               last post received-location: No post               last process to post me: none               last post sent: 0 0 0               last post sent-location: No post               last process posted by me: none     (latch info) wait_event=0 bits=2         Location from where call was made: kcbzgs:       waiting for 600140a8 cache buffer handles level=3 FBD93353:000019F0    10   162 10005   1 KSL WAIT BEG [latch: cache buffer handles] 1610694824/0x600140a8 125/0x7d 0/0x0 FF936584:00002761    10   144 10005   1 KSL WAIT BEG [latch: cache buffer handles] 1610694824/0x600140a8 125/0x7d 0/0x0 PID=22 holding ??cache buffer handles latch PID=10 ?? cache buffer handles latch, ????"_db_handles_cached"=0 ?? process??????cache buffer handles ??systemstate???? kcbbfbp cache buffer handle??, ?? "_db_handles_cached"=0 ? cache buffer handles latch?hold ?? ????cache buffer handles latch , ??? buffer?pin?????????? session A exit session B: SQL> select * from v$latchholder; no rows selected SQL> insert into test_cbc_handle values(2); 1 row created. SQL> commit; Commit complete. SQL> SQL> select t1,rowid from test_cbc_handle;         T1 ROWID ---------- ------------------          1 AAANPAAABAAAQZSAAA          2 AAANPAAABAAAQZSAAB SQL> select spid,pid from v$process where addr = ( select paddr from v$session where sid=(select distinct sid from v$mystat)); SPID                PID ------------ ---------- 19251                10 ? GDB ? SPID=19215 ?debug , ?? kcbrls ????breakpoint ??? ????release buffer [oracle@vrh8 ~]$ gdb $ORACLE_HOME/bin/oracle 19251 GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-37.el5) Copyright (C) 2009 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.  Type "show copying" and "show warranty" for details. This GDB was configured as "x86_64-redhat-linux-gnu". For bug reporting instructions, please see: <http://www.gnu.org/software/gdb/bugs/>... Reading symbols from /s01/oracle/product/10.2.0.5/db_1/bin/oracle...(no debugging symbols found)...done. Attaching to program: /s01/oracle/product/10.2.0.5/db_1/bin/oracle, process 19251 Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libskgxp10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libskgxp10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libhasgen10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libhasgen10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libskgxn2.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libskgxn2.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libocr10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libocr10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libocrb10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libocrb10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libocrutl10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libocrutl10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libjox10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libjox10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libclsra10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libclsra10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libdbcfg10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libdbcfg10.so Reading symbols from /s01/oracle/product/10.2.0.5/db_1/lib/libnnz10.so...(no debugging symbols found)...done. Loaded symbols for /s01/oracle/product/10.2.0.5/db_1/lib/libnnz10.so Reading symbols from /usr/lib64/libaio.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib64/libaio.so.1 Reading symbols from /lib64/libdl.so.2...(no debugging symbols found)...done. Loaded symbols for /lib64/libdl.so.2 Reading symbols from /lib64/libm.so.6...(no debugging symbols found)...done. Loaded symbols for /lib64/libm.so.6 Reading symbols from /lib64/libpthread.so.0...(no debugging symbols found)...done. [Thread debugging using libthread_db enabled] Loaded symbols for /lib64/libpthread.so.0 Reading symbols from /lib64/libnsl.so.1...(no debugging symbols found)...done. Loaded symbols for /lib64/libnsl.so.1 Reading symbols from /lib64/libc.so.6...(no debugging symbols found)...done. Loaded symbols for /lib64/libc.so.6 Reading symbols from /lib64/ld-linux-x86-64.so.2...(no debugging symbols found)...done. Loaded symbols for /lib64/ld-linux-x86-64.so.2 Reading symbols from /lib64/libnss_files.so.2...(no debugging symbols found)...done. Loaded symbols for /lib64/libnss_files.so.2 0x00000035c000d940 in __read_nocancel () from /lib64/libpthread.so.0 (gdb) break kcbrls Breakpoint 1 at 0x10e5d24 session B: select * from test_cbc_handle where rowid='AAANPAAABAAAQZSAAA'; select hang !! GDB (gdb) c Continuing. Breakpoint 1, 0x00000000010e5d24 in kcbrls () (gdb) bt #0  0x00000000010e5d24 in kcbrls () #1  0x0000000002e87d25 in qertbFetchByUserRowID () #2  0x00000000030c62b8 in opifch2 () #3  0x00000000032327f0 in kpoal8 () #4  0x00000000013b7c10 in opiodr () #5  0x0000000003c3c9da in ttcpip () #6  0x00000000013b3144 in opitsk () #7  0x00000000013b60ec in opiino () #8  0x00000000013b7c10 in opiodr () #9  0x00000000013a92f8 in opidrv () #10 0x0000000001fa3936 in sou2o () #11 0x000000000072d40b in opimai_real () #12 0x000000000072d35c in main () SQL> oradebug setmypid; Statement processed. SQL> oradebug dump systemstate 266; Statement processed. ?????? kcbbfbp buffer cache handle ?  SO state object ? BH BUFFER HEADER  link???     ----------------------------------------     SO: 0x11b452348, type: 3, owner: 0x11b305810, flag: INIT/-/-/0x00     (call) sess: cur 11b41bd18, rec 0, usr 11b41bd18; depth: 0       ----------------------------------------       SO: 0x1182dc750, type: 24, owner: 0x11b452348, flag: INIT/-/-/0x00       (buffer) (CR) PR: 0x11b305810 FLG: 0x108000       class bit: (nil)       kcbbfbp: [BH: 0xf2fc69f8, LINK: 0x1182dc790]       where: kdswh05: kdsgrp, why: 0       BH (0xf2fc69f8) file#: 1 rdba: 0x00410652 (1/67154) class: 1 ba: 0xf297c000         set: 3 blksize: 8192 bsi: 0 set-flg: 2 pwbcnt: 272         dbwrid: 0 obj: 54208 objn: 54202 tsn: 0 afn: 1         hash: [f2fc47f8,1181f3038] lru: [f2fc6b88,f2fc6968]         obj-flags: object_ckpt_list         ckptq: [1182ecf38,1182ecf38] fileq: [1182ecf58,1182ecf58] objq: [108712a28,108712a28]         use: [1182dc790,1182dc790] wait: [NULL]         st: XCURRENT md: SHR tch: 12         flags: buffer_dirty gotten_in_current_mode block_written_once                 redo_since_read         LRBA: [0xc7.73b.0] HSCN: [0x0.1cbe52] HSUB: [1]         Using State Objects           ----------------------------------------           SO: 0x1182dc750, type: 24, owner: 0x11b452348, flag: INIT/-/-/0x00           (buffer) (CR) PR: 0x11b305810 FLG: 0x108000           class bit: (nil)           kcbbfbp: [BH: 0xf2fc69f8, LINK: 0x1182dc790]           where: kdswh05: kdsgrp, why: 0         buffer tsn: 0 rdba: 0x00410652 (1/67154)         scn: 0x0000.001cbe52 seq: 0x01 flg: 0x02 tail: 0xbe520601         frmt: 0x02 chkval: 0x0000 type: 0x06=trans data tab 0, row 0, @0x1f9a tl: 6 fb: --H-FL-- lb: 0x0  cc: 1 col  0: [ 2]  c1 02 tab 0, row 1, @0x1f94 tl: 6 fb: --H-FL-- lb: 0x2  cc: 1 col  0: [ 2]  c1 15 end_of_block_dump         (buffer) (CR) PR: 0x11b305810 FLG: 0x108000 st: XCURRENT md: SHR tch: 12 ? buffer header?status= XCURRENT mode=KCBMSHARE KCBMSHR     current share ?????  x$kcbbf ????? cache buffer handle SQL> select distinct KCBBPBH from  x$kcbbf ; KCBBPBH ---------------- 00 00000000F2FC69F8            ==>0xf2fc69f8 SQL> select * from x$kcbbf where kcbbpbh='00000000F2FC69F8'; ADDR                   INDX    INST_ID KCBBFSO_TYP KCBBFSO_FLG KCBBFSO_OWN ---------------- ---------- ---------- ----------- ----------- ----------------   KCBBFFLG    KCBBFCR    KCBBFCM KCBBFMBR         KCBBPBH ---------- ---------- ---------- ---------------- ---------------- KCBBPBF          X0KCBBPBH        X0KCBBPBF        X1KCBBPBH ---------------- ---------------- ---------------- ---------------- X1KCBBPBF        KCBBFBH            KCBBFWHR   KCBBFWHY ---------------- ---------------- ---------- ---------- 00000001182DC750        748          1          24           1 000000011B452348    1081344          1          0 00               00000000F2FC69F8 00000001182DC750 00               00000001182DC750 00 00000001182DC7F8 00                      583          0 SQL> desc x$kcbbf;  Name                                      Null?    Type  ----------------------------------------- -------- ----------------------------  ADDR                                               RAW(8)  INDX                                               NUMBER  INST_ID                                            NUMBER  KCBBFSO_TYP                                        NUMBER  KCBBFSO_FLG                                        NUMBER  KCBBFSO_OWN                                        RAW(8)  KCBBFFLG                                           NUMBER  KCBBFCR                                            NUMBER  KCBBFCM                                            NUMBER  KCBBFMBR                                           RAW(8)  KCBBPBH                                            RAW(8)  KCBBPBF                                            RAW(8)  X0KCBBPBH                                          RAW(8)  X0KCBBPBF                                          RAW(8)  X1KCBBPBH                                          RAW(8)  X1KCBBPBF                                          RAW(8)  KCBBFBH                                            RAW(8)  KCBBFWHR                                           NUMBER  KCBBFWHY                                           NUMBER gdb ?? ?process??????kcbrls release buffer? ???cache buffer handle??? SQL> select distinct KCBBPBH from  x$kcbbf ; KCBBPBH ---------------- 00

    Read the article

  • External usb 3.0 hard drive is not recognised when plugged into usb 3 port (ubuntu natty 64 bit).

    - by kimangroo
    I have an Iomega Prestige Portable External Hard Drive 1TB USB 3.0. It works fine on windows 7 as a usb 3.0 drive. It isn't detected on ubuntu natty 64bit, 2.6.38-8-generic. fdisk -l cannot see it at all: Disk /dev/sda: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1bed746b Device Boot Start End Blocks Id System /dev/sda1 1 1689 13560832 27 Unknown /dev/sda2 * 1689 1702 102400 7 HPFS/NTFS /dev/sda3 1702 19978 146805760 7 HPFS/NTFS /dev/sda4 19978 60802 327914497 5 Extended /dev/sda5 25555 60802 283120640 7 HPFS/NTFS /dev/sda6 19978 23909 31571968 83 Linux /dev/sda7 23909 25555 13218816 82 Linux swap / Solaris Partition table entries are not in disk order lsusb can see it: Bus 003 Device 003: ID 059b:0070 Iomega Corp. Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 002 Device 004: ID 05fe:0011 Chic Technology Corp. Browser Mouse Bus 002 Device 003: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 005: ID 0489:e00f Foxconn / Hon Hai Bus 001 Device 004: ID 0c45:64b5 Microdia Bus 001 Device 003: ID 08ff:168f AuthenTec, Inc. Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub And dmesg | grep -i xhci (I may have unplugged the drive and plugged it back in again after booting): [ 1.659060] pci 0000:04:00.0: xHCI HW did not halt within 2000 usec status = 0x0 [ 11.484971] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 11.484997] xhci_hcd 0000:04:00.0: setting latency timer to 64 [ 11.485002] xhci_hcd 0000:04:00.0: xHCI Host Controller [ 11.485064] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 [ 11.636149] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 [ 11.636241] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X [ 11.636246] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X [ 11.636251] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X [ 11.636256] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X [ 11.636261] xhci_hcd 0000:04:00.0: irq 47 for MSI/MSI-X [ 11.639654] xHCI xhci_add_endpoint called for root hub [ 11.639655] xHCI xhci_check_bandwidth called for root hub [ 11.956366] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 2 [ 12.001073] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.007059] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.012932] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.018922] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.049139] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.056754] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.131607] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 12.179717] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.686876] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 12.687058] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 12.687152] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 43.330737] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 2 [ 43.422579] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 43.422658] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af00 [ 43.422665] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af40 [ 43.422671] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af80 [ 43.422677] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669afc0 [ 43.531159] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 125.160248] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.766466] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 3 [ 903.807789] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.813530] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.819400] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.825104] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.855067] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862314] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862597] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.913211] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 904.424416] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 904.424599] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 904.424700] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 935.139021] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 3 [ 935.226075] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 935.226140] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b00 [ 935.226148] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b40 [ 935.226153] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b80 [ 935.226159] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186bc0 [ 935.343339] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst I thought it might be that the firmware wasn't compatible with linux or something, but when booting a live image of partedmagic, (2.6.38.4-pmagic), the drive was detected fine, I could mount it and got usb 3.0 speeds (at least they double the speeds I got from plugging same drive in usb 2 ports). dmesg in partedmagic did say something about no SuperSpeed endpoint which was an error I saw in a previous dmesg of ubuntu: Jun 27 15:49:02 (none) user.info kernel: [ 2.978743] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 Jun 27 15:49:02 (none) user.debug kernel: [ 2.978771] xhci_hcd 0000:04:00.0: setting latency timer to 64 Jun 27 15:49:02 (none) user.info kernel: [ 2.978781] xhci_hcd 0000:04:00.0: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 2.978856] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 Jun 27 15:49:02 (none) user.info kernel: [ 3.089458] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 Jun 27 15:49:02 (none) user.debug kernel: [ 3.089541] xhci_hcd 0000:04:00.0: irq 42 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089544] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089546] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089548] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089550] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X Jun 27 15:49:02 (none) user.warn kernel: [ 3.092857] usb usb3: No SuperSpeed endpoint companion for config 1 interface 0 altsetting 0 ep 129: using minimum values Jun 27 15:49:02 (none) user.info kernel: [ 3.092864] usb usb3: New USB device found, idVendor=1d6b, idProduct=0003 Jun 27 15:49:02 (none) user.info kernel: [ 3.092866] usb usb3: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Jun 27 15:49:02 (none) user.info kernel: [ 3.092867] usb usb3: Product: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 3.092869] usb usb3: Manufacturer: Linux 2.6.38.4-pmagic xhci_hcd Jun 27 15:49:02 (none) user.info kernel: [ 3.092870] usb usb3: SerialNumber: 0000:04:00.0 Jun 27 15:49:02 (none) user.debug kernel: [ 3.092961] xHCI xhci_add_endpoint called for root hub Jun 27 15:49:02 (none) user.debug kernel: [ 3.092963] xHCI xhci_check_bandwidth called for root hub Well I have no idea what's going wrong, and I haven't had much luck from google and the forums so far. A number of unanswered threads with people with similar error messages and problems only. Hopefully someone here can help or point me in the right direction?!

    Read the article

  • Running Solaris 11 as a control domain on a T2000

    - by jsavit
    There is increased adoption of Oracle Solaris 11, and many customers are deploying it on systems that previously ran Solaris 10. That includes older T1-processor based systems like T1000 and T2000. Even though they are old (from 2005) and don't have the performance of current SPARC servers, they are still functional, stable servers that customers continue to operate. One reason to install Solaris 11 on them is that older machines are attractive for testing OS upgrades before updating current, production systems. Normally this does not present a challenge, because Solaris 11 runs on any T-series or M-series SPARC server. One scenario adds a complication: running Solaris 11 in a control domain on a T1000 or T2000 hosting logical domains. Solaris 11 pre-installed Oracle VM Server for SPARC incompatible with T1 Unlike Solaris 10, Solaris 11 comes with Oracle VM Server for SPARC preinstalled. The ldomsmanager package contains the logical domains manager for Oracle VM Server for SPARC 2.2, which requires a SPARC T2, T2+, T3, or T4 server. It does not work with T1-processor systems, which are only supported by LDoms Manager 1.2 and earlier. The following screenshot shows what happens (bold font) if you try to use Oracle VM Server for SPARC 2.x commands in a Solaris 11 control domain. The commands were issued in a control domain on a T2000 that previously ran Solaris 10. We also display the version of the logical domains manager installed in Solaris 11: root@t2000 psrinfo -vp The physical processor has 4 virtual processors (0-3) UltraSPARC-T1 (chipid 0, clock 1200 MHz) # prtconf|grep T SUNW,Sun-Fire-T200 # ldm -V Failed to connect to logical domain manager: Connection refused # pkg info ldomsmanager Name: system/ldoms/ldomsmanager Summary: Logical Domains Manager Description: LDoms Manager - Virtualization for SPARC T-Series Category: System/Virtualization State: Installed Publisher: solaris Version: 2.2.0.0 Build Release: 5.11 Branch: 0.175.0.8.0.3.0 Packaging Date: May 25, 2012 10:20:48 PM Size: 2.86 MB FMRI: pkg://solaris/system/ldoms/[email protected],5.11-0.175.0.8.0.3.0:20120525T222048Z The 2.2 version of the logical domains manager will have to be removed, and 1.2 installed, in order to use this as a control domain. Preparing to change - create a new boot environment Before doing anything else, lets create a new boot environment: # beadm list BE Active Mountpoint Space Policy Created -- ------ ---------- ----- ------ ------- solaris NR / 2.14G static 2012-09-25 10:32 # beadm create solaris-1 # beadm activate solaris-1 # beadm list BE Active Mountpoint Space Policy Created -- ------ ---------- ----- ------ ------- solaris N / 4.82M static 2012-09-25 10:32 solaris-1 R - 2.14G static 2012-09-29 11:40 # init 0 Normally an init 6 to reboot would have been sufficient, but in the next step I reset the system anyway in order to put the system in factory default mode for a "clean" domain configuration. Preparing to change - reset to factory default There was a leftover domain configuration on the T2000, so I reset it to the factory install state. Since the ldm command is't working yet, it can't be done from the control domain, so I did it by logging onto to the service processor: $ ssh -X admin@t2000-sc Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. Oracle Advanced Lights Out Manager CMT v1.7.9 Please login: admin Please Enter password: ******** sc> showhost Sun-Fire-T2000 System Firmware 6.7.10 2010/07/14 16:35 Host flash versions: OBP 4.30.4.b 2010/07/09 13:48 Hypervisor 1.7.3.c 2010/07/09 15:14 POST 4.30.4.b 2010/07/09 14:24 sc> bootmode config="factory-default" sc> poweroff Are you sure you want to power off the system [y/n]? y SC Alert: SC Request to Power Off Host. SC Alert: Host system has shut down. sc> poweron SC Alert: Host System has Reset At this point I rebooted into the new Solaris 11 boot environment, and Solaris commands showed it was running on the factory default configuration of a single domain owning all 32 CPUs and 32GB of RAM (that's what it looked like in 2005.) # psrinfo -vp The physical processor has 8 cores and 32 virtual processors (0-31) The core has 4 virtual processors (0-3) The core has 4 virtual processors (4-7) The core has 4 virtual processors (8-11) The core has 4 virtual processors (12-15) The core has 4 virtual processors (16-19) The core has 4 virtual processors (20-23) The core has 4 virtual processors (24-27) The core has 4 virtual processors (28-31) UltraSPARC-T1 (chipid 0, clock 1200 MHz) # prtconf|grep Mem Memory size: 32640 Megabytes Note that the older processor has 4 virtual CPUs per core, while current processors have 8 per core. Remove ldomsmanager 2.2 and install the 1.2 version The Solaris 11 pkg command is now used to remove the 2.2 version that shipped with Solaris 11: # pkg uninstall ldomsmanager Packages to remove: 1 Create boot environment: No Create backup boot environment: No Services to change: 2 PHASE ACTIONS Removal Phase 130/130 PHASE ITEMS Package State Update Phase 1/1 Package Cache Update Phase 1/1 Image State Update Phase 2/2 Finally, LDoms 1.2 installed via its install script, the same way it was done years ago: # unzip LDoms-1_2-Integration-10.zip # cd LDoms-1_2-Integration-10/Install/ # ./install-ldm Welcome to the LDoms installer. You are about to install the Logical Domains Manager package that will enable you to create, destroy and control other domains on your system. Given the capabilities of the LDoms domain manager, you can now change the security configuration of this Solaris instance using the Solaris Security Toolkit. ... ... normal install messages omitted ... The Solaris Security Toolkit applies to Solaris 10, and cannot be used in Solaris 11 (in which several things hardened by the Toolkit are already hardened by default), so answer b in the choice below: You are about to install the Logical Domains Manager package that will enable you to create, destroy and control other domains on your system. Given the capabilities of the LDoms domain manager, you can now change the security configuration of this Solaris instance using the Solaris Security Toolkit. Select a security profile from this list: a) Hardened Solaris configuration for LDoms (recommended) b) Standard Solaris configuration c) Your custom-defined Solaris security configuration profile Enter a, b, or c [a]: b ... other install messages omitted for brevity... After install I ensure that the necessary services are enabled, and verify the version of the installed LDoms Manager: # svcs ldmd STATE STIME FMRI online 22:00:36 svc:/ldoms/ldmd:default # svcs vntsd STATE STIME FMRI disabled Aug_19 svc:/ldoms/vntsd:default # ldm -V Logical Domain Manager (v 1.2-debug) Hypervisor control protocol v 1.3 Using Hypervisor MD v 1.1 System PROM: Hypervisor v. 1.7.3. @(#)Hypervisor 1.7.3.c 2010/07/09 15:14\015 OpenBoot v. 4.30.4. @(#)OBP 4.30.4.b 2010/07/09 13:48 Set up control domain and domain services At this point we have a functioning LDoms 1.2 environment that can be configured in the usual fashion. One difference is that LDoms 1.2 behavior had 'delayed configuration mode (as expected) during initial configuration before rebooting the control domain. Another minor difference with a Solaris 11 control domain is that you define virtual switches using the 'vanity name' of the network interface, rather than the hardware driver name as in Solaris 10. # ldm list ------------------------------------------------------------------------------ Notice: the LDom Manager is running in configuration mode. Configuration and resource information is displayed for the configuration under construction; not the current active configuration. The configuration being constructed will only take effect after it is downloaded to the system controller and the host is reset. ------------------------------------------------------------------------------ NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- SP 32 32640M 3.2% 4d 2h 50m # ldm add-vdiskserver primary-vds0 primary # ldm add-vconscon port-range=5000-5100 primary-vcc0 primary # ldm add-vswitch net-dev=net0 primary-vsw0 primary # ldm set-mau 2 primary # ldm set-vcpu 8 primary # ldm set-memory 4g primary # ldm add-config initial # ldm list-spconfig factory-default initial [current] That's it, really. After reboot, we are ready to install guest domains. Summary - new wine in old bottles This example shows that (new) Solaris 11 can be installed on (old) T2000 servers and used as a control domain. The main activity is to remove the preinstalled Oracle VM Server for 2.2 and install Logical Domains 1.2 - the last version of LDoms to support T1-processor systems. I tested Solaris 10 and Solaris 11 guest domains running on this server and they worked without any surprises. This is a viable way to get further into Solaris 11 adoption, even on older T-series equipment.

    Read the article

  • Partner Blog Series: PwC Perspectives - "Is It Time for an Upgrade?"

    - by Tanu Sood
    Is your organization debating their next step with regard to Identity Management? While all the stakeholders are well aware that the one-size-fits-all doesn’t apply to identity management, just as true is the fact that no two identity management implementations are alike. Oracle’s recent release of Identity Governance Suite 11g Release 2 has innovative features such as a customizable user interface, shopping cart style request catalog and more. However, only a close look at the use cases can help you determine if and when an upgrade to the latest R2 release makes sense for your organization. This post will describe a few of the situations that PwC has helped our clients work through. “Should I be considering an upgrade?” If your organization has an existing identity management implementation, the questions below are a good start to assessing your current solution to see if you need to begin planning for an upgrade: Does the current solution scale and meet your projected identity management needs? Does the current solution have a customer-friendly user interface? Are you completely meeting your compliance objectives? Are you still using spreadsheets? Does the current solution have the features you need? Is your total cost of ownership in line with well-performing similar sized companies in your industry? Can your organization support your existing Identity solution? Is your current product based solution well positioned to support your organization's tactical and strategic direction? Existing Oracle IDM Customers: Several existing Oracle clients are looking to move to R2 in 2013. If your organization is on Sun Identity Manager (SIM) or Oracle Identity Manager (OIM) and if your current assessment suggests that you need to upgrade, you should strongly consider OIM 11gR2. Oracle provides upgrade paths to Oracle Identity Manager 11gR2 from SIM 7.x / 8.x as well as Oracle Identity Manager 10g / 11gR1. The following are some of the considerations for migration: Check the end of product support (for Sun or legacy OIM) schedule There are several new features available in R2 (including common Helpdesk scenarios, profiling of disconnected applications, increased scalability, custom connectors, browser-based UI configurations, portability of configurations during future upgrades, etc) Cost of ownership (for SIM customers)\ Customizations that need to be maintained during the upgrade Time/Cost to migrate now vs. waiting for next version If you are already on an older version of Oracle Identity Manager and actively maintaining your support contract with Oracle, you might be eligible for a free upgrade to OIM 11gR2. Check with your Oracle sales rep for more details. Existing IDM infrastructure in place: In the past year and half, we have seen a surge in IDM upgrades from non-Oracle infrastructure to Oracle. If your organization is looking to improve the end-user experience related to identity management functions, the shopping cart style access request model and browser based personalization features may come in handy. Additionally, organizations that have a large number of applications that include ecommerce, LDAP stores, databases, UNIX systems, mainframes as well as a high frequency of user identity changes and access requests will value the high scalability of the OIM reconciliation and provisioning engine. Furthermore, we have seen our clients like OIM's out of the box (OOB) support for multiple authoritative sources. For organizations looking to integrate applications that do not have an exposed API, the Generic Technology Connector framework supported by OIM will be helpful in quickly generating custom connector using OOB wizard. Similarly, organizations in need of not only flexible on-boarding of disconnected applications but also strict access management to these applications using approval flows will find the flexible disconnected application profiling feature an extremely useful tool that provides a high degree of time savings. Organizations looking to develop custom connectors for home grown or industry specific applications will likewise find that the Identity Connector Framework support in OIM allows them to build and test a custom connector independently before integrating it with OIM. Lastly, most of our clients considering an upgrade to OIM 11gR2 have also expressed interest in the browser based configuration feature that allows an administrator to quickly customize the user interface without adding any custom code. Better yet, code customizations, if any, made to the product are portable across the future upgrades which, is viewed as a big time and money saver by most of our clients. Below are some upgrade methodologies we adopt based on client priorities and the scale of implementation. For illustration purposes, we have assumed that the client is currently on Oracle Waveset (formerly Sun Identity Manager).   Integrated Deployment: The integrated deployment is typically where a client wants to split the implementation to where their current IDM is continuing to handle the front end workflows and OIM takes over the back office operations incrementally. Once all the back office operations are moved completely to OIM, the front end workflows are migrated to OIM. Parallel Deployment: This deployment is typically done where there can be a distinct line drawn between which functionality the platforms are supporting. For example the current IDM implementation is handling the password reset functionality while OIM takes over the access provisioning and RBAC functions. Cutover Deployment: A cutover deployment is typically recommended where a client has smaller less complex implementations and it makes sense to leverage the migration tools to move them over immediately. What does this mean for YOU? There are many variables to consider when making upgrade decisions. For most customers, there is no ‘easy’ button. Organizations looking to upgrade or considering a new vendor should start by doing a mapping of their requirements with product features. The recommended approach is to take stock of both the short term and long term objectives, understand product features, future roadmap, maturity and level of commitment from the R&D and build the implementation plan accordingly. As we said, in the beginning, there is no one-size-fits-all with Identity Management. So, arm yourself with the knowledge, engage in industry discussions, bring in business stakeholders and start building your implementation roadmap. In the next post we will discuss the best practices on R2 implementations. We will be covering the Do's and Don't's and share our thoughts on making implementations successful. Meet the Writers: Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL). Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Jenny (Xiao) Zhang is a member of the Advisory Security practice within PwC.  She has consulted across multiple industries including financial services, entertainment and retail. Jenny has three years of experience in delivering IT solutions out of which she has been implementing Identity Management solutions for the past one and a half years.

    Read the article

  • SSAO Distortion

    - by Robert Xu
    I'm currently (attempting) to add SSAO to my engine, except it's...not really work, to say the least. I use a deferred renderer to render my scene. I have four render targets: Albedo, Light, Normal, and Depth. Here are the parameters for all of them (Surface Format, Depth Format): Albedo: 32-bit ARGB, Depth24Stencil8 Light: 32-bit ARGB, None Normal: 32-bit ARGB, None Depth: 8-bit R (Single), Depth24Stencil8 To generate my random noise map for the SSAO, I do the following for each pixel in the noise map: Vector3 v3 = Vector3.Zero; double z = rand.NextDouble() * 2.0 - 1.0; double r = Math.Sqrt(1.0 - z * z); double angle = rand.NextDouble() * MathHelper.TwoPi; v3.X = (float)(r * Math.Cos(angle)); v3.Y = (float)(r * Math.Sin(angle)); v3.Z = (float)z; v3 += offset; v3 *= 0.5f; result[i] = new Color(v3); This is my GBuffer rendering effect: PixelInput RenderGBufferColorVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = mul(input.Position, WorldViewProjection); pi.Normal = mul(input.Normal, WorldInverseTranspose); pi.Color = input.Color; pi.TPosition = pi.Position; pi.WPosition = input.Position; return pi; } GBufferTarget RenderGBufferColorPixelShader(PixelInput input) { GBufferTarget output = ( GBufferTarget ) 0; float3 position = input.TPosition.xyz / input.TPosition.w; output.Albedo = lerp(float4(1.0f, 1.0f, 1.0f, 1.0f), input.Color, ColorFactor); output.Normal = EncodeNormal(input.Normal); output.Depth = position.z; return output; } And here is the SSAO effect: float4 EncodeNormal(float3 normal) { return float4((normal.xyz * 0.5f) + 0.5f, 0.0f); } float3 DecodeNormal(float4 encoded) { return encoded * 2.0 - 1.0f; } float Intensity; float Size; float2 NoiseOffset; float4x4 ViewProjection; float4x4 ViewProjectionInverse; texture DepthMap; texture NormalMap; texture RandomMap; const float3 samples[16] = { float3(0.01537562, 0.01389096, 0.02276565), float3(-0.0332658, -0.2151698, -0.0660736), float3(-0.06420016, -0.1919067, 0.5329634), float3(-0.05896204, -0.04509097, -0.03611697), float3(-0.1302175, 0.01034653, 0.01543675), float3(0.3168565, -0.182557, -0.01421785), float3(-0.02134448, -0.1056605, 0.00576055), float3(-0.3502164, 0.281433, -0.2245609), float3(-0.00123525, 0.00151868, 0.02614773), float3(0.1814744, 0.05798516, -0.02362876), float3(0.07945167, -0.08302628, 0.4423518), float3(0.321987, -0.05670302, -0.05418307), float3(-0.00165138, -0.00410309, 0.00537362), float3(0.01687791, 0.03189049, -0.04060405), float3(-0.04335613, -0.00530749, 0.06443053), float3(0.8474263, -0.3590308, -0.02318038), }; sampler DepthSampler = sampler_state { Texture = DepthMap; MipFilter = Point; MinFilter = Point; MagFilter = Point; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler NormalSampler = sampler_state { Texture = NormalMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler RandomSampler = sampler_state { Texture = RandomMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; struct VertexInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; struct PixelInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; PixelInput SSAOVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = input.Position; pi.TextureCoordinates = input.TextureCoordinates; return pi; } float3 GetXYZ(float2 uv) { float depth = tex2D(DepthSampler, uv); float2 xy = uv * 2.0f - 1.0f; xy.y *= -1; float4 p = float4(xy, depth, 1); float4 q = mul(p, ViewProjectionInverse); return q.xyz / q.w; } float3 GetNormal(float2 uv) { return DecodeNormal(tex2D(NormalSampler, uv)); } float4 SSAOPixelShader(PixelInput input) : COLOR0 { float depth = tex2D(DepthSampler, input.TextureCoordinates); float3 position = GetXYZ(input.TextureCoordinates); float3 normal = GetNormal(input.TextureCoordinates); float occlusion = 1.0f; float3 reflectionRay = DecodeNormal(tex2D(RandomSampler, input.TextureCoordinates + NoiseOffset)); for (int i = 0; i < 16; i++) { float3 sampleXYZ = position + reflect(samples[i], reflectionRay) * Size; float4 screenXYZW = mul(float4(sampleXYZ, 1.0f), ViewProjection); float3 screenXYZ = screenXYZW.xyz / screenXYZW.w; float2 sampleUV = float2(screenXYZ.x * 0.5f + 0.5f, 1.0f - (screenXYZ.y * 0.5f + 0.5f)); float frontMostDepthAtSample = tex2D(DepthSampler, sampleUV); if (frontMostDepthAtSample < screenXYZ.z) { occlusion -= 1.0f / 16.0f; } } return float4(occlusion * Intensity * float3(1.0, 1.0, 1.0), 1.0); } technique SSAO { pass Pass0 { VertexShader = compile vs_3_0 SSAOVertexShader(); PixelShader = compile ps_3_0 SSAOPixelShader(); } } However, when I use the effect, I get some pretty bad distortion: Here's the light map that goes with it -- is the static-like effect supposed to be like that? I've noticed that even if I'm looking at nothing, I still get the static-like effect. (you can see it in the screenshot; the top half doesn't have any geometry yet it still has the static-like effect) Also, does anyone have any advice on how to effectively debug shaders?

    Read the article

  • No root file system is defined error after installation

    - by LearnCode
    I installed ubuntu through Wubi and once i rebooted I get no root file system defined error. here's the output of the boot_info_script.Could anyone point me out where the error is. Boot Info Script 0.60 from 17 May 2011 ============================= Boot Info Summary: =============================== => Windows is installed in the MBR of /dev/sda. => Windows is installed in the MBR of /dev/sdb. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe /ntldr /ntdetect.com /wubildr /ubuntu/winboot/wubildr /wubildr.mbr /ubuntu/winboot/wubildr.mbr /ubuntu/disks/root.disk /ubuntu/disks/swap.disk sda1/Wubi: _____________________________________________________________________ File system: Boot sector type: Unknown Boot sector info: Mounting failed: mount: unknown filesystem type '' sda2: __________________________________________________________________________ File system: vfat Boot sector type: Unknown Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: /boot.ini /ntldr /NTDETECT.COM sdb1: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 160.0 GB, 160041885696 bytes 240 heads, 63 sectors/track, 20673 cylinders, total 312581808 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 63 301,250,879 301,250,817 7 NTFS / exFAT / HPFS /dev/sda2 301,250,943 312,575,759 11,324,817 c W95 FAT32 (LBA) GUID Partition Table detected, but does not seem to be used. Partition Start Sector End Sector # of Sectors System /dev/sda1 323,465,741,313,502,988275,962,973,585-323,465,465,350,529,402 - /dev/sda2 242,728,591,638,290,720578,721,383,108,845,578335,992,791,470,554,859 - /dev/sda3 1,827,498,311,425,204,2562,091,935,274,843,009,907264,436,963,417,805,652 - /dev/sda4 579,711,218,081,401,3572,006,665,459,744,645,1521,426,954,241,663,243,796 - /dev/sda11 270,286,346,402,038,1183,786,543,326,404,525,9543,516,256,980,002,487,837 - /dev/sda12 4,179,681,002,230,769,6684,179,389,374,010,033,387-291,628,220,736,280 - /dev/sda13 232,556,480,979,456,1311,160,152,593,793,119,235927,596,112,813,663,105 - /dev/sda14 98,342,784,050,266,9183,691,264,578,843,725,1953,592,921,794,793,458,278 - /dev/sda15 2,307,845,219,957,882,4961,850,841,032,955,276,350-457,004,187,002,606,145 - /dev/sda16 512,592,046,878,946,497368,458,231,024,779,444-144,133,815,854,167,052 - /dev/sda17 2,504,135,232,870,384,3923,665,087,872,719,320,8291,160,952,639,848,936,438 - /dev/sda18 3,783,181,605,270,691,304122,034,509,624,708,942-3,661,147,095,645,982,361 - /dev/sda19 3,519,661,520,275,829,5122,376,243,094,723,723,587-1,143,418,425,552,105,924 - /dev/sda20 3,867,920,076,859,0744,494,691,111,933,625,1044,490,823,191,856,766,031 - /dev/sda21 1,500,144,061,909,253,7612,511,182,033,846,676,3401,011,037,971,937,422,580 - /dev/sda22 13,035,625,499,900,0062,360,168,613,941,394,9472,347,132,988,441,494,942 - /dev/sda23 4,228,978,682,068,599,48813,159,423,631,648,263-4,215,819,258,436,951,224 - /dev/sda24 3,695,955,742,872,046,9084,561,928,726,501,845,776865,972,983,629,798,869 - /dev/sda25 1,297,460,286,683,948,0461,444,350,486,339,417,957146,890,199,655,469,912 - /dev/sda26 1,228,858,248,533,131,831 0-1,228,858,248,533,131,830 - /dev/sda121 3,189,184,846,146,487,1461,849,820,258,006,914,852-1,339,364,588,139,572,293 - /dev/sda122 1,226,215,547,991,800,578389,781,518,734,546,300-836,434,029,257,254,277 - /dev/sda123 3,851,660,168,574,583,4654,046,215,657,583,031,556194,555,489,008,448,092 - /dev/sda124 1,197,460,980,174,153,341699,103,965,005,093,246-498,357,015,169,060,094 - Drive: sdb _____________________________________________________________________ Disk /dev/sdb: 750.2 GB, 750153367552 bytes 255 heads, 63 sectors/track, 91200 cylinders, total 1465143296 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sdb1 2,048 1,465,143,295 1,465,141,248 7 NTFS / exFAT / HPFS "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 iso9660 Ubuntu 11.04 amd64 /dev/loop1 squashfs /dev/sda1 E814B55B14B52E06 ntfs /dev/sda2 01CD-023B vfat HP_RECOVERY /dev/sdb1 7836F22A36F1E8D0 ntfs Elements ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /cdrom iso9660 (ro,noatime) /dev/loop1 /rofs squashfs (ro,noatime) /dev/sdb1 /mnt fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) ================================ sda2/boot.ini: ================================ -------------------------------------------------------------------------------- [boot loader] timeout=0 default=C:\CMDCONS\BOOTSECT.DAT [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional" /fastdetect C:\CMDCONS\BOOTSECT.DAT="Microsoft Windows Recovery Console" /cmdcons -------------------------------------------------------------------------------- ======================== Unknown MBRs/Boot Sectors/etc: ======================== Unknown GPT Partiton Type c104043000e9b9040dff24b580010100 Unknown GPT Partiton Type 46313020746f20737461727420746865 Unknown GPT Partiton Type 65727920706172746974696f6e207761 Unknown GPT Partiton Type 727920706172746974696f6e0d0a0000 Unknown GPT Partiton Type 000f84e5f7668b162404e82804744066 Unknown GPT Partiton Type ce01e8dc038bfe66391624047505e8d9 Unknown GPT Partiton Type 0345086603f0e881030bd2740333d240 Unknown GPT Partiton Type bece01e8db0287fec645041266895508 Unknown GPT Partiton Type 01f60634010175078b363b01e854f5e8 Unknown GPT Partiton Type 313825740ffec03865107408fec03824 Unknown GPT Partiton Type 02f60634014074088bfdbece01e85101 Unknown GPT Partiton Type 263401f9e894f30f858ef4e8e201e8ec Unknown GPT Partiton Type f7e960f35245434f5645525966606633 Unknown GPT Partiton Type 660faf1e00106603dac3668b0e001066 Unknown GPT Partiton Type 8bfd386d04740583c710e2f6c36660c6 Unknown GPT Partiton Type 04ebf132c0b91000f3aac3bf0c04ebf3 Unknown GPT Partiton Type 02662bc1660fb71e0e02662bc366031e Unknown GPT Partiton Type f4b40ebb0700b901003c08751381ff25 Unknown GPT Partiton Type 534f465448494e4b90653f62011b0100 Unknown GPT Partiton Type 0b050900027777772e68702e636f6d00 Unknown GPT Partiton Type d441a0f5030003000ecb744a08bb3746 Unknown GPT Partiton Type f8579a116b4a7aa931cde97a4b9b5c09 Unknown GPT Partiton Type 7229990415b77c0a1970e7e824237a3a Unknown GPT Partiton Type afb6e34d6b4bd8c7c0eada19a9786cc3 Unknown BootLoader on sda1/Wubi 00000000 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |0000000000000000| * 00000200 Unknown BootLoader on sda2 00000000 e9 a7 00 52 45 43 4f 56 45 52 59 00 02 08 20 00 |...RECOVERY... .| 00000010 02 00 00 00 00 f8 00 00 3f 00 f0 00 7f b9 f4 11 |........?.......| 00000020 8c cd ac 00 1e 2b 00 00 00 00 00 00 02 00 00 00 |.....+..........| 00000030 01 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000040 80 00 29 3b 02 cd 01 20 20 20 20 20 20 20 20 20 |..);... | 00000050 20 20 46 41 54 33 32 20 20 20 8b d0 c1 e2 02 80 | FAT32 ......| 00000060 e6 01 66 c1 e8 07 66 3b 46 f8 74 2a 66 89 46 f8 |..f...f;F.t*f.F.| 00000070 66 03 46 f4 66 0f b6 5e 28 80 e3 0f 74 0f 3a 5e |f.F.f..^(...t.:^| 00000080 10 0f 83 90 00 66 0f af 5e 24 66 03 c3 bb e0 07 |.....f..^$f.....| 00000090 b9 01 00 e8 cf 00 8b da 66 8b 87 00 7e 66 25 ff |........f...~f%.| 000000a0 ff ff 0f 66 3d f8 ff ff 0f c3 33 c9 8e d9 8e c1 |...f=.....3.....| 000000b0 8e d1 66 bc f4 7b 00 00 bd 00 7c 66 0f b6 46 10 |..f..{....|f..F.| 000000c0 66 f7 66 24 66 0f b7 56 0e 66 03 56 1c 66 89 56 |f.f$f..V.f.V.f.V| 000000d0 f4 66 03 c2 66 89 46 fc 66 c7 46 f8 ff ff ff ff |.f..f.F.f.F.....| 000000e0 66 8b 46 2c 66 50 e8 af 00 bb 70 00 b9 01 00 e8 |f.F,fP....p.....| 000000f0 73 00 bf 00 07 b1 0b be a9 7d f3 a6 74 2a 03 f9 |s........}..t*..| 00000100 83 c7 15 81 ff 00 09 72 ec 66 40 4a 75 db 66 58 |[email protected]| 00000110 e8 47 ff 72 cf be b4 7d ac 84 c0 74 09 b4 0e bb |.G.r...}...t....| 00000120 07 00 cd 10 eb f2 cd 19 66 58 ff 75 09 ff 75 0f |........fX.u..u.| 00000130 66 58 bb 00 20 66 83 f8 02 72 da 66 3d f8 ff ff |fX.. f...r.f=...| 00000140 0f 73 d2 66 50 e8 50 00 0f b6 4e 0d e8 16 00 c1 |.s.fP.P...N.....| 00000150 e1 05 03 d9 66 58 53 e8 00 ff 5b 72 d8 8a 56 40 |....fXS...[r..V@| 00000160 ea 00 00 00 20 66 60 66 6a 00 66 50 53 6a 00 66 |.... f`fj.fPSj.f| 00000170 68 10 00 01 00 8b f4 b8 00 42 8a 56 40 cd 13 be |h........B.V@...| 00000180 c7 7d 72 94 67 83 44 24 06 20 66 67 ff 44 24 08 |.}r.g.D$. fg.D$.| 00000190 e2 e3 83 c4 10 66 61 c3 66 48 66 48 66 0f b6 56 |.....fa.fHfHf..V| 000001a0 0d 66 f7 e2 66 03 46 fc c3 4e 54 4c 44 52 20 20 |.f..f.F..NTLDR | 000001b0 20 20 20 20 0d 0a 4e 6f 20 53 79 73 74 65 6d 20 | ..No System | 000001c0 44 69 73 6b 20 6f 72 0d 0a 44 69 73 6b 20 49 2f |Disk or..Disk I/| 000001d0 4f 20 65 72 72 6f 72 0d 0a 50 72 65 73 73 20 61 |O error..Press a| 000001e0 20 6b 65 79 20 74 6f 20 72 65 73 74 61 72 74 0d | key to restart.| 000001f0 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.| 00000200 =============================== StdErr Messages: =============================== umount: /isodevice: device is busy. (In some cases useful info about processes that use the device is found by lsof(8) or fuser(1))

    Read the article

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • Library like ENet, but for TCP?

    - by Milo
    I'm not looking to use boost::asio, it is overly complex for my needs. I'm building a game that is cross platform, for desktop, iPhone and Android. I found a library called ENet which is pretty much what I need, but it uses UDP which does not seem to support encryption and a few other things. Given that the game is an event driven card game, TCP seems like the right fit. However, all I have found is WINSOCK / berkley sockets and bost::asio. Here is a sample client server application with ENet: #include <enet/enet.h> #include <stdlib.h> #include <string> #include <iostream> class Host { ENetAddress address; ENetHost * server; ENetHost* client; ENetEvent event; public: Host() :server(NULL) { enet_initialize(); setupServer(); } void setupServer() { if(server) { enet_host_destroy(server); server = NULL; } address.host = ENET_HOST_ANY; /* Bind the server to port 1234. */ address.port = 1721; server = enet_host_create (& address /* the address to bind the server host to */, 32 /* allow up to 32 clients and/or outgoing connections */, 2 /* allow up to 2 channels to be used, 0 and 1 */, 0 /* assume any amount of incoming bandwidth */, 0 /* assume any amount of outgoing bandwidth */); } void daLoop() { while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (server, & event, 5000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_CONNECT: printf ("A new client connected from %x:%u.\n", event.peer -> address.host, event.peer -> address.port); /* Store any relevant client information here. */ event.peer -> data = "Client information"; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("packet", strlen ("packet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("packetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("packet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (server); break; case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; case ENET_EVENT_TYPE_DISCONNECT: printf ("%s disconected.\n", event.peer -> data); /* Reset the peer's client information. */ event.peer -> data = NULL; } } } } ~Host() { if(server) { enet_host_destroy(server); server = NULL; } atexit (enet_deinitialize); } }; class Client { ENetAddress address; ENetEvent event; ENetPeer *peer; ENetHost* client; public: Client() :peer(NULL) { enet_initialize(); setupPeer(); } void setupPeer() { client = enet_host_create (NULL /* create a client host */, 1 /* only allow 1 outgoing connection */, 2 /* allow up 2 channels to be used, 0 and 1 */, 57600 / 8 /* 56K modem with 56 Kbps downstream bandwidth */, 14400 / 8 /* 56K modem with 14 Kbps upstream bandwidth */); if (client == NULL) { fprintf (stderr, "An error occurred while trying to create an ENet client host.\n"); exit (EXIT_FAILURE); } /* Connect to some.server.net:1234. */ enet_address_set_host (& address, "192.168.2.13"); address.port = 1721; /* Initiate the connection, allocating the two channels 0 and 1. */ peer = enet_host_connect (client, & address, 2, 0); if (peer == NULL) { fprintf (stderr, "No available peers for initiating an ENet connection.\n"); exit (EXIT_FAILURE); } /* Wait up to 5 seconds for the connection attempt to succeed. */ if (enet_host_service (client, & event, 20000) > 0 && event.type == ENET_EVENT_TYPE_CONNECT) { std::cout << "Connection to some.server.net:1234 succeeded." << std::endl; } else { /* Either the 5 seconds are up or a disconnect event was */ /* received. Reset the peer in the event the 5 seconds */ /* had run out without any significant event. */ enet_peer_reset (peer); puts ("Connection to some.server.net:1234 failed."); } } void daLoop() { ENetPacket* packet; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("backet", strlen ("backet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("backetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("backet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (client); while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (client, & event, 1000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; } } } } ~Client() { atexit (enet_deinitialize); } }; int main() { std::string a; std::cin >> a; if(a == "host") { Host host; host.daLoop(); } else { Client c; c.daLoop(); } return 0; } I looked at some socket tutorials and they seemed a bit too low level. I just need something that abstracts away the platform (eg, no WINSOCKS) and that has basic ability to keep track of connected clients and send them messages. Thanks

    Read the article

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • People, Process & Engagement: WebCenter Partner Keste

    - by Michael Snow
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Within the WebCenter group here at Oracle, discussions about people, process and engagement cross over many vertical industries and products. Amidst our growing partner ecosystem, the community provides us insight into great customer use cases every day. Such is the case with our partner, Keste, who provides us a guest post on our blog today with an overview of their innovative solution for a customer in the transportation industry. Keste is an Oracle software solutions and development company headquartered in Dallas, Texas. As a Platinum member of the Oracle® PartnerNetwork, Keste designs, develops and deploys custom solutions that automate complex business processes. Seamless Customer Self-Service Experience in the Trucking Industry with Oracle WebCenter Portal  Keste, Oracle Platinum Partner Customer Overview Omnitracs, Inc., a Qualcomm company provides mobility solutions for trucking fleets to companies in the transportation industry. Omnitracs’ mobility services include basic communications such as text as well as advanced monitoring services such as GPS tracking, temperature tracking of perishable goods, load tracking and weighting distribution, and many others. Customer Business Needs Already the leading provider of mobility solutions for large trucking fleets, they chose to target smaller trucking fleets as new customers. However their existing high-touch customer support method would not be a cost effective or scalable method to manage and service these smaller customers. Omnitracs needed to provide several self-service features to make customer support more scalable while keeping customer satisfaction levels high and the costs manageable. The solution also had to be very intuitive and easy to use. The systems that Omnitracs sells to these trucking customers require professional installation and smaller customers need to track and schedule the installation. Information captured in Oracle eBusiness Suite needed to be readily available for new customers to track these purchases and delivery details. Omnitracs wanted a high impact User Interface to significantly improve customer experience with the ability to integrate with EBS, provisioning systems as well as CRM systems that were already implemented. Omnitracs also wanted to build an architecture platform that could potentially be extended to other Portals. Omnitracs’ stated goal was to deliver an “eBay-like” or “Amazon-like” experience for all of their customers so that they could reach a much broader market beyond their large company customer base. Solution Overview In order to manage the increased complexity, the growing support needs of global customers and improve overall product time-to-market in a cost-effective manner, IT began to deliver a self-service model. This self service model not only transformed numerous business processes but is also allowing the business to keep up with the growing demands of the (internal and external) customers. This solution was a customer service Portal that provided self service capabilities for large and small customers alike for Activation of mobility products, managing add-on applications for the devices (much like the Apple App Store), transferring services when trucks are sold to other companies as well as deactivation all without the involvement of a call service agent or sending multiple emails to different Omnitracs contacts. This is a conceptual view of the Customer Portal showing the details of the components that make up the solution. 12.00 The portal application for transactions was entirely built using ADF 11g R2. Omnitracs’ business had a pressing requirement to have a portal available 24/7 for its customers. Since there were interactions with EBS in the back-end, the downtimes on the EBS would negate this availability. Omnitracs devised a decoupling strategy at the database side for the EBS data. The decoupling of the database was done using Oracle Data Guard and completely insulated the solution from any eBusiness Suite down time. The customer has no knowledge whether eBS is running or not. Here are two sample screenshots of the portal application built in Oracle ADF. Customer Benefits The Customer Portal not only provided the scalability to grow the business but also provided the seamless integration with other disparate applications. Some of the key benefits are: Improved Customer Experience: With a modern look and feel and a Portal that has the aspects of an App Store, the customer experience was significantly improved. Page response times went from several seconds to sub-second for all of the pages. Enabled new product launches: After successfully dominating the large fleet market, Omnitracs now has a scalable solution to sell and manage smaller fleet customers giving them a huge advantage over their nearest competitors. Dozens of new customers have been acquired via this portal through an onboarding process that now takes minutes Seamless Integrations Improves Customer Support: ADF 11gR2 allowed Omnitracs to bring a diverse list of applications into one integrated solution. This provided a seamless experience for customers to route them from Marketing focused application to a customer-oriented portal. Internally, it also allowed Sales Representatives to have an integrated flow for taking a prospect through the various steps to onboard them as a customer. Key integrations included: Unity Core Salesforce.com Merchant e-Solution for credit card Custom Omnitracs Applications like CUPS and AUTO Security utilizing OID and OVD Back end integration with EBS (Data Guard) and iQ Database Business Impact Significant business impacts were realized through the launch of customer portal. It not only allows the business to push through in underserved segments, but also reduces the time it needs to spend on customer support—allowing the business to focus more on sales and identifying the market for new products. Some of the Immediate Benefits are The entire onboarding process is now completely automated and now completes in minutes. This represents an 85% productivity improvement over their previous processes. And it was 160 times faster! With the success of this self-service solution, the business is now targeting about 3X customer growth in the next five years. This represents a tripling of their overall customer base and significant downstream revenue for the ongoing services. 90%+ improvement of customer onboarding and management process by utilizing, single sign on integration using OID/OAM solution, performance improvements and new self-service functionality Unified login for all Customers, Partners and Internal Users enables login to a common portal and seamless access to all other integrated applications targeted at the respective audience Significantly improved customer experience with a better look and feel with a more user experience focused Portal screens. Helped sales of the new product by having an easy way of ordering and activating the product. Data Guard helped increase availability of the Portal to 99%+ and make it independent of EBS downtime. This gave customers the feel of high availability of the portal application. Some of the anticipated longer term Benefits are: Platform that can be leveraged to launch any new product introduction and enable all product teams to reach new customers and new markets Easy integration with content management to allow business owners more control of the product catalog Overall reduced TCO with standardization of the Oracle platform Managed IT support cost savings through optimization of technology skills needed to support and modify this solution ------------------------------------------------------------ 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif";}

    Read the article

  • The SSIS tuning tip that everyone misses

    - by Rob Farley
    I know that everyone misses this, because I’m yet to find someone who doesn’t have a bit of an epiphany when I describe this. When tuning Data Flows in SQL Server Integration Services, people see the Data Flow as moving from the Source to the Destination, passing through a number of transformations. What people don’t consider is the Source, getting the data out of a database. Remember, the source of data for your Data Flow is not your Source Component. It’s wherever the data is, within your database, probably on a disk somewhere. You need to tune your query to optimise it for SSIS, and this is what most people fail to do. I’m not suggesting that people don’t tune their queries – there’s plenty of information out there about making sure that your queries run as fast as possible. But for SSIS, it’s not about how fast your query runs. Let me say that again, but in bolder text: The speed of an SSIS Source is not about how fast your query runs. If your query is used in a Source component for SSIS, the thing that matters is how fast it starts returning data. In particular, those first 10,000 rows to populate that first buffer, ready to pass down the rest of the transformations on its way to the Destination. Let’s look at a very simple query as an example, using the AdventureWorks database: We’re picking the different Weight values out of the Product table, and it’s doing this by scanning the table and doing a Sort. It’s a Distinct Sort, which means that the duplicates are discarded. It'll be no surprise to see that the data produced is sorted. Obvious, I know, but I'm making a comparison to what I'll do later. Before I explain the problem here, let me jump back into the SSIS world... If you’ve investigated how to tune an SSIS flow, then you’ll know that some SSIS Data Flow Transformations are known to be Blocking, some are Partially Blocking, and some are simply Row transformations. Take the SSIS Sort transformation, for example. I’m using a larger data set for this, because my small list of Weights won’t demonstrate it well enough. Seven buffers of data came out of the source, but none of them could be pushed past the Sort operator, just in case the last buffer contained the data that would be sorted into the first buffer. This is a blocking operation. Back in the land of T-SQL, we consider our Distinct Sort operator. It’s also blocking. It won’t let data through until it’s seen all of it. If you weren’t okay with blocking operations in SSIS, why would you be happy with them in an execution plan? The source of your data is not your OLE DB Source. Remember this. The source of your data is the NCIX/CIX/Heap from which it’s being pulled. Picture it like this... the data flowing from the Clustered Index, through the Distinct Sort operator, into the SELECT operator, where a series of SSIS Buffers are populated, flowing (as they get full) down through the SSIS transformations. Alright, I know that I’m taking some liberties here, because the two queries aren’t the same, but consider the visual. The data is flowing from your disk and through your execution plan before it reaches SSIS, so you could easily find that a blocking operation in your plan is just as painful as a blocking operation in your SSIS Data Flow. Luckily, T-SQL gives us a brilliant query hint to help avoid this. OPTION (FAST 10000) This hint means that it will choose a query which will optimise for the first 10,000 rows – the default SSIS buffer size. And the effect can be quite significant. First let’s consider a simple example, then we’ll look at a larger one. Consider our weights. We don’t have 10,000, so I’m going to use OPTION (FAST 1) instead. You’ll notice that the query is more expensive, using a Flow Distinct operator instead of the Distinct Sort. This operator is consuming 84% of the query, instead of the 59% we saw from the Distinct Sort. But the first row could be returned quicker – a Flow Distinct operator is non-blocking. The data here isn’t sorted, of course. It’s in the same order that it came out of the index, just with duplicates removed. As soon as a Flow Distinct sees a value that it hasn’t come across before, it pushes it out to the operator on its left. It still has to maintain the list of what it’s seen so far, but by handling it one row at a time, it can push rows through quicker. Overall, it’s a lot more work than the Distinct Sort, but if the priority is the first few rows, then perhaps that’s exactly what we want. The Query Optimizer seems to do this by optimising the query as if there were only one row coming through: This 1 row estimation is caused by the Query Optimizer imagining the SELECT operation saying “Give me one row” first, and this message being passed all the way along. The request might not make it all the way back to the source, but in my simple example, it does. I hope this simple example has helped you understand the significance of the blocking operator. Now I’m going to show you an example on a much larger data set. This data was fetching about 780,000 rows, and these are the Estimated Plans. The data needed to be Sorted, to support further SSIS operations that needed that. First, without the hint. ...and now with OPTION (FAST 10000): A very different plan, I’m sure you’ll agree. In case you’re curious, those arrows in the top one are 780,000 rows in size. In the second, they’re estimated to be 10,000, although the Actual figures end up being 780,000. The top one definitely runs faster. It finished several times faster than the second one. With the amount of data being considered, these numbers were in minutes. Look at the second one – it’s doing Nested Loops, across 780,000 rows! That’s not generally recommended at all. That’s “Go and make yourself a coffee” time. In this case, it was about six or seven minutes. The faster one finished in about a minute. But in SSIS-land, things are different. The particular data flow that was consuming this data was significant. It was being pumped into a Script Component to process each row based on previous rows, creating about a dozen different flows. The data flow would take roughly ten minutes to run – ten minutes from when the data first appeared. The query that completes faster – chosen by the Query Optimizer with no hints, based on accurate statistics (rather than pretending the numbers are smaller) – would take a minute to start getting the data into SSIS, at which point the ten-minute flow would start, taking eleven minutes to complete. The query that took longer – chosen by the Query Optimizer pretending it only wanted the first 10,000 rows – would take only ten seconds to fill the first buffer. Despite the fact that it might have taken the database another six or seven minutes to get the data out, SSIS didn’t care. Every time it wanted the next buffer of data, it was already available, and the whole process finished in about ten minutes and ten seconds. When debugging SSIS, you run the package, and sit there waiting to see the Debug information start appearing. You look for the numbers on the data flow, and seeing operators going Yellow and Green. Without the hint, I’d sit there for a minute. With the hint, just ten seconds. You can imagine which one I preferred. By adding this hint, it felt like a magic wand had been waved across the query, to make it run several times faster. It wasn’t the case at all – but it felt like it to SSIS.

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • Know More About Oracle Row Lock

    - by Liu Maclean(???)
    ??????Oracle??????????row lock,??ORACLE????????????????????,row lock???????????????????????????????,??Server Process?pin????block buffer????????? ????????,?process A ??update???????? Z?????????, ???????rollback???commit;??Process B??????DML??, ???????rowid???? Z???, ???????????process A????????ITL???,????????cleanout??,????????row???????????commit, ???????Process B????”enq: TX – row lock contention”??????? ????Process B????????????? ?????????Process A???????row,??Process B???????”enq: TX – row lock contention”???? ????????  ????????: SESSION A: SQL> select * from v$version; BANNER ---------------------------------------------------------------- Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bi PL/SQL Release 10.2.0.5.0 - Production CORE    10.2.0.5.0      Production TNS for Linux: Version 10.2.0.5.0 - Production NLSRTL Version 10.2.0.5.0 - Production SQL> select * from global_name; GLOBAL_NAME -------------------------------------------------------------------------------- www.oracledatabase12g.com SQL> create table maclean_lock(t1 int); Table created. SQL> insert into maclean_lock values (1); 1 row created. SQL> commit; Commit complete. SQL> select dbms_rowid.rowid_block_number(rowid),dbms_rowid.rowid_relative_fno(rowid) from maclean_lock; DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) ------------------------------------ ------------------------------------                                67642                                    1 SQL>  select distinct sid from v$mystat;        SID ----------        142 SQL> select pid,spid from v$process where addr = ( select paddr from v$session where sid=(select distinct sid from v$mystat));        PID SPID ---------- ------------         17 15636 ??SESSION A ????savepoint ,?update ?????????         SQL>  savepoint NONLOCK; Savepoint created. SQL> select * From v$Lock where sid=142; no rows selected SQL> set linesize 140 pagesize 1400 SQL>  update maclean_lock set t1=t1+2; 1 row updated. SQL> select * From v$Lock where sid=142; ADDR             KADDR                   SID TY        ID1        ID2      LMODE    REQUEST      CTIME      BLOCK ---------------- ---------------- ---------- -- ---------- ---------- ---------- ---------- ---------- ---------- 0000000091FC69F0 0000000091FC6A18        142 TM      55829          0          3          0          6          0 00000000914B4008 00000000914B4040        142 TX     393232        609          6          0          6          0         SQL> select dump(3,16) from dual; DUMP(3,16) -------------------------------------------------------------------------------- Typ=2 Len=2: c1,4 ALTER SYSTEM DUMP DATAFILE 1 BLOCK 67642;  Object id on Block? Y  seg/obj: 0xda16  csc: 0x00.234718  itc: 2  flg: O  typ: 1 - DATA      fsl: 0  fnx: 0x0 ver: 0x01  Itl           Xid                  Uba         Flag  Lck        Scn/Fsc 0x01   0x000a.00f.000001e0  0x00800075.02a6.29  C---    0  scn 0x0000.00234711 0x02   0x0007.018.000001fe  0x0080065c.017a.02  ----    1  fsc 0x0000.00000000 data_block_dump,data header at 0x81d185c =============== tsiz: 0x1fa0 hsiz: 0x14 pbl: 0x081d185c bdba: 0x0041083a      76543210 flag=-------- ntab=1 nrow=1 frre=-1 fsbo=0x14 fseo=0x1f9a avsp=0x1f83 tosp=0x1f83 0xe:pti[0]      nrow=1  offs=0 0x12:pri[0]     offs=0x1f9a block_row_dump: tab 0, row 0, @0x1f9a tl: 6 fb: --H-FL-- lb: 0x2  cc: 1 col  0: [ 2]  c1 04 end_of_block_dump ?? BLOCK DUMP ???? ??????XID=0x0007.018.000001fe ?transaction?? lb:0x1 ??SESSION B ,?????UPDATE?? ???enq: TX - row lock contention ?? SQL> select distinct sid from v$mystat;        SID ----------        140 SQL> select pid,spid from v$process where addr = ( select paddr from v$session where sid=(select distinct sid from v$mystat));        PID SPID ---------- ------------         24 15652 SQL> alter system set "_trace_events"='10000-10999:255:24'; System altered.         SQL> update maclean_lock set t1=t1+2; select * From v$Lock where sid=142 or sid=140 order by sid; SESSION C: SQL> select * From v$Lock where sid=142 or sid=140 order by sid; ADDR             KADDR                   SID TY        ID1        ID2      LMODE    REQUEST      CTIME      BLOCK ---------------- ---------------- ---------- -- ---------- ---------- ---------- ---------- ---------- ---------- 0000000091FC6B10 0000000091FC6B38        140 TM      55829          0          3          0         84          0 00000000924F4A58 00000000924F4A78        140 TX     458776        510          0          6         84          0 00000000914B51E8 00000000914B5220        142 TX     458776        510          6          0        312          1 0000000091FC69F0 0000000091FC6A18        142 TM      55829          0          3          0        312          0 ???? SESSION B SID=140 ?SESSION A ?TX ENQUEUE ?X mode?REQUEST SQL> oradebug dump systemstate 266; Statement processed. SESSION B waiter's enqueue lock       SO: 0x924f4a58, type: 5, owner: 0x92bb8dc8, flag: INIT/-/-/0x00       (enqueue) TX-00070018-000001FE    DID: 0001-0018-00000022       lv: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  res_flag: 0x6       req: X, lock_flag: 0x0, lock: 0x924f4a78, res: 0x925617c0       own: 0x92b76be0, sess: 0x92b76be0, proc: 0x92a737a0, prv: 0x925617e0 TX-00070018-000001FE=> TX 458776 510 SESSION A owner's enqueue lock       SO: 0x914b51e8, type: 40, owner: 0x92b796d0, flag: INIT/-/-/0x00       (trans) flg = 0x1e03, flg2 = 0xc0000, prx = 0x0, ros = 2147483647 bsn = 0xed5 bndsn = 0xee7 spn = 0xef7       efd = 3       file:xct.c lineno:1179       DID: 0001-0011-000000C2       parent xid: 0x0000.000.00000000       env: (scn: 0x0000.00234718  xid: 0x0007.018.000001fe  uba: 0x0080065c.017a.02  statement num=0  parent xid: xid: 0x0000.000.00000000  scn: 0x00 00.00234718 0sch: scn: 0x0000.00000000)       cev: (spc = 7818  arsp = 914e8310  ubk tsn: 1 rdba: 0x0080065c  useg tsn: 1 rdba: 0x00800069             hwm uba: 0x0080065c.017a.02  col uba: 0x00000000.0000.00             num bl: 1 bk list: 0x91435070)             cr opc: 0x0 spc: 7818 uba: 0x0080065c.017a.02       (enqueue) TX-00070018-000001FE    DID: 0001-0011-000000C2       lv: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  res_flag: 0x6       mode: X, lock_flag: 0x0, lock: 0x914b5220, res: 0x925617c0       own: 0x92b796d0, sess: 0x92b796d0, proc: 0x92a6ffd8, prv: 0x925617d0        xga: 0x8b7c6d40, heap: UGA       Trans IMU st: 2 Pool index 65535, Redo pool 0x914b58d0, Undo pool 0x914b59b8       Redo pool range [0x86de640 0x86de640 0x86e0e40]       Undo pool range [0x86dbe40 0x86dbe40 0x86de640]         ----------------------------------------         SO: 0x91435070, type: 39, owner: 0x914b51e8, flag: -/-/-/0x00         (List of Blocks) next index = 1         index   itli   buffer hint   rdba       savepoint         -----------------------------------------------------------             0      2   0x647f1fc8    0x41083a     0xee7 ?SESSION A? ROLLBACK ?savepoint: SQL> rollback to NONLOCK; Rollback complete. ????savepoint ??update??????? ??UPDATE???????? ROLLBACK: SQL> select * From v$Lock where sid=142 or sid=140; ADDR             KADDR                   SID TY        ID1        ID2      LMODE    REQUEST      CTIME      BLOCK ---------------- ---------------- ---------- -- ---------- ---------- ---------- ---------- ---------- ---------- 00000000924F4A58 00000000924F4A78        140 TX     458776        510          0          6        822          0 0000000091FC6B10 0000000091FC6B38        140 TM      55829          0          3          0        822          0 00000000914B51E8 00000000914B5220        142 TX     458776        510          6          0       1050          1 ???? SESSION A 142 ???SAVEPOINT ???????TM LOCK ????? ROLLBACK TO SAVEPOINT?????SESSION???TX LOCK!!!! ??????SESSION 142???TX ID1=458776 ID2=510, ????ROLLBACK TO SAVEPOINT?????????ABORT TRANSACTION ?? SESSION B  SID=140??  SESSION A ?? , ?????????SESSION B? update???HANG?? ?????????CACHE?????:  Object id on Block? Y  seg/obj: 0xda16  csc: 0x00.2347b7  itc: 2  flg: O  typ: 1 - DATA      fsl: 0  fnx: 0x0 ver: 0x01  Itl           Xid                  Uba         Flag  Lck        Scn/Fsc 0x01   0x000a.00f.000001e0  0x00800075.02a6.29  C---    0  scn 0x0000.00234711 0x02   0x0000.000.00000000  0x00000000.0000.00  ----    0  fsc 0x0000.00000000 data_block_dump,data header at 0x745d85c =============== tsiz: 0x1fa0 hsiz: 0x14 pbl: 0x0745d85c bdba: 0x0041083a      76543210 flag=-------- ntab=1 nrow=1 frre=-1 fsbo=0x14 fseo=0x1f9a avsp=0x1f83 tosp=0x1f83 0xe:pti[0]      nrow=1  offs=0 0x12:pri[0]     offs=0x1f9a block_row_dump: tab 0, row 0, @0x1f9a tl: 6 fb: --H-FL-- lb: 0x0  cc: 1 col  0: [ 2]  c1 02 end_of_block_dump ???? ITL=0x02? ?????????,col  0: [ 2]  c1 02 ????????? ?????????SESSION D ,??????row lock?? ?UPDATE???????? SESSION D: SQL> update maclean_lock set t1=t1+2; 1 row updated. SQL> rollback; Rollback complete. ??SESSION B ??????????? ?????ORACLE????????, ??????????? TX lock?? row lock , ????????2??? row lock?????????, ?TX lock????????ENQUEUE LOCK???? ?????????PROCESS K?DML???????????????????????,??????????TX LOCK, ????PROCESS Z?????????????????????????ROW LOCK????????, ???????OLTP?????????????????????? ??ROW LOCK?Release ??????TX?ENQUEUE LOCK,?????????Process J ????????????, Process K??????????? ,Process K?????????,???row piece?lb??0x0 ,?????ITL, Process Z???ITL???????Process J????XID,?????Process J?????TX lock, PROCESS K ???TX resource?Enqueue Waiter Linked List?????X mode(exclusive)?enqueue lock? ???Process J??TX lock?,Process J?????TX resource?Enqueue Waiter Linked List ???Process K??????,??POST?????Process K? TX lock??????, ???????row lock???????,????????? ?????????? ?????: SESSION A ???PID =17 ?????????????????? SESSION B ???PID =24 ??????? "_trace_events"='10000-10999:255:24';  KST trace ??????? Server Process??? SESSION A PID=17  ?? acqure?SX mode???TM Lock ,?? ????Transaction?????UNDO SEGMENT 7,???XID 7.24.510, ?acquire ?X mode? TX-00070018-000001fe ? ?????? 00070018-000001fe ???? 7- 24 - 510? XID ? 781F4B8A:007A569C    17   142 10704  83 ksqgtl: acquire TM-0000da15-00000000 mode=SX flags=GLOBAL|XACT why="contention" 781F4B92:007A569D    17   142 10704  19 ksqgtl: SUCCESS 781F4BB3:007A569E    17   142 10812   2 0x000000000041083A 0x0000000000000000 0x0000000000234717 781F4BBA:007A569F    17   142 10812   3 0x0000000000000000 0x0000000000000000 0x0000000000000000 781F4BC0:007A56A0    17   142 10812   4 0x0000000000000000 0x0000000000000000 0x0000000000000000 781F4BD3:007A56A1    17   142 10812   5 0x000000000041083A 0x0000000000000000 0x0000000000000000 781F4BFE:007A56A2    17   142 10811   1 0x000000000041083A 0x0000000000000000 0x0000000000234711 0x0000000000000002 781F4C06:007A56A3    17   142 10811   2 0x000000000041083A 0x0000000000000000 0x0000000000234718 0x00007FA074EDA560 781F4C26:007A56A4    17   142 10813   1 ktubnd: Bind usn 7 nax 1 nbx 0 lng 0 par 0 781F4C43:007A56A5    17   142 10813   2 ktubnd: Txn Bound xid: 7.24.510 781F4C4A:007A56A6    17   142 10704  83 ksqgtl: acquire TX-00070018-000001fe mode=X flags=GLOBAL|XACT why="contention" 781F4C51:007A56A7    17   142 10704  19 ksqgtl: SUCCESS ?????????? ???????? 781F4CBF:007A56A8    17   142 10005   1 KSL WAIT BEG [SQL*Net message to client] 1650815232/0x62657100 1/0x1 0/0x0 781F4CCC:007A56A9    17   142 10005   2 KSL WAIT END [SQL*Net message to client] 1650815232/0x62657100 1/0x1 0/0x0 time=13 781F4CDE:007A56AA    17   142 10005   1 KSL WAIT BEG [SQL*Net message from client] 1650815232/0x62657100 1/0x1 0/0x0 786BD85D:007A57E0    17   142 10005   2 KSL WAIT END [SQL*Net message from client] 1650815232/0x62657100 1/0x1 0/0x0 time=5016447 786BD966:007A57E1    17   142 10005   1 KSL WAIT BEG [SQL*Net message to client] 1650815232/0x62657100 1/0x1 0/0x0 786BD96E:007A57E2    17   142 10005   2 KSL WAIT END [SQL*Net message to client] 1650815232/0x62657100 1/0x1 0/0x0 time=8 SESSION B ???PID =24  ,??????? SX mode? TM lock,??row lock? acquire X mode?TX-00070018-000001fe ksqgtl: acquire TM-0000da15-00000000 mode=SX flags=GLOBAL|XACT why="contention" ksqgtl: SUCCESS 0x000000000041083A 0x0000000000000000 0x00000000002354F8 0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000 0x000000000041083A 0x0000000000000000 0x00000000002354F8 0x0000000000000001 0x000000000041083A 0x0000000000000000 0x00000000002354F8 0x0000000008A63780 0x0000000000000001 0x0000000000800861 0x0000000000000241 0x0000000000000001 0x000000000041083A 0x0000000000000001 0x0000000000000001 0x000000000041083A 0x0000000000000000 0x00000000002354F9 0x0000000000000002 ksqgtl: acquire TX-00070018-000001fe mode=X flags=GLOBAL|LONG why="row lock contention" C4048EBD:007F52B6    24   140 10005   2 KSL WAIT END [enq: TX - row lock contention] 1415053318/0x54580006 458776/0x70018 510/0x1fe time=2929879 C4048ED4:007F52B7    24   140 10005   1 KSL WAIT BEG [enq: TX - row lock contention] 1415053318/0x54580006 458776/0x70018 510/0x1fe C43146CA:007F535E    24   140 10005   2 KSL WAIT END [enq: TX - row lock contention] 1415053318/0x54580006 458776/0x70018 510/0x1fe time=2930676 ????????? ,PID=24 ??????ksqcmi???????? deadlock C43146D9:007F535F    24   140 10704 134 ksqcmi: performing local deadlock detection on TX-00070018-000001fe C43146F8:007F5360    24   140 10704 150 ksqcmi: deadlock not detected on TX-00070018-000001fe ?? ??? PID 17 ??ROLLBACK ???? ,????????: PID 17 ROLLBACK; D7A495BB:007F9D3E    17   142 10005   4 KSL POST SENT postee=24 loc='ksqrcl' id1=0 id2=0 name=   type=0 D7A495D8:007F9D3F    17   142 10444  12 ABORT TRANSACTION - xid: 0x0007.018.000001fe ??  PID 17 ??? TX resource?Enqueue Waiter linked List ???PID 24???,????KSL POST SENT ?? PID 24, ???ksqrcl???ENQUEUE LOCK ?PID 24??????KSL POST (KSL POST RCVD poster=17), ?ksqgtl???? TX-00070018-000001fe ?? ksqrcl??, ??PID 24???????? TX lock?USN ,??????? USN 3 XID 3.11.582 ,???acquire TX-0003000b-00000246 D7A49616:007F9D41    24   140 10005   3 KSL POST RCVD poster=17 loc='ksqrcl' id1=0 id2=0 name=   type=0 fac#=0 facpost=1 D7A4961C:007F9D42    24   140 10704  19 ksqgtl: SUCCESS D7A4967D:007F9D43    24   140 10704 117 ksqrcl: release TX-00070018-000001fe mode=X D7A496A5:007F9D44    24   140 10813   1 ktubnd: Bind usn 3 nax 1 nbx 0 lng 0 par 0 D7A496C2:007F9D45    24   140 10813   2 ktubnd: Txn Bound xid: 3.11.582 D7A496C7:007F9D46    24   140 10704  83 ksqgtl: acquire TX-0003000b-00000246 mode=X flags=GLOBAL|XACT why="contention" D7A496E4:007F9D47    24   140 10704  19 ksqgtl: SUCCESS ROW LOCK?Release ??????TX?ENQUEUE LOCK,?????????Process J ????????????, Process K??????????? ,Process K?????????,???row piece?lb??0×0 ,?????ITL,Process Z???ITL???????Process J????XID,?????Process J?????TX lock,PROCESS K ???TX resource?Enqueue Waiter Linked List?????X mode(exclusive)?enqueue lock? ???Process J??TX lock?,Process J?????TX resource?Enqueue Waiter Linked List ???Process K??????,??POST?????Process K? TX lock??????,???????row lock???????,?????????

    Read the article

  • Setting useLegacyV2RuntimeActivationPolicy At Runtime

    - by Reed
    Version 4.0 of the .NET Framework included a new CLR which is almost entirely backwards compatible with the 2.0 version of the CLR.  However, by default, mixed-mode assemblies targeting .NET 3.5sp1 and earlier will fail to load in a .NET 4 application.  Fixing this requires setting useLegacyV2RuntimeActivationPolicy in your app.Config for the application.  While there are many good reasons for this decision, there are times when this is extremely frustrating, especially when writing a library.  As such, there are (rare) times when it would be beneficial to set this in code, at runtime, as well as verify that it’s running correctly prior to receiving a FileLoadException. Typically, loading a pre-.NET 4 mixed mode assembly is handled simply by changing your app.Config file, and including the relevant attribute in the startup element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <supportedRuntime version="v4.0"/> </startup> </configuration> .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } This causes your application to run correctly, and load the older, mixed-mode assembly without issues. For full details on what’s happening here and why, I recommend reading Mark Miller’s detailed explanation of this attribute and the reasoning behind it. Before I show any code, let me say: I strongly recommend using the official approach of using app.config to set this policy. That being said, there are (rare) times when, for one reason or another, changing the application configuration file is less than ideal. While this is the supported approach to handling this issue, the CLR Hosting API includes a means of setting this programmatically via the ICLRRuntimeInfo interface.  Normally, this is used if you’re hosting the CLR in a native application in order to set this, at runtime, prior to loading the assemblies.  However, the F# Samples include a nice trick showing how to load this API and bind this policy, at runtime.  This was required in order to host the Managed DirectX API, which is built against an older version of the CLR. This is fairly easy to port to C#.  Instead of a direct port, I also added a little addition – by trapping the COM exception received if unable to bind (which will occur if the 2.0 CLR is already bound), I also allow a runtime check of whether this property was setup properly: public static class RuntimePolicyHelper { public static bool LegacyV2RuntimeEnabledSuccessfully { get; private set; } static RuntimePolicyHelper() { ICLRRuntimeInfo clrRuntimeInfo = (ICLRRuntimeInfo)RuntimeEnvironment.GetRuntimeInterfaceAsObject( Guid.Empty, typeof(ICLRRuntimeInfo).GUID); try { clrRuntimeInfo.BindAsLegacyV2Runtime(); LegacyV2RuntimeEnabledSuccessfully = true; } catch (COMException) { // This occurs with an HRESULT meaning // "A different runtime was already bound to the legacy CLR version 2 activation policy." LegacyV2RuntimeEnabledSuccessfully = false; } } [ComImport] [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)] [Guid("BD39D1D2-BA2F-486A-89B0-B4B0CB466891")] private interface ICLRRuntimeInfo { void xGetVersionString(); void xGetRuntimeDirectory(); void xIsLoaded(); void xIsLoadable(); void xLoadErrorString(); void xLoadLibrary(); void xGetProcAddress(); void xGetInterface(); void xSetDefaultStartupFlags(); void xGetDefaultStartupFlags(); [MethodImpl(MethodImplOptions.InternalCall, MethodCodeType = MethodCodeType.Runtime)] void BindAsLegacyV2Runtime(); } } Using this, it’s possible to not only set this at runtime, but also verify, prior to loading your mixed mode assembly, whether this will succeed. In my case, this was quite useful – I am working on a library purely for internal use which uses a numerical package that is supplied with both a completely managed as well as a native solver.  The native solver uses a CLR 2 mixed-mode assembly, but is dramatically faster than the pure managed approach.  By checking RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully at runtime, I can decide whether to enable the native solver, and only do so if I successfully bound this policy. There are some tricks required here – To enable this sort of fallback behavior, you must make these checks in a type that doesn’t cause the mixed mode assembly to be loaded.  In my case, this forced me to encapsulate the library I was using entirely in a separate class, perform the check, then pass through the required calls to that class.  Otherwise, the library will load before the hosting process gets enabled, which in turn will fail. This code will also, of course, try to enable the runtime policy before the first time you use this class – which typically means just before the first time you check the boolean value.  As a result, checking this early on in the application is more likely to allow it to work. Finally, if you’re using a library, this has to be called prior to the 2.0 CLR loading.  This will cause it to fail if you try to use it to enable this policy in a plugin for most third party applications that don’t have their app.config setup properly, as they will likely have already loaded the 2.0 runtime. As an example, take a simple audio player.  The code below shows how this can be used to properly, at runtime, only use the “native” API if this will succeed, and fallback (or raise a nicer exception) if this will fail: public class AudioPlayer { private IAudioEngine audioEngine; public AudioPlayer() { if (RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully) { // This will load a CLR 2 mixed mode assembly this.audioEngine = new AudioEngineNative(); } else { this.audioEngine = new AudioEngineManaged(); } } public void Play(string filename) { this.audioEngine.Play(filename); } } Now – the warning: This approach works, but I would be very hesitant to use it in public facing production code, especially for anything other than initializing your own application.  While this should work in a library, using it has a very nasty side effect: you change the runtime policy of the executing application in a way that is very hidden and non-obvious.

    Read the article

  • The challenge of communicating externally with IRM secured content

    - by Simon Thorpe
    I am often asked by customers about how they handle sending IRM secured documents to external parties. Their concern is that using IRM to secure sensitive information they need to share outside their business, is troubled with the inability for third parties to install the software which enables them to gain access to the information. It is a very legitimate question and one i've had to answer many times in the past 10 years whilst helping customers plan successful IRM deployments. The operating system does not provide the required level of content security The problem arises from what IRM delivers, persistent security to your sensitive information where ever it resides and whenever it is in use. Oracle IRM gives customers an array of features that help ensure sensitive information in an IRM document or email is always protected and only accessed by authorized users using legitimate applications. Examples of such functionality are; Control of the clipboard, either by disabling completely in the opened document or by allowing the cut and pasting of information between secured IRM documents but not into insecure applications. Protection against programmatic access to the document. Office documents and PDF documents have the ability to be accessed by other applications and scripts. With Oracle IRM we have to protect against this to ensure content cannot be leaked by someone writing a simple program. Securing of decrypted content in memory. At some point during the process of opening and presenting a sealed document to an end user, we must decrypt it and give it to the application (Adobe Reader, Microsoft Word, Excel etc). This process must be secure so that someone cannot simply get access to the decrypted information. The operating system alone just doesn't have the functionality to deliver these types of features. This is why for every IRM technology there must be some extra software installed and typically this software requires administrative rights to do so. The fact is that if you want to have very strong security and access control over a document you are going to send to someone who is beyond your network infrastructure, there must be some software to provide that functionality. Simple installation with Oracle IRM The software used to control access to Oracle IRM sealed content is called the Oracle IRM Desktop. It is a small, free piece of software roughly about 12mb in size. This software delivers functionality for everything a user needs to work with an Oracle IRM solution. It provides the functionality for all formats we support, the storage and transparent synchronization of user rights and unique to Oracle, the ability to search inside sealed files stored on the local computer. In Oracle we've made every technical effort to ensure that installing this software is a simple as possible. In situations where the user's computer is part of the enterprise, this software is typically deployed using existing technologies such as Systems Management Server from Microsoft or by using Active Directory Group Policies. However when sending sealed content externally, you cannot automatically install software on the end users machine. You need to rely on them to download and install themselves. Again we've made every effort for this manual install process to be as simple as we can. Starting with the small download size of the software itself to the simple installation process, most end users are able to install and access sealed content very quickly. You can see for yourself how easily this is done by walking through our free and easy self service demonstration of using sealed content. How to handle objections and ensure there is value However the fact still remains that end users may object to installing, or may simply be unable to install the software themselves due to lack of permissions. This is often a problem with any technology that requires specialized software to access a new type of document. In Oracle, over the past 10 years, we've learned many ways to get over this barrier of getting software deployed by external users. First and I would say of most importance, is the content MUST have some value to the person you are asking to install software. Without some type of value proposition you are going to find it very difficult to get past objections to installing the IRM Desktop. Imagine if you were going to secure the weekly campus restaurant menu and send this to contractors. Their initial response will be, "why on earth are you asking me to download some software just to access your menu!?". A valid objection... there is no value to the user in doing this. Now consider the scenario where you are sending one of your contractors their employment contract which contains their address, social security number and bank account details. Are they likely to take 5 minutes to install the IRM Desktop? You bet they are, because there is real value in doing so and they understand why you are doing it. They want their personal information to be securely handled and a quick download and install of some software is a small task in comparison to dealing with the loss of this information. Be clear in communicating this value So when sending sealed content to people externally, you must be clear in communicating why you are using an IRM technology and why they need to install some software to access the content. Do not try and avoid the issue, you must be clear and upfront about it. In doing so you will significantly reduce the "I didn't know I needed to do this..." responses and also gain respect for being straight forward. One customer I worked with, 6 months after the initial deployment of Oracle IRM, called me panicking that the partner they had started to share their engineering documents with refused to install any software to access this highly confidential intellectual property. I explained they had to communicate to the partner why they were doing this. I told them to go back with the statement that "the company takes protecting its intellectual property seriously and had decided to use IRM to control access to engineering documents." and if the partner didn't respect this decision, they would find another company that would. The result? A few days later the partner had made the Oracle IRM Desktop part of their approved list of software in the company. Companies are successful when sending sealed content to third parties We have many, many customers who send sensitive content to third parties. Some customers actually sell access to Oracle IRM protected content and therefore 99% of their users are external to their business, one in particular has sold content to hundreds of thousands of external users. Oracle themselves use the technology to secure M&A documents, payroll data and security assessments which go beyond the traditional enterprise security perimeter. Pretty much every company who deploys Oracle IRM will at some point be sending those documents to people outside of the company, these customers must be successful otherwise Oracle IRM wouldn't be successful. Because our software is used by a wide variety of companies, some who use it to sell content, i've often run into people i'm sharing a sealed document with and they already have the IRM Desktop installed due to accessing content from another company. The future In summary I would say that yes, this is a hurdle that many customers are concerned about but we see much evidence that in practice, people leap that hurdle with relative ease as long as they are good at communicating the value of using IRM and also take measures to ensure end users can easily go through the process of installation. We are constantly developing new ideas to reducing this hurdle and maybe one day the operating systems will give us enough rich security functionality to have no software installation. Until then, Oracle IRM is by far the easiest solution to balance security and usability for your business. If you would like to evaluate it for yourselves, please contact us.

    Read the article

< Previous Page | 595 596 597 598 599 600 601 602 603 604 605 606  | Next Page >