Search Results

Search found 25520 results on 1021 pages for 'boost test'.

Page 12/1021 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Compilation failing - no #include - boost

    - by jwoolard
    Hi, I'm trying to compile a third-party library, but g++ is complaining about the following line: typedef boost::shared_ptr<MessageConsumer> MessageConsumerPtr; The strange thing is, there is no #include directive in the file - and it is clearly supposed to be this way; there are about 60 files with the same (or very similar) issues. Clearly if there was an #include directive referencing the relevant boost header this would compile cleanly. My question is: how can I get g++ to somehow automagically find the relevant symbol (in all instances of this issue, it is a namespace that can't be found - usually std:: or boost::) by either automatically processing the relevant header (or some other mechanism). Thanks. Edit My current g++ call looks like: g++ -fPIC -O3 -DUSING_PCH -D_REENTRANT -I/usr/include/boost -I./ -c MessageInterpreter.cpp -o MessageInterpreter.o

    Read the article

  • compiling Boost linked libraries (Ubuntu)

    - by Adam Greenhall
    I installed Boost via sudo apt-get install libboost-all-dev on the most recent version of Ubuntu. Now I want to compile a project that uses the Boost.Serialization library, which needs to be linked. I've tried many variants of the following, without success: gcc -I /usr/lib code.cpp -o compiled /usr/lib/libboost_serialization.a and gcc -I /usr/lib code.cpp -o compiled -l libboost_serialization The error message is: error: ‘split_member’ is not a member of ‘boost::serialization ` What am I missing?

    Read the article

  • XSD: how to use 'unique' & 'key'/'keyref' with element values?

    - by Koohoolinn
    I trying to use and / with element values but I just can't get it to work. If I do it with attrubute values it works like a charm. Test.xml <test:config xmlns:test="http://www.example.org/Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.example.org/Test Test.xsd "> <test:location id="id1" path="/path2"> <test:roles> <test:role>role1</test:role> <test:role>role2</test:role> <test:role>role2</test:role> <!-- DUPLICATE: FAIL VALIDATION --> </test:roles> <test:action name="action1"> <test:roles> <test:role>role1</test:role> <test:role>role1</test:role> <!-- DUPLICATE: FAIL VALIDATION --> <test:role>role3</test:role> <!-- NOT DEFINED: FAIL VALIDATION --> </test:roles> </test:action> </test:location> </test:config> I want ensure that roles are only defined once and that the roles defined under the action element are only those defined at the upper level. Test.xsd <xs:element name="config"> <xs:complexType> <xs:sequence> <xs:element ref="test:location" maxOccurs="unbounded" /> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="location" type="test:LocationType"> <xs:key name="keyRole"> <xs:selector xpath="test:roles" /> <xs:field xpath="test:role" /> </xs:key> <xs:keyref name="keyrefRole" refer="test:keyRole"> <xs:selector xpath="test:action/test:roles" /> <xs:field xpath="test:role" /> </xs:keyref> </xs:element> <xs:complexType name="LocationType"> <xs:sequence> <xs:element ref="test:roles" minOccurs="0" /> <xs:element name="action" type="test:ActionType" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> <xs:attribute name="id" type="xs:string" use="required"/> <xs:attribute name="path" type="xs:string" use="required"/> </xs:complexType> <xs:element name="roles" type="test:RolesType"> <xs:unique name="uniqueRole"> <xs:selector xpath="." /> <xs:field xpath="test:role" /> </xs:unique> </xs:element> <xs:complexType name="RolesType"> <xs:sequence> <xs:element name="role" type="xs:string" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> <xs:complexType name="ActionType"> <xs:sequence> <xs:element ref="test:roles" /> </xs:sequence> <xs:attribute name="name" type="xs:string" use="required" /> </xs:complexType> The validation fails with these messages: Description Resource Path Location Type cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyrefRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 15 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyrefRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 16 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 15 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 16 XML Problem cvc-identity-constraint.4.1: Duplicate unique value [role1] declared for identity constraint "uniqueRole" of element "roles". Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.4.1: Duplicate unique value [role1] declared for identity constraint "uniqueRole" of element "roles". Test.xml /filebrowser-ejb/src/test/resources line 15 XML Problem cvc-identity-constraint.4.2.2: Duplicate key value [role1] declared for identity constraint "keyRole" of element "location". Test.xml /filebrowser-ejb/src/test/resources line 9 XML Problem cvc-identity-constraint.4.3: Key 'keyrefRole' with value 'role3' not found for identity constraint of element 'location'. Test.xml /filebrowser-ejb/src/test/resources line 19 XML Problem If I comment out the lines that should fail, validation still fails now with these messages: Description Resource Path Location Type cvc-identity-constraint.3: Field "./test:role" of identity constraint "keyRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem cvc-identity-constraint.3: Field "./test:role" of identity constraint "uniqueRole" matches more than one value within the scope of its selector; fields must match unique values. Test.xml /filebrowser-ejb/src/test/resources line 10 XML Problem What am I doing wrong?

    Read the article

  • “It’s only test code…”

    - by Chris George
    “Let me hack this in, it’s only test code”, “Don’t worry about getting it reviewed, it’s only test code”, “It doesn’t have to be elegant or efficient, it’s only test code”… do these phrases sound familiar? Chances are if you’ve working with test automation, at one point or other you will have heard these phrases, you have probably even used them yourself! What is certain is that code written under this “it’s only test code” mantra will come back and bite you in the arse! I’ve recently encountered a case where a test was giving a false positive, therefore hiding a real product bug because that test code was very badly written. Firstly it was very difficult to understand what the test was actually trying to achieve let alone how it was doing it, and this complexity masked a simple logic error. These issues are real and they do happen. Let’s take a step back from this and look at what we are trying to do. We are writing test code that tests product code, and we do this to create a suite of tests that will help protect our software against regressions. This test code is making sure that the product behaves as it should by employing some sort of expected result verification. The simple cases of these are generally not a problem. However, automation allows us to explore more complex scenarios in many more permutations. As this complexity increases then so does the complexity of the test code. It is at this point that code which has not been architected properly will cause problems.   Keep your friends close… So, how do we make sure we are doing it right? The development teams I have worked on have always had Test Engineers working very closely with their Software Engineers. This is something that I have always tried to take full advantage of. They are coding experts! So run your ideas past them, ask for advice on how to structure your code, help you design your data structures. This may require a shift in your teams viewpoint, as contrary to this section title and folklore, Software Engineers are not actually the mortal enemy of Test Engineers. As time progresses, and test automation becomes more and more ingrained in what we do, the two roles are converging more than ever. Over the 16 years I have spent as a Test Engineer, I have seen the grey area between the two roles grow significantly larger. This serves to strengthen the relationship and common bond between the two roles which helps to make test code activities so much easier!   Pair for the win Possibly the best thing you could do to write good test code is to pair program on the task. This will serve a few purposes. you will get the benefit of the Software Engineers knowledge and experience the Software Engineer will gain knowledge on the testing process. Sharing the love is a wonderful thing! two pairs of eyes are always better than one… And so are two brains. Between the two of you, I will guarantee you will derive more useful test cases than if it was just one of you.   Code reviews Another policy which certainly pays dividends is the practice of code reviews. By having one of your peers review your code before you commit it serves two purposes. Firstly, it forces you to explain your code. Just the act of doing this will often pick up errors in your code. Secondly, it gets yet another pair of eyes on your code! I cannot stress enough how important code reviews are. The benefits they offer apply as much to product code as test code. In short, Software and Test Engineers should all be doing them! It can be extended even further by getting test code reviewed by a Software Engineer and a Test Engineer, and likewise product code. This serves to keep both functions in the loop with changes going on within your code base.   Learn from your devs I briefly touched on this earlier but I’d like to go into more detail here. Pairing with your Software Engineers when writing your test code is such an amazing opportunity to improve your coding skills. As I sit here writing this article waiting to be called into court for jury service, it reminds me that it takes a lot of patience to be a Test Engineer, almost as much as it takes to be a juror! However tempting it is to go rushing in and start writing your automated tests, resist that urge. Discuss what you want to achieve then talk through the approach you’re going to take. Then code it up together. I find it really enlightening to ask questions like ‘is there a better way to do this?’ Or ‘is this how you would code it?’ The latter question, especially, is where I learn the most. I’ve found that most Software Engineers will be reluctant to show you the ‘right way’ to code something when writing tests because they perceive the ‘right way’ to be too complicated for the Test Engineer (e.g. not mentioning LINQ and instead doing something verbose). So by asking how THEY would code it, it unleashes their true dev-ness and advanced code usually ensues! I would like to point out, however, that you don’t have to accept their method as the final answer. On numerous occasions I have opted for the more simple/verbose solution because I found the code written by the Software Engineer too advanced and therefore I would find it unreadable when I return to the code in a months’ time! Always keep the target audience in mind when writing clever code, and in my case that is mostly Test Engineers.  

    Read the article

  • Testing Workflows &ndash; Test-First

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-first.aspxThis is the second of two posts on some common strategies for approaching the job of writing tests.  The previous post covered test-after workflows where as this will focus on test-first.  Each workflow presented is a method of attack for adding tests to a project.  The more tools in your tool belt the better.  So here is a partial list of some test-first methodologies. Ping Pong Ping Pong is a methodology commonly used in pair programing.  One developer will write a new failing test.  Then they hand the keyboard to their partner.  The partner writes the production code to get the test passing.  The partner then writes the next test before passing the keyboard back to the original developer. The reasoning behind this testing methodology is to facilitate pair programming.  That is to say that this testing methodology shares all the benefits of pair programming, including ensuring multiple team members are familiar with the code base (i.e. low bus number). Test Blazer Test Blazing, in some respects, is also a pairing strategy.  The developers don’t work side by side on the same task at the same time.  Instead one developer is dedicated to writing tests at their own desk.  They write failing test after failing test, never touching the production code.  With these tests they are defining the specification for the system.  The developer most familiar with the specifications would be assigned this task. The next day or later in the same day another developer fetches the latest test suite.  Their job is to write the production code to get those tests passing.  Once all the tests pass they fetch from source control the latest version of the test project to get the newer tests. This methodology has some of the benefits of pair programming, namely lowering the bus number.  This can be good way adding an extra developer to a project without slowing it down too much.  The production coder isn’t slowed down writing tests.  The tests are in another project from the production code, so there shouldn’t be any merge conflicts despite two developers working on the same solution. This methodology is also a good test for the tests.  Can another developer figure out what system should do just by reading the tests?  This question will be answered as the production coder works there way through the test blazer’s tests. Test Driven Development (TDD) TDD is a highly disciplined practice that calls for a new test and an new production code to be written every few minutes.  There are strict rules for when you should be writing test or production code.  You start by writing a failing (red) test, then write the simplest production code possible to get the code working (green), then you clean up the code (refactor).  This is known as the red-green-refactor cycle. The goal of TDD isn’t the creation of a suite of tests, however that is an advantageous side effect.  The real goal of TDD is to follow a practice that yields a better design.  The practice is meant to push the design toward small, decoupled, modularized components.  This is generally considered a better design that large, highly coupled ball of mud. TDD accomplishes this through the refactoring cycle.  Refactoring is only possible to do safely when tests are in place.  In order to use TDD developers must be trained in how to look for and repair code smells in the system.  Through repairing these sections of smelly code (i.e. a refactoring) the design of the system emerges. For further information on TDD, I highly recommend the series “Is TDD Dead?”.  It discusses its pros and cons and when it is best used. Acceptance Test Driven Development (ATDD) Whereas TDD focuses on small unit tests that concentrate on a small piece of the system, Acceptance Tests focuses on the larger integrated environment.  Acceptance Tests usually correspond to user stories, which come directly from the customer. The unit tests focus on the inputs and outputs of smaller parts of the system, which are too low level to be of interest to the customer. ATDD generally uses the same tools as TDD.  However, ATDD uses fewer mocks and test doubles than TDD. ATDD often complements TDD; they aren’t competing methods.  A full test suite will usually consist of a large number of unit (created via TDD) tests and a smaller number of acceptance tests. Behaviour Driven Development (BDD) BDD is more about audience than workflow.  BDD pushes the testing realm out towards the client.  Developers, managers and the client all work together to define the tests. Typically different tooling is used for BDD than acceptance and unit testing.  This is done because the audience is not just developers.  Tools using the Gherkin family of languages allow for test scenarios to be described in an English format.  Other tools such as MSpec or FitNesse also strive for highly readable behaviour driven test suites. Because these tests are public facing (viewable by people outside the development team), the terminology usually changes.  You can’t get away with the same technobabble you can with unit tests written in a programming language that only developers understand.  For starters, they usually aren’t called tests.  Usually they’re called “examples”, “behaviours”, “scenarios”, or “specifications”. This may seem like a very subtle difference, but I’ve seen this small terminology change have a huge impact on the acceptance of the process.  Many people have a bias that testing is something that comes at the end of a project.  When you say we need to define the tests at the start of the project many people will immediately give that a lower priority on the project schedule.  But if you say we need to define the specification or behaviour of the system before we can start, you’ll get more cooperation.   Keep these test-first and test-after workflows in your tool belt.  With them you’ll be able to find new opportunities to apply them.

    Read the article

  • Help with Boost Spirit ASTs

    - by Decmac04
    I am writing a small tool for analyzing simple B Machine substitutions as part of a college research work. The code successfully parse test inputs of the form mySubst := var1 + var2. However, I get a pop-up error message saying "This application has requested the Runtime to terminate it in an unusual way. " In the command prompt window, I get an "Assertion failed message". The main program is given below: // BMachineTree.cpp : Defines the entry point for the console application. // /*============================================================================= Copyright (c) 2010 Temitope Onunkun =============================================================================*/ /////////////////////////////////////////////////////////////////////////////// // // UUsing Boost Spririt Trees (AST) to parse B Machine Substitutions. // /////////////////////////////////////////////////////////////////////////////// #define BOOST_SPIRIT_DUMP_PARSETREE_AS_XML #include <boost/spirit/core.hpp> #include <boost/spirit/tree/ast.hpp> #include <boost/spirit/tree/tree_to_xml.hpp> #include "BMachineTreeGrammar.hpp" #include <iostream> #include <stack> #include <functional> #include <string> #include <cassert> #include <vector> #if defined(BOOST_SPIRIT_DUMP_PARSETREE_AS_XML) #include <map> #endif // Using AST to parse B Machine substitutions //////////////////////////////////////////////////////////////////////////// using namespace std; using namespace boost::spirit; typedef char const* iterator_t; typedef tree_match<iterator_t> parse_tree_match_t; typedef parse_tree_match_t::tree_iterator iter_t; //////////////////////////////////////////////////////////////////////////// string evaluate(parse_tree_match_t hit); string eval_machine(iter_t const& i); vector<string> dx; string evaluate(tree_parse_info<> info) { return eval_machine(info.trees.begin()); } string eval_machine(iter_t const& i) { cout << "In eval_machine. i->value = " << string(i->value.begin(), i->value.end()) << " i->children.size() = " << i->children.size() << endl; if (i->value.id() == substitution::leafValueID) { assert(i->children.size() == 0); // extract string tokens string leafValue(i->value.begin(), i->value.end()); dx.push_back(leafValue.c_str()); return leafValue.c_str(); } // else if (i->value.id() == substitution::termID) { if ( (*i->value.begin() == '*') || (*i->value.begin() == '/') ) { assert(i->children.size() == 2); dx.push_back( eval_machine(i->children.begin()) ); dx.push_back( eval_machine(i->children.begin()+1) ); return eval_machine(i->children.begin()) + " " + eval_machine(i->children.begin()+1); } // else assert(0); } else if (i->value.id() == substitution::expressionID) { if ( (*i->value.begin() == '+') || (*i->value.begin() == '-') ) { assert(i->children.size() == 2); dx.push_back( eval_machine(i->children.begin()) ); dx.push_back( eval_machine(i->children.begin()+1) ); return eval_machine(i->children.begin()) + " " + eval_machine(i->children.begin()+1); } else assert(0); } // else if (i->value.id() == substitution::simple_substID) { if (*i->value.begin() == (':' >> '=') ) { assert(i->children.size() == 2); dx.push_back( eval_machine(i->children.begin()) ); dx.push_back( eval_machine(i->children.begin()+1) ); return eval_machine(i->children.begin()) + "|->" + eval_machine(i->children.begin()+1); } else assert(0); } else { assert(0); // error } return 0; } //////////////////////////////////////////////////////////////////////////// int main() { // look in BMachineTreeGrammar for the definition of BMachine substitution BMach_subst; cout << "/////////////////////////////////////////////////////////\n\n"; cout << "\t\tB Machine Substitution...\n\n"; cout << "/////////////////////////////////////////////////////////\n\n"; cout << "Type an expression...or [q or Q] to quit\n\n"; string str; while (getline(cin, str)) { if (str.empty() || str[0] == 'q' || str[0] == 'Q') break; tree_parse_info<> info = ast_parse(str.c_str(), BMach_subst, space_p); if (info.full) { #if defined(BOOST_SPIRIT_DUMP_PARSETREE_AS_XML) // dump parse tree as XML std::map<parser_id, std::string> rule_names; rule_names[substitution::identifierID] = "identifier"; rule_names[substitution::leafValueID] = "leafValue"; rule_names[substitution::factorID] = "factor"; rule_names[substitution::termID] = "term"; rule_names[substitution::expressionID] = "expression"; rule_names[substitution::simple_substID] = "simple_subst"; tree_to_xml(cout, info.trees, str.c_str(), rule_names); #endif // print the result cout << "Variables in Vector dx: " << endl; for(vector<string>::iterator idx = dx.begin(); idx < dx.end(); ++idx) cout << *idx << endl; cout << "parsing succeeded\n"; cout << "result = " << evaluate(info) << "\n\n"; } else { cout << "parsing failed\n"; } } cout << "Bye... :-) \n\n"; return 0; } The grammar, defined in BMachineTreeGrammar.hpp file is given below: /*============================================================================= Copyright (c) 2010 Temitope Onunkun http://www.dcs.kcl.ac.uk/pg/onun Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) =============================================================================*/ #ifndef BOOST_SPIRIT_BMachineTreeGrammar_HPP_ #define BOOST_SPIRIT_BMachineTreeGrammar_HPP_ using namespace boost::spirit; /////////////////////////////////////////////////////////////////////////////// // // Using Boost Spririt Trees (AST) to parse B Machine Substitutions. // /////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// // // B Machine Grammar // //////////////////////////////////////////////////////////////////////////// struct substitution : public grammar<substitution> { static const int identifierID = 1; static const int leafValueID = 2; static const int factorID = 3; static const int termID = 4; static const int expressionID = 5; static const int simple_substID = 6; template <typename ScannerT> struct definition { definition(substitution const& ) { // Start grammar definition identifier = alpha_p >> (+alnum_p | ch_p('_') ) ; leafValue = leaf_node_d[ lexeme_d[ identifier | +digit_p ] ] ; factor = leafValue | inner_node_d[ ch_p( '(' ) >> expression >> ch_p(')' ) ] ; term = factor >> *( (root_node_d[ch_p('*') ] >> factor ) | (root_node_d[ch_p('/') ] >> factor ) ); expression = term >> *( (root_node_d[ch_p('+') ] >> term ) | (root_node_d[ch_p('-') ] >> term ) ); simple_subst= leaf_node_d[ lexeme_d[ identifier ] ] >> root_node_d[str_p(":=")] >> expression ; // End grammar definition // turn on the debugging info. BOOST_SPIRIT_DEBUG_RULE(identifier); BOOST_SPIRIT_DEBUG_RULE(leafValue); BOOST_SPIRIT_DEBUG_RULE(factor); BOOST_SPIRIT_DEBUG_RULE(term); BOOST_SPIRIT_DEBUG_RULE(expression); BOOST_SPIRIT_DEBUG_RULE(simple_subst); } rule<ScannerT, parser_context<>, parser_tag<simple_substID> > simple_subst; rule<ScannerT, parser_context<>, parser_tag<expressionID> > expression; rule<ScannerT, parser_context<>, parser_tag<termID> > term; rule<ScannerT, parser_context<>, parser_tag<factorID> > factor; rule<ScannerT, parser_context<>, parser_tag<leafValueID> > leafValue; rule<ScannerT, parser_context<>, parser_tag<identifierID> > identifier; rule<ScannerT, parser_context<>, parser_tag<simple_substID> > const& start() const { return simple_subst; } }; }; #endif The output I get on running the program is: ///////////////////////////////////////////////////////// B Machine Substitution... ///////////////////////////////////////////////////////// Type an expression...or [q or Q] to quit mySubst := var1 - var2 parsing succeeded In eval_machine. i->value = := i->children.size() = 2 Assertion failed: 0, file c:\redmound\bmachinetree\bmachinetree\bmachinetree.cpp , line 114 I will appreciate any help in resolving this problem.

    Read the article

  • How do I compile boost using __cdecl calling convention?

    - by Sorin Sbarnea
    I have a project compiled using __cdecl calling convention (msvc2010) and I compiled boost using the same compiler using the default settings. The project linked with boost but I at runtime I got an assert message like this: File: ...\boost\boost\program_options\detail\parsers.hpp Line: 79 Run-Time Check Failure #0 - The value of ESP was not properly saved across a function call. This is usually a result of calling a function declared with one calling convention with a function pointer declared with a different calling convention. There are the following questions: what calling convention does boost build with by default on Windows (msvc2010) how to I compile boost with __cdecl calling convention why boost wasn't able to prevent linking with code with different calling conventions? I understood that boost has really smart library auto-inclusion code.

    Read the article

  • What is the proper use of boost::fusion::push_back?

    - by Kyle
    // ... snipped includes for iostream and fusion ... namespace fusion = boost::fusion; class Base { protected: int x; public: Base() : x(0) {} void chug() { x++; cout << "I'm a base.. x is now " << x << endl; } }; class Alpha : public Base { public: void chug() { x += 2; cout << "Hi, I'm an alpha, x is now " << x << endl; } }; class Bravo : public Base { public: void chug() { x += 3; cout << "Hello, I'm a bravo; x is now " << x << endl; } }; struct chug { template<typename T> void operator()(T& t) const { t->chug(); } }; int main() { typedef fusion::vector<Base*, Alpha*, Bravo*, Base*> Stuff; Stuff stuff(new Base, new Alpha, new Bravo, new Base); fusion::for_each(stuff, chug()); // Mutates each element in stuff as expected /* Output: I'm a base.. x is now 1 Hi, I'm an alpha, x is now 2 Hello, I'm a bravo; x is now 3 I'm a base.. x is now 1 */ cout << endl; // If I don't put 'const' in front of Stuff... typedef fusion::result_of::push_back<const Stuff, Alpha*>::type NewStuff; // ... then this complains because it wants stuff to be const: NewStuff newStuff = fusion::push_back(stuff, new Alpha); // ... But since stuff is now const, I can no longer mutate its elements :( fusion::for_each(newStuff, chug()); return 0; }; How do I get for_each(newStuff, chug()) to work? (Note: I'm only assuming from the overly brief documentation on boost::fusion that I am supposed to create a new vector every time I call push_back.)

    Read the article

  • boost::spirit::real_p some how round ups the value.

    - by rkbang
    Hello all, I am using the boost::spirit parser. At one point when I use real_p, the value coming out of the parser stack is 38672000 instead of the actual value, 386731500. Some how it is considering it as a float value, I think. Is there anyway to fix this? Do I need to set the precision of real_p, or am using real_p in the wrong context?

    Read the article

  • How to asynchronously read to std::string using Boost::asio?

    - by SpyBot
    Hello. I'm learning Boost::asio and all that async stuff. How can I asynchronously read to variable user_ of type std::string? Boost::asio::buffer(user_) works only with async_write(), but not with async_read(). It works with vector, so what is the reason for it not to work with string? Is there another way to do that besides declaring char user_[max_len] and using Boost::asio::buffer(user_, max_len)? Also, what's the point of inheriting from boost::enable_shared_from_this<Connection> and using shared_from_this() instead of this in async_read() and async_write()? I've seen that a lot in the examples. Here is a part of my code: class Connection { public: Connection(tcp::acceptor &acceptor) : acceptor_(acceptor), socket_(acceptor.get_io_service(), tcp::v4()) { } void start() { acceptor_.get_io_service().post( boost::bind(&Connection::start_accept, this)); } private: void start_accept() { acceptor_.async_accept(socket_, boost::bind(&Connection::handle_accept, this, placeholders::error)); } void handle_accept(const boost::system::error_code& err) { if (err) { disconnect(); } else { async_read(socket_, boost::asio::buffer(user_), boost::bind(&Connection::handle_user_read, this, placeholders::error, placeholders::bytes_transferred)); } } void handle_user_read(const boost::system::error_code& err, std::size_t bytes_transferred) { if ( err or (bytes_transferred != sizeof(user_)) ) { disconnect(); } else { ... } } ... void disconnect() { socket_.shutdown(tcp::socket::shutdown_both); socket_.close(); socket_.open(tcp::v4()); start_accept(); } tcp::acceptor &acceptor_; tcp::socket socket_; std::string user_; std::string pass_; ... };

    Read the article

  • How to create a simple server/client application using boost.asio?

    - by the_drow
    I was going over the examples of boost.asio and I am wondering why there isn't an example of a simple server/client example that prints a string on the server and then returns a response to the client. I tried to modify the echo server but I can't really figure out what I'm doing at all. Can anyone find me a template of a client and a template of a server? I would like to eventually create a server/client application that receives binary data and just returns an acknowledgment back to the client that the data is received.

    Read the article

  • Using Boost statechart, how can I transition to a state unconditionally?

    - by nickb
    I have a state A that I would like to transition to its next state B unconditionally, once the constructor of A has completed. Is this possible? I tried posting an event from the constructor, which does not work, even though it compiles. Thanks. Edit: Here is what I've tried so far: struct A : sc::simple_state< A, Active > { public: typedef sc::custom_reaction< EventDoneA > reactions; A() { std::cout << "Inside of A()" << std::endl; post_event( EventDoneA() ); } sc::result react( const EventDoneA & ) { return transit< B >(); } }; This yields the following runtime assertion failure: Assertion failed: get_pointer( pContext_ ) != 0, file /includ e/boost/statechart/simple_state.hpp, line 459

    Read the article

  • Boost in Visual Studio 2010, IntelliSense error

    - by Peretz
    Hello, I would like to see if you could orient me. It happens that I compiled and referenced the boost libraries in order to use them with Visual Studio 2010. When building my test project I get these two IntelliSense errors 1 IntelliSense: #error directive: "Macro BOOST_LIB_NAME not set (internal error)" c:\boost_1_43_0\boost\config\auto_link.hpp 2 IntelliSense: #error directive: "some required macros where not defined (internal logic error)." c:\boost_1_43_0\boost\config\auto_link.hpp Checking the auto_link.hpp header file the first error is in this line #ifndef BOOST_LIB_NAME # error "Macro BOOST_LIB_NAME not set (internal error)" #endif Tracing the definition of BOOST_LIB_NAME, it seems that is defined in config.hpp by boost_regex, which code I am including below #if !defined(BOOST_REGEX_NO_LIB) && !defined(BOOST_REGEX_SOURCE) && !defined(BOOST_ALL_NO_LIB) && defined(__cplusplus) # define BOOST_LIB_NAME boost_regex # if defined(BOOST_REGEX_DYN_LINK) || defined(BOOST_ALL_DYN_LINK) # define BOOST_DYN_LINK ... more code and strangely when I point to BOOST_LIB_NAME it defines BOOST_LIB_NAME and the IntelliSense errors disappear. My program builds and executes fine using the Boost:Regex library -- with or without the Intellisense errors; however, I do not understand why these IntelliSense errors appear in the first place, and second why pointing the macro in the config.hpp defines BOOST_LIB_NAME. Any guidance will be greatly appreciated. Thanks, Jaime

    Read the article

  • boost::lambda bind expressions can't get bind to string's empty() to work

    - by navigator
    Hi, I am trying to get the below code snippet to compile. But it fails with: error C2665: 'boost::lambda::function_adaptor::apply' : none of the 8 overloads could convert all the argument types. Sepcifying the return type when calling bind does not help. Any idea what I am doing wrong? Thanks. #include <boost/lambda/lambda.hpp> #include <boost/lambda/bind.hpp> #include <string> #include <map> int main() { namespace bl = boost::lambda; typedef std::map<int, std::string> types; types keys_and_values; keys_and_values[ 0 ] = "zero"; keys_and_values[ 1 ] = "one"; keys_and_values[ 2 ] = "Two"; std::for_each( keys_and_values.begin(), keys_and_values.end(), std::cout << bl::constant("Value empty?: ") << std::boolalpha << bl::bind(&std::string::empty, bl::bind(&types::value_type::second, _1)) << "\n"); return 0; }

    Read the article

  • getting boost::gregorian dates from a string

    - by Chris H
    I asked a related question yesterday http://stackoverflow.com/questions/2612343/basic-boost-date-time-input-format-question It worked great for posix_time ptime objects. I'm have trouble adapting it to get Gregorian date objects. try { stringstream ss; ss << dateNode->GetText(); using boost::local_time::local_time_input_facet; //using boost::gregorian; ss.imbue(locale(locale::classic(), new local_time_input_facet("%a, %d %b %Y "))); ss.exceptions(ios::failbit); ss>>dayTime; } catch (...) { cout<<"Failed to get a date..."<<endl; //cout<<e.what()<<endl; throw; } The dateNode-GetText() function returns a pointer to a string of the form Sat, 10 Apr 2010 19:30:00 The problem is I keep getting an exception. So concretely the question is, how do I go from const char * of the given format, to a boost::gregorian::date object? Thanks again.

    Read the article

  • Mac OS X and static boost libs -> std::string fail

    - by Ionic
    Hi all, I'm experiencing some very weird problems with static boost libraries under Mac OS X 10.6.6. The error message is main(78485) malloc: *** error for object 0x1000e0b20: pointer being freed was not allocated *** set a breakpoint in malloc_error_break to debug [1] 78485 abort (core dumped) and a tiny bit of example code which will trigger this problem: #define BOOST_FILESYSTEM_VERSION 3 #include <boost/filesystem.hpp> #include <iostream> int main (int argc, char **argv) { std::cout << boost::filesystem::current_path ().string () << '\n'; } This problem always occurs when linking the static boost libraries into the binary. Linking dynamically will work fine, though. I've seen various reports for quite a similar OS X bug with GCC 4.2 and the _GLIBCXX_DEBUG macro set, but this one seems even more generic, as I'm neither using XCode, nor setting the macro (even undefining it does not help. I tried it just to make sure it's really not related to this problem.) Does anybody have any pointers to why this is happening or even maybe a solution (rather than using the dynamic library workaround)? Best regards, Mihai

    Read the article

  • Boost Asio UDP retrieve last packet in socket buffer

    - by Alberto Toglia
    I have been messing around Boost Asio for some days now but I got stuck with this weird behavior. Please let me explain. Computer A is sending continuos udp packets every 500 ms to computer B, computer B desires to read A's packets with it own velocity but only wants A's last packet, obviously the most updated one. It has come to my attention that when I do a: mSocket.receive_from(boost::asio::buffer(mBuffer), mEndPoint); I can get OLD packets that were not processed (almost everytime). Does this make any sense? A friend of mine told me that sockets maintain a buffer of packets and therefore If I read with a lower frequency than the sender this could happen. ¡? So, the first question is how is it possible to receive the last packet and discard the ones I missed? Later I tried using the async example of the Boost documentation but found it did not do what I wanted. http://www.boost.org/doc/libs/1_36_0/doc/html/boost_asio/tutorial/tutdaytime6.html From what I could tell the async_receive_from should call the method "handle_receive" when a packet arrives, and that works for the first packet after the service was "run". If I wanted to keep listening the port I should call the async_receive_from again in the handle code. right? BUT what I found is that I start an infinite loop, it doesn't wait till the next packet, it just enters "handle_receive" again and again. I'm not doing a server application, a lot of things are going on (its a game), so my second question is, do I have to use threads to use the async receive method properly, is there some example with threads and async receive? Thanks for you attention.

    Read the article

  • Increasing time resolution of BOOST::progress timer

    - by feelfree
    BOOST::progress_timer is a very useful class to measure the running time of a function. However, the default implementation of progress_timer is not accurate enough and a possible way of increasing time resolution is to reconstruct a new class as the following codes show: #include <boost/progress.hpp> #include <boost/static_assert.hpp> template<int N=2> class new_progress_timer:public boost::timer { public: new_progress_timer(std::ostream &os=std::cout):m_os(os) { BOOST_STATIC_ASSERT(N>=0 &&N<=10); } ~new_progress_timer(void) { try { std::istream::fmtflags old_flags = m_os.setf(std::istream::fixed,std::istream::floatfield); std::streamsize old_prec = m_os.precision(N); m_os<<elapsed()<<"s\n" <<std::endl; m_os.flags(old_flags); m_os.precison(old_prec); } catch(...) { } } private: std::ostream &m_os; }; However, when I compile the codes with VC10, the following error appear: 'precison' : is not a member of 'std::basic_ostream<_Elem,_Traits>' Any ideas? Thanks.

    Read the article

  • C++ member template for boost ptr_vector

    - by Ivan
    Hi there, I'm trying to write a container class using boost::ptr_vector. Inside the ptr_vector I would like to include different classes. I'm trying to achieve that using static templates, but so far I'm not able to do that. For example, the container class is class model { private: boost::ptr_vector<elem_type> elements; public: void insert_element(elem_type *a) { element_list.push_back(a); } }; and what I'm trying to achieve is be able to use different elem_type classes. The code below doesn't satisfy my requirements: template <typename T>class model { private: boost::ptr_vector<T> elements; public: void insert_element(T *a) { element_list.push_back(a); } }; because when I initialize the container class I can only use one class as template: model <elem_type_1> model_thing; model_thing.insert_element(new elem_type_1) but not elem_type_2: model_thing.insert_element(new elem_type_2)//error, of course It is possible to do something like using templates only on the member? class model { private: template <typename T> boost::ptr_vector<T> elements; public: void insert_element(T *a) { element_list.push_back(a); } }; //wrong So I can call the insert_element on the specific class that I want to insert? Note that I do not want to use virtual members. Thanks!

    Read the article

  • BOOST.IOstreams: trouble to write to bzip2.

    - by Arman
    Hello I am would like to store my data in to bzip2 file using Boost.IOstreams. void test_bzip() { namespace BI = boost::iostreams; { string fname="test.bz2"; { BI::filtering_stream<BI::bidirectional> my_filter; my_filter.push(BI::combine(BI::bzip2_decompressor(), BI::bzip2_compressor())) ; my_filter.push(std::fstream(fname.c_str(), std::ios::binary|std::ios::out)) ; my_filter << "test" ; }//when my_filter is destroyed it is trowing an assertion. } }; What I am doing wrong? I am using boost 1.42.0. kind regards Arman.

    Read the article

  • Concatenate boost::dynamic_bitset or std::bitset

    - by MOnsDaR
    Hey, what is the best way to concatenate 2 bitsets? For example i've got boost::dynamic_bitset<> test1( std::string("1111") ); boost::dynamic_bitset<> test2( std::string("00") ); they should be concatenated into a thrid Bitset test3 which then holds 111100 Solutions should use boost::dynamic_bitset. If the solution works with std::bitset, it would be nice too. There should be a focus on performance when concatenating the bits.

    Read the article

  • Help with C++ Boost::regex

    - by Youssef
    Hello everybody, I'm trying to get all words inside a string using Boost::regex in C++. Here's my input : "Hello there | network - bla bla hoho" using this code : regex rgx("[a-z]+",boost::regex::perl|boost::regex::icase); regex_search(input, result, rgx); for(unsigned int j=0; j I only get the first word "Hello".. whats wrong with my code ? result.size() returns 1. thank you.

    Read the article

  • Boost.Python tutorial in Ubuntu 10.04

    - by Doughy
    I downloaded the latest version of Boost and I'm trying to get the Boost.python tutorial up and running on Ubuntu 10.04: http://www.boost.org/doc/libs/1_43_0/libs/python/doc/tutorial/doc/html/python/hello.html I navigated to the correct directory, ran "bjam" and it compiled using default settings. I did not yet create a bjam config file. The compilation appears to have worked, but now I have no idea how to include the files in my python script. When I try to run the python hello world script, it gives me this error: Traceback (most recent call last): File "./hello.py", line 6, in <module> import hello_ext ImportError: libboost_python.so.1.43.0: cannot open shared object file: No such file or directory Anyone know what is going on?

    Read the article

  • Using boost unordered map

    - by Amrish
    Guys, I am using dynamic programming approach to solve a problem. Here is a brief overview of the approach Each value generated is identified using 25 unique keys. I use the boost::hash_combine to generate the seed for the hash table using these 25 keys. I store the values in a hash table declared as boost::unordered_map<Key_Object, Data_Object, HashFunction> hashState; I did a time profiling on my algorithm and found that nearly 95% of the run time is spent towards retrieving/inserting data into the hash table. These were the details of my hash table hashState.size() 1880 hashState.load_factor() 0.610588 hashState.bucket_count() 3079 hashState.max_size() 805306456 hashState.max_load_factor() 1 hashState.max_bucket_count() 805306457 I have the following two questions Is there anything which I can do to improve the performance of the Hash Table's insert/retrieve operations? C++ STL has hash_multimap which would also suit my requirement. How does boost libraries unordered_map compare with hash_multimap in terms of insert/retrieve performance.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >