Search Results

Search found 25520 results on 1021 pages for 'boost test'.

Page 6/1021 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • CakePHP Test Fixtures Drop My Tables Permanently After Running A Test Case

    - by Frank
    I'm not sure what I've done wrong in my CakePHP unit test configuration. Every time I run a test case, the model tables associated with my fixtures are missing form my test database. After running an individual test case I have to re-import my database tables using phpMyAdmin. Here are the relevant files: This is the class I'm trying to test comment.php. This table is dropped after the test. App::import('Sanitize'); class Comment extends AppModel{ public $name = 'Comment'; public $actsAs = array('Tree'); public $belongsTo = array('User' => array('fields'=>array('id', 'username'))); public $validate = array( 'text' = array( 'rule' =array('between', 1, 4000), 'required' ='true', 'allowEmpty'='false', 'message' = "You can't leave your comment text empty!") ); database.php class DATABASE_CONFIG { var $default = array( 'driver' = 'mysql', 'persistent' = false, 'host' = 'project.db', 'login' = 'projectman', 'password' = 'projectpassword', 'database' = 'projectdb', 'prefix' = '' ); var $test = array( 'driver' = 'mysql', 'persistent' = false, 'host' = 'project.db', 'login' = 'projectman', 'password' = 'projectpassword', 'database' = 'testprojectdb', 'prefix' = '' ); } My comment.test.php file. This is the table that keeps getting dropped. <?php App::import('Model', 'Comment'); class CommentTestCase extends CakeTestCase { public $fixtures = array('app.comment', 'app.user'); function start(){ $this-Comment =& ClassRegistry::init('Comment'); $this-Comment-useDbConfig = 'test_suite'; } This is my comment_fixture.php class: <?php class CommentFixture extends CakeTestFixture { var $name = "Comment"; var $import = 'Comment'; } And just in case, here is a typical test method in the CommentTestCase class function testMsgNotificationUserComment(){ $user_id = '1'; $submission_id = '1'; $parent_id = $this-Comment-commentOnModel('Submission', $submission_id, '0', $user_id, "Says: A"); $other_user_id = '2'; $msg_id = $this-Comment-commentOnModel('Submission', $submission_id, $parent_id, $other_user_id, "Says: B"); $expected = array(array('Comment'=array('id'=$msg_id, 'text'="Says: B", 'submission_id'=$submission_id, 'topic_id'='0', 'ack'='0'))); $result = $this-Comment-getMessages($user_id); $this-assertEqual($result, $expected); } I've been dealing with this for a day now and I'm starting to be put off by CakePHP's unit testing. In addition to this issue -- Servral times now I've had data inserted into by 'default' database configuration after running tests! What's going on with my configuration?!

    Read the article

  • managing library dependencies with Boost.Build and C++

    - by user931794
    I want to develop a project which can be built on a bunch of different platforms. The project code will be in C++, what's the the best way to manage libraries? I plan on using bjam as the build system because I'm going to be depending on Boost and their unit testing framework as well. The two dependent libraries are Boost itself and FLTK. The possibilities that come to mind for library management are: include build artifacts (binaries) and headers for all supported platforms in-tree include complete source for all dependent libraries in-tree, and somehow script them as dependencies A combination of 1 and 2, like node.js does with v8 inform the user that they need to build the libraries themselves and then have them on the PATH or in some special directory, like libcurl does with its dependencies What is the best approach here? The project will probably not grow beyond a few thousand lines over the next six months, but I want to make the right choice here so that I don't have to come back and switch everything around later.

    Read the article

  • How to convert an existing callback interface to use boost signals & slots

    - by the_mandrill
    I've currently got a class that can notify a number of other objects via callbacks: class Callback { virtual NodulesChanged() =0; virtual TurkiesTwisted() =0; }; class Notifier { std::vector<Callback*> m_Callbacks; void AddCallback(Callback* cb) {m_Callbacks.push(cb); } ... void ChangeNodules() { for (iterator it=m_Callbacks.begin(); it!=m_Callbacks.end(); it++) { (*it)->NodulesChanged(); } } }; I'm considering changing this to use boost's signals and slots as it would be beneficial to reduce the likelihood of dangling pointers when the callee gets deleted, among other things. However, as it stands boost's signals seems more oriented towards dealing with function objects. What would be the best way of adapting my code to still use the callback interface but use signals and slots to deal with the connection and notification aspects?

    Read the article

  • Exception handling in Boost.Asio

    - by Alex B
    Boost.Asio documentation suggests the following exception handling pattern: boost::asio::io_service io_service; ... for (;;) { try { io_service.run(); break; // run() exited normally } catch (my_exception& e) { // Deal with exception as appropriate. } } The problem with it is that the context of exception is lost at the point when it's handled. For example, if I have multiple socket sessions going on, I don't know which one caused the exception to be thrown. What would be a better way to handle the exceptions from asynchronous handlers without wrapping them in try/catch blocks?

    Read the article

  • Use boost date_time to parse and create HTTP-dates

    - by John Price
    I'm writing a kind of HTTP proxy, so I need to be able to do 3 things: Parse an HTTP-date given any of the 3 formats specified in RFC 2616, sec 3.3, Convert a file date-time to an HTTP-date string, and Output the date to a string. For reference, theses are examples of the date-times I need to parse. I will output only the first format: Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123 Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format I'm pretty sure Boost date_time can do all of this, but I'm having some trouble with number 1. Does anyone already have code to do this? Perhaps I'm not using google proficiently, but I can't find an example of how to do this with boost anywhere. Thanks for any help!

    Read the article

  • How to upgrade boost lib using apt-get?

    - by sam
    I use ubuntu 11.04. My boost version: sam@sam:~/code/ros/pcl$ apt-cache showpkg libboost-all-dev Package: libboost-all-dev Versions: 1.42.0.1ubuntu1 (/var/lib/apt/lists/tw.archive.ubuntu.com_ubuntu_dists_natty_universe_binary-amd64_Packages) (/var/lib/dpkg/status) Description Language: File: /var/lib/apt/lists/tw.archive.ubuntu.com_ubuntu_dists_natty_universe_binary-amd64_Packages MD5: 72efad05a3c79394c125b79e1d4eb3a7 Reverse Depends: libvtk5-dev,libboost-all-dev libfeel++-dev,libboost-all-dev Dependencies: 1.42.0.1ubuntu1 - libboost-dev (0 (null)) libboost-date-time-dev (0 (null)) libboost-filesystem-dev (0 (null)) libboost-graph-dev (0 (null)) libboost-iostreams-dev (0 (null)) libboost-math-dev (0 (null)) libboost-program-options-dev (0 (null)) libboost-python-dev (0 (null)) libboost-regex-dev (0 (null)) libboost-serialization-dev (0 (null)) libboost-signals-dev (0 (null)) libboost-system-dev (0 (null)) libboost-test-dev (0 (null)) libboost-thread-dev (0 (null)) libboost-wave-dev (0 (null)) Provides: 1.42.0.1ubuntu1 - Reverse Provides: sam@sam:~/code/ros/pcl$ How to upgrade boost to 1.44+ by using apt tools? Thank you~ When I run apt-add-repository,it shows: sam@sam:~/code/ros/pcl$ sudo apt-add-repository ppa:timklingt/ppa Error reading https://launchpad.net/api/1.0/~timklingt/+archive/ppa: GnuTLS recv error (-9): A TLS packet with unexpected length was received. sam@sam:~/code/ros/pcl$ How to fix it? Thank you~ I try to install libboost1.46-all-dev: sam@sam:~/code/ros/pcl$ sudo apt-get install libboost1.46-all-dev Reading package lists... Done Building dependency tree Reading state information... Done Some packages could not be installed. This may mean that you have requested an impossible situation or if you are using the unstable distribution that some required packages have not yet been created or been moved out of Incoming. The following information may help to resolve the situation: The following packages have unmet dependencies: libboost1.46-all-dev : Depends: libboost1.46-dev but it is not going to be installed Depends: libboost-date-time1.46-dev but it is not going to be installed Depends: libboost-filesystem1.46-dev but it is not going to be installed Depends: libboost-graph1.46-dev but it is not going to be installed Depends: libboost-iostreams1.46-dev but it is not going to be installed Depends: libboost-math1.46-dev but it is not going to be installed Depends: libboost-program-options1.46-dev but it is not going to be installed Depends: libboost-python1.46-dev but it is not going to be installed Depends: libboost-regex1.46-dev but it is not going to be installed Depends: libboost-serialization1.46-dev but it is not going to be installed Depends: libboost-signals1.46-dev but it is not going to be installed Depends: libboost-system1.46-dev but it is not going to be installed Depends: libboost-test1.46-dev but it is not going to be installed Depends: libboost-thread1.46-dev but it is not going to be installed Depends: libboost-wave1.46-dev but it is not going to be installed E: Broken packages sam@sam:~/code/ros/pcl$ What's these error means? And how to solve it? Thank you~

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • good/full Boot Spirit examples using version 2 syntax

    - by bpw1621
    Almost all of the examples I've gone and looked at so far from: http://boost-spirit.com/repository/applications/show_contents.php use the old syntax. I've read and re-read the actual documentation at http://www.boost.org/doc/libs/1_42_0/libs/spirit/doc/html/index.html and the examples therein. I know Joel is starting a compiler series on the blog http://boost-spirit.com/home/ but that hasn't gotten in full swing yet. Any other resources to see worked examples using some more sophisticated/involved aspects in the context of fully working applications?

    Read the article

  • resolving overloads in boost.python

    - by swarfrat
    I have a C++ class like this: class ConnectionBase { public: ConnectionBase(); template <class T> Publish(const T&); private: virtual void OnEvent(const Overload_a&) {} virtual void OnEvent(const Overload_b&) {} }; My templates & overloads are a known fixed set of types at compile time. The application code derives from ConnectionBase and overrides OnEvent for the events it cares about. I can do this because the set of types is known. OnEvent is private because the user never calls it, the class creates a thread that calls it as a callback. The C++ code works. I have wrapped this in boost.python, I can import it and publish from python. I want do create the equivalent of the following in python : class ConnectionDerived { public: ConnectionDerived(); private: virtual void OnEvent(const Overload_b&) { // application code } }; But ... since python isn't typed, and all the boost.python examples I've seen dealing with internals are on the C++ side, I'm a little puzzled as to how to do this. How do I override specific overloads?

    Read the article

  • Mocking with Boost::Test

    - by Billy ONeal
    Hello everyone :) I'm using the Boost::Test library for unit testing, and I've in general been hacking up my own mocking solutions that look something like this: //In header for clients struct RealFindFirstFile { static HANDLE FindFirst(LPCWSTR lpFileName, LPWIN32_FIND_DATAW lpFindFileData) { return FindFirstFile(lpFileName, lpFindFileData); }; }; template <typename FirstFile_T = RealFindFirstFile> class DirectoryIterator { //.. Implementation } //In unit tests (cpp) #define THE_ANSWER_TO_LIFE_THE_UNIVERSE_AND_EVERYTHING 42 struct FakeFindFirstFile { static HANDLE FindFirst(LPCWSTR lpFileName, LPWIN32_FIND_DATAW lpFindFileData) { return THE_ANSWER_TO_LIFE_THE_UNIVERSE_AND_EVERYTHING; }; }; BOOST_AUTO_TEST_CASE( MyTest ) { DirectoryIterator<FakeFindFirstFile> LookMaImMocked; //Test } I've grown frustrated with this because it requires that I implement almost everything as a template, and it is a lot of boilerplate code to achieve what I'm looking for. Is there a good method of mocking up code using Boost::Test over my Ad-hoc method? I've seen several people recommend Google Mock, but it requires a lot of ugly hacks if your functions are not virtual, which I would like to avoid. Oh: One last thing. I don't need assertions that a particular piece of code was called. I simply need to be able to inject data that would normally be returned by Windows API functions.

    Read the article

  • How to loop through a boost::mpl::list?

    - by Kyle
    This is as far as I've gotten, #include <boost/mpl/list.hpp> #include <algorithm> namespace mpl = boost::mpl; class RunAround {}; class HopUpAndDown {}; class Sleep {}; template<typename Instructions> int doThis(); template<> int doThis<RunAround>() { /* run run run.. */ return 3; } template<> int doThis<HopUpAndDown>() { /* hop hop hop.. */ return 2; } template<> int doThis<Sleep>() { /* zzz.. */ return -2; } int main() { typedef mpl::list<RunAround, HopUpAndDown, Sleep> acts; // std::for_each(mpl::begin<acts>::type, mpl::end<acts>::type, doThis<????>); return 0; }; How do I complete this? (I don't know if I should be using std::for_each, just a guess based on another answer here)

    Read the article

  • Boost lambda: Invoke method on object

    - by ckarras
    I'm looking at boost::lambda as a way to to make a generic algorithm that can work with any "getter" method of any class. The algorithm is used to detect duplicate values of a property, and I would like for it to work for any property of any class. In C#, I would do something like this: class Dummy { public String GetId() ... public String GetName() ... } IEnumerable<String> FindNonUniqueValues<ClassT> (Func<ClassT,String> propertyGetter) { ... } Example use of the method: var duplicateIds = FindNonUniqueValues<Dummy>(d => d.GetId()); var duplicateNames = FindNonUniqueValues<Dummy>(d => d.GetName()); I can get the for "any class" part to work, using either interfaces or template methods, but have not found yet how to make the "for any method" part work. Is there a way to do something similar to the "d = d.GetId()" lambda in C++ (either with or without Boost)? Alternative, more C++ian solutions to make the algorithm generic are welcome too. I'm using C++/CLI with VS2008, so I can't use C++0x lambdas.

    Read the article

  • Autoconf macro for Boost MPI?

    - by baol
    I'm searching an autoconf macro to use in my configure.ac that checks for Boost MPI. It's not hard to find a couple of them on the Internet but none of the one I tried worked as expected. What ax_boost_mpi.m4 do you use?

    Read the article

  • boost::multi_array resize exception?

    - by Glen
    I'm trying to figure out if the boost::multi_array constructor or resize method can throw a bad_alloc exception (or some other exception indicating the allocation or resize failed). I can't find this information in the documentation anywhere.

    Read the article

  • Error while excuting a simple boost thread program

    - by Eternal Learner
    Hi All, Could you tell mw what is the problem with the below boost::thread program #include<iostream> #include<boost/thread/thread.hpp> boost::mutex mutex; class A { public: A() : a(0) {} void operator()() { boost::mutex::scoped_lock lock(mutex); } private: int a; }; int main() { boost::thread thr1(A()); boost::thread thr2(A()); thr1.join(); thr2.join(); } I get the error message: error: request for member 'join' in 'thr1', which is of non-class type 'boost::thread()(A ()())' BoostThread2.cpp:30: error: request for member 'join' in 'thr2', which is of non-class type 'boost::thread ()(A ()())'

    Read the article

  • How can I decode the boost library naming?

    - by Sorin Sbarnea
    I tried to find out that gd means in boost library name and I only found two other people looking for the same thing. I suppose it should be a place where this is clearly documented and I would like to find it. So far I found: mt - multitheaded, get it with threading=multi gd - ??? s - ??? sgd - ???

    Read the article

  • Using Boost.Asio to get "the whole packet"

    - by wowus
    I have a TCP client connecting to my server which is sending raw data packets. How, using Boost.Asio, can I get the "whole" packet every time (asynchronously, of course)? Assume these packets can be any size up to the full size of my memory. Basically, I want to avoid creating a statically sized buffer.

    Read the article

  • Boost multi_index_container crash in release mode

    - by Zan Lynx
    I have a program that I just changed to using a boost::multi_index_container collection. After I did that and tested my code in debug mode, I was feeling pretty good about myself. However, then I compiled a release build with NDEBUG set, and the code crashed. Not immediately, but sometimes in single-threaded tests and often in multi-threaded tests. The segmentation faults happen deep inside boost insert and rotate functions related to the index updates and they are happening because a node has NULL left and right pointers. My code looks a bit like this: struct Implementation { typedef std::pair<uint32_t, uint32_t> update_pair_type; struct watch {}; struct update {}; typedef boost::multi_index_container< update_pair_type, boost::multi_index::indexed_by< boost::multi_index::ordered_unique< boost::multi_index::tag<watch>, boost::multi_index::member<update_pair_type, uint32_t, &update_pair_type::first> >, boost::multi_index::ordered_non_unique< boost::multi_index::tag<update>, boost::multi_index::member<update_pair_type, uint32_t, &update_pair_type::second> > > > update_map_type; typedef std::vector< update_pair_type > update_list_type; update_map_type update_map; update_map_type::iterator update_hint; void register_update(uint32_t watch, uint32_t update); void do_updates(uint32_t start, uint32_t end); }; void Implementation::register_update(uint32_t watch, uint32_t update) { update_pair_type new_pair( watch_offset, update_offset ); update_hint = update_map.insert(update_hint, new_pair); if( update_hint->second != update_offset ) { bool replaced _unused_ = update_map.replace(update_hint, new_pair); assert(replaced); } }

    Read the article

  • How to reduce the time of clang_complete search through boost

    - by kirill_igum
    I like using clang with vim. The one problem that I always have is that whenever I include boost, clang goes through boost library every time I put "." after a an object name. It takes 5-10 seconds. Since I don't make changes to boost headers, is there a way to cache the search through boost? If not, is there a way to remove boost from the auto-completion search? update (1) in response to answer by adaszko after :let g:clang_use_library = 1 I type a name of a variable. I press ^N. Vim starts to search through boost tree. it auto-completes the variable. i press "." and get the following errors: Error detected while processing function ClangComplete: line 35: Traceback (most recent call last): Press ENTER or type command to continue Error detected while processing function ClangComplete: line 35: File "<string>", line 1, in <module> Press ENTER or type command to continue Error detected while processing function ClangComplete: line 35: NameError: name 'vim' is not defined Press ENTER or type command to continue Error detected while processing function ClangComplete: line 40: E121: Undefined variable: l:res Press ENTER or type command to continue Error detected while processing function ClangComplete: line 40: E15: Invalid expression: l:res Press ENTER or type command to continue Error detected while processing function ClangComplete: line 58: E121: Undefined variable: l:res Press ENTER or type command to continue Error detected while processing function ClangComplete: line 58: E15: Invalid expression: l:res Press ENTER or type command to continue ... and there is no auto-compeltion update (2) not sure if clang_complete should take care of the issue with boost. vim without plugins does search through boost. superuser has an answer to comment out search through boost dirs with set include=^\\s*#\\s*include\ \\(<boost/\\)\\@!

    Read the article

  • Microsoft Test Manager error in displaying test steps caused by malware

    - by terje
    Sometimes the tool is blamed for errors which are not the fault of the tool – this is one such story.  It was however, not so easy to get to the bottom of it, so I hope sharing this story can help some others. One of our test developers started to get this message inside the test steps part of a test case in the MTM. saying “Could not load file or assembly ‘0 bytes from System, Version=4.0.0.0,……..” The same error came up inside Visual Studio when we opened a test case there. Then we noted a similar error on another piece of software – this error: A System.BadImageFormatException, and same message as above, but just for framework 2.0. We found this  description which pointed to a malware problem (See bottom of that post), that is a fake anti-spyware program called “Additional Guard”.  We checked the computer in question using Malwarebytes Anti-Malware tool.  It found and cleaned out 753 registry keys!!  After this cleanup operation the error was gone.  This is a great tool !  The “Additional Guard” program had been inadvertently installed, and then uninstalled afterwards, but the corrupted keys were of course not removed.  We also noted that this computer had full corporate virus scanning and malware protection, but still this nasty little thing still slipped through. Technorati Tags: Malware,BadImageFormatException,Microsoft Test Manager,Malwarebytes

    Read the article

  • Should a developer create test cases and then run through test cases

    - by Eben Roux
    I work for a company where the development manager expects a developer to create test cases before writing any code. These test cases have to then be maintained by the developers. Every-so-often a developer will be expected to run through the test cases. From this you should be able to gather that the company in question is rather small and there are no testers. Coming from a Software Architect position and having to write / execute test cases wearing my 'tester' hat is somewhat of a shock to the system. I do it anyway but it does seem to be a rather expensive exercise :) EDIT: I seem to need to elaborate here: I am not talking about unit-testing, TDD, etc. :) I am talking about that bit of testing a tester does. Once I have developed a system (with my unit tests / tdd / etc.) the software goes through a testing phase. Should a developer be that tester and developer those test cases? I think the misunderstanding may stem from the fact that developers, typically, are not involved with this type of testing and, therefore, assumed I am referring to that testing we do do: unit testing. But alas, no. I hope that clears it up.

    Read the article

  • Should devs, testers and business users have one unified test script?

    - by Carlos Jaime C. De Leon
    In development, I would normally have my own test scripts that would document the data, scenarios and execution steps that I plan to test; this is my dev test plan. When the functionality has been deployed to Test, testers test it using their own test script that they wrote. In UAT, the business user then tests using their own test plan. In retrospect, it looks like this provides a better coverage, with dev tests having a mix of black and white box testing, while testers and business users focus on black box testing. But on the other hand, this brings up distinct test cases that only are executed per stage (ie. some cases which testers thought of are only executed on Test stage) and it would like the dev missed it, which makes it a finding/bug. Is it worth consolidating the test scripts from the start? Thus using one unified test script, or is it abit difficult to do this upfront?

    Read the article

  • BOOST program_options: parsing multiple argument list.

    - by Arman
    Hello, I would like to pass the multiple arguments with positive or negative values. Is it possible to parse it? Currently I have a following initialization: vector<int> IDlist; namespace po = boost::program_options; po::options_description commands("Allowed options"); commands.add_options() ("IDlist",po::value< vector<int> >(&IDlist)->multitoken(), "Which IDs to trace: ex. --IDlist=0 1 200 -2") ("help","print help") ; and I would like to call: ./test_ids.x --IDlist=0 1 200 -2 unknown option -2 So,the program_options assumes that I am passing -2 as an another option. Can I configure the program_options in such a way that it can accept the negative integer values? Thanks Arman.

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >