Search Results

Search found 1364 results on 55 pages for 'construct'.

Page 6/55 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Why can't I construct an std::istream_iterator with an unnamed temporary?

    - by Stumped6789
    g++ allows this construction of an istream_iterator from an ifstream instance: std::ifstream ifstr("test.txt"); std::istream_iterator<std::string> iter1(ifstr); ...but it doesn't allow the same construction with an unnamed temporary: std::istream_iterator<std::string> iter2(std::ifstream("test.txt")); This gives: error: no matching function for call to ‘std::istream_iterator, ptrdiff_t::istream_iterator(std::ifstream)’ Does anyone know why this doesn't work? - thanks!

    Read the article

  • destructor and copy-constructor calling..(why does it get called at these times)

    - by sil3nt
    Hello there, I have the following code #include <iostream> using namespace std; class Object { public: Object(int id){ cout << "Construct(" << id << ")" << endl; m_id = id; } Object(const Object& obj){ cout << "Copy-construct(" << obj.m_id << ")" << endl; m_id = obj.m_id; } Object& operator=(const Object& obj){ cout << m_id << " = " << obj.m_id << endl; m_id = obj.m_id; return *this; } ~Object(){ cout << "Destruct(" << m_id << ")" << endl; } private: int m_id; }; Object func(Object var) { return var; } int main(){ Object v1(1); cout << "( a )" << endl; Object v2(2); v2 = v1; cout << "( b )" << endl; Object v4 = v1; Object *pv5; pv5 = &v1; pv5 = new Object(5); cout << "( c )" << endl; func(v1); cout << "( d )" << endl; delete pv5; } which outputs Construct(1) ( a ) Construct(2) 2 = 1 ( b ) Copy-construct(1) Construct(5) ( c ) Copy-construct(1) Copy-construct(1) Destruct(1) Destruct(1) ( d ) Destruct(5) Destruct(1) Destruct(1) Destruct(1) I have some issues with this, firstly why does Object v4 = v1; call the copy constructor and produce Copy-construct(1) after the printing of ( b ). Also after the printing of ( c ) the copy-constructor is again called twice?, Im not certain of how this function works to produce that Object func(Object var) { return var; } and just after that Destruct(1) gets called twice before ( d ) is printed. sorry for the long question, I'm confused with the above.

    Read the article

  • using Generics in C# [closed]

    - by Uphaar Goyal
    I have started looking into using generics in C#. As an example what i have done is that I have an abstract class which implements generic methods. these generic methods take a sql query, a connection string and the Type T as parameters and then construct the data set, populate the object and return it back. This way each business object does not need to have a method to populate it with data or construct its data set. All we need to do is pass the type, the sql query and the connection string and these methods do the rest.I am providing the code sample here. I am just looking to discuss with people who might have a better solution to what i have done. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Data; using System.Data.SqlClient; using MWTWorkUnitMgmtLib.Business; using System.Collections.ObjectModel; using System.Reflection; namespace MWTWorkUnitMgmtLib.TableGateway { public abstract class TableGateway { public TableGateway() { } protected abstract string GetConnection(); protected abstract string GetTableName(); public DataSet GetDataSetFromSql(string connectionString, string sql) { DataSet ds = null; using (SqlConnection connection = new SqlConnection(connectionString)) using (SqlCommand command = connection.CreateCommand()) { command.CommandText = sql; connection.Open(); using (ds = new DataSet()) using (SqlDataAdapter adapter = new SqlDataAdapter(command)) { adapter.Fill(ds); } } return ds; } public static bool ContainsColumnName(DataRow dr, string columnName) { return dr.Table.Columns.Contains(columnName); } public DataTable GetDataTable(string connString, string sql) { DataSet ds = GetDataSetFromSql(connString, sql); DataTable dt = null; if (ds != null) { if (ds.Tables.Count 0) { dt = ds.Tables[0]; } } return dt; } public T Construct(DataRow dr, T t) where T : class, new() { Type t1 = t.GetType(); PropertyInfo[] properties = t1.GetProperties(); foreach (PropertyInfo property in properties) { if (ContainsColumnName(dr, property.Name) && (dr[property.Name] != null)) property.SetValue(t, dr[property.Name], null); } return t; } public T GetByID(string connString, string sql, T t) where T : class, new() { DataTable dt = GetDataTable(connString, sql); DataRow dr = dt.Rows[0]; return Construct(dr, t); } public List GetAll(string connString, string sql, T t) where T : class, new() { List collection = new List(); DataTable dt = GetDataTable(connString, sql); foreach (DataRow dr in dt.Rows) collection.Add(Construct(dr, t)); return collection; } } }

    Read the article

  • How do I fix "bzr: ERROR: Unable to determine your name. "?

    - by Daniel
    I am trying to quickly create my first app and am getting gtk errors when I try to run or create an application. Here is a copy of what I executed and what results I got: daniel@laptop:~/PyDevelopment$ quickly create ubuntu-application app001 Creating project directory app001 Creating bzr repository and committing Launching your newly created project! /usr/lib/python2.7/dist-packages/gi/overrides/Gtk.py:391: Warning: g_object_set_property: construct property "type" for object `Window' can't be set after construction Gtk.Window.__init__(self, type=type, **kwds) /usr/lib/python2.7/dist-packages/gi/overrides/Gtk.py:391: Warning: g_object_set_property: construct property "type" for object `App001Window' can't be set after construction Gtk.Window.__init__(self, type=type, **kwds) Congrats, your new project is setup! cd /home/daniel/PyDevelopment/app001/ to start hacking. daniel@laptop:~/PyDevelopment$ cd app001 daniel@laptop:~/PyDevelopment/app001$ quickly design daniel@laptop:~/PyDevelopment/app001$ quickly rub ERROR: No rub command found in template ubuntu-application. Candidate commands are: add, commands, configure, create, debug, design, edit, getstarted, help, license, package, quickly, release, run, save, share, submitubuntu, test, tutorial, upgrade daniel@laptop:~/PyDevelopment/app001$ quickly run /usr/lib/python2.7/dist-packages/gi/overrides/Gtk.py:391: Warning: g_object_set_property: construct property "type" for object `Window' can't be set after construction Gtk.Window.__init__(self, type=type, **kwds) /usr/lib/python2.7/dist-packages/gi/overrides/Gtk.py:391: Warning: g_object_set_property: construct property "type" for object `App001Window' can't be set after construction Gtk.Window.__init__(self, type=type, **kwds) daniel@laptop:~/PyDevelopment/app001$ quickly package .......Ubuntu packaging created in debian/ ....... ---------------------------------- Command returned some ERRORS: ---------------------------------- bzr: ERROR: Unable to determine your name. ---------------------------------- ERROR: can't create or update ubuntu package ERROR: package command failed Aborting

    Read the article

  • BizTalk 2009 - Naming Guidelines

    - by StuartBrierley
    The following is effectively a repost of the BizTalk 2004 naming guidlines that I have previously detailed.  I have posted these again for completeness under BizTalk 2009 and to allow an element of separation in case I find some reason to amend these for BizTalk 2009. These guidlines should be universal across any version of BizTalk you may wish to apply them to. General Rules All names should be named with a Pascal convention. Project Namespaces For message schemas: [CompanyName].XML.Schemas.[FunctionalName]* Examples:  ABC.XML.Schemas.Underwriting DEF.XML.Schemas.MarshmellowTradingExchange * Donates potential for multiple levels of functional name, such as Underwriting.Dictionary.Valuation For web services: [CompanyName].Web.Services.[FunctionalName] Examples: ABC.Web.Services.OrderJellyBeans For the main BizTalk Projects: [CompanyName].BizTalk.[AssemblyType].[FunctionalName]* Examples: ABC.BizTalk.Mappings.Underwriting ABC.BizTalk.Orchestrations.Underwriting * Donates potential for multiple levels of functional name, such as Mappings.Underwriting.Valuations Assemblies BizTalk Assembly names should match the associated Project Namespace, such as ABC.BizTalk.Mappings.Underwriting. This pertains to the formal assembly name and the DLL name. The Solution name should take the name of the main project within the solution, and also therefore the namespace for that project. Although long names such as this can be unwieldy to work with, the benefits of having the full scope available when the assemblies are installed on the target server are generally judged to outweigh this inconvenience. Messaging Artifacts Artifact Standard Notes Example Schema <DescriptiveName>.xsd   .NET Type name should match, without file extension.    .NET Namespace will likely match assembly name. PurchaseOrderAcknowledge_FF.xsd  or FNMA100330_FF.xsd Property Schema <DescriptiveName>.xsd Should be named to reflect possible common usage across multiple schemas  IspecMessagePropertySchema.xsd UnderwritingOrchestrationKeys.xsd Map <SourceSchema>2<DestinationSchema>.btm Exceptions to this may be made where the source and destination schemas share the majority of the name, such as in mainframe web service maps InstructionResponse2CustomEmailRequest.btm (exception example) AccountCustomerAddressSummaryRequest2MainframeRequest.btm Orchestration <DescriptiveName>.odx   GetValuationReports.odx SendMTEDecisionResponse.odx Send/Receive Pipeline <DescriptiveName>.btp   ValidatingXMLReceivePipeline.btp FlatFileAssembler.btp Receive Port A plainly worded phrase that will clearly explain the function.    FraudPreventionServices LetterProcessing   Receive Location A plainly worded phrase that will clearly explain the function.  ? Do we want to include the transport type here ? Arrears Web Service Send Port Group A plainly worded phrase that will clearly explain the function.   Customer Updates Send Port A plainly worded phrase that will clearly explain the function.    ABCProductUpdater LogLendingPolicyOutput Parties A meaningful name for a Trading Partner. If dealing with multiple entities within a Trading Partner organization, the Organization name could be used as a prefix.   Roles A meaningful name for the role that a Trading Partner plays.     Orchestration Workflow Shapes Shape Standard Notes Example Scopes <DescriptionOfContainedWork> or <DescOfcontainedWork><TxType>   Including info about transaction type may be appropriate in some situations where it adds significant documentation value to the diagram. HandleReportResponse         Receive Receive<MessageName> Typically, MessageName will be the same as the name of the message variable that is being received “into”. ReceiveReportResponse Send Send<MessageName> Typically, MessageName will be the same as the name of the message variable that is being sent. SendValuationDetailsRequest Expression <DescriptionOfEffect> Expression shapes should be named to describe the net effect of the expression, similar to naming a method.  The exception to this is the case where the expression is interacting with an external .NET component to perform a function that overlaps with existing BizTalk functionality – use closest BizTalk shape for this case. CreatePrintXML Decide <DescriptionOfDecision> A description of what will be decided in the “if” branch Report Type? Perform MF Save? If-Branch <DescriptionOfDecision> A (potentially abbreviated) description of what is being decided Mortgage Valuation Yes Else-Branch Else Else-branch shapes should always be named “Else” Else Construct Message (Assign) Create<Message> (for Construct)     <ExpressionDescription> (for expression) If a Construct shape contains a message assignment, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.    The actual message assignment shape contained should be named to describe the expression that is contained. CreateReportDataMV   which contains expression: ExtractReportData Construct Message (Transform) Create<Message> (for Construct)   <SourceSchema>2<DestSchema> (for transform) If a Construct shape contains a message transform, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.   The actual message transform shape contained should generally be named the same as the called map.  CreateReportDataMV   which contains transform: ReportDataMV2ReportDataMV                 Construct Message (containing multiple shapes)   If a Construct Message shape uses multiple assignments or transforms, the overall shape should be named to communicate the net effect, using no prefix.     Call/Start Orchestration Call<OrchestrationName>   Start<OrchestrationName>     Throw Throw<ExceptionType> The corresponding variable name for the exception type should (often) be the same name as the exception type, only camel-cased. ThrowRuleException, which references the “ruleException” variable.     Parallel <DescriptionOfParallelWork> Parallel shapes should be named by a description of what work will be done in parallel   Delay <DescriptionOfWhatWaitingFor> Delay shapes should be named by a description of what is being waited for.  POAcknowledgeTimeout Listen <DescriptionOfOutcomes> Listen shapes should be named by a description that captures (to the degree possible) all the branches of the Listen shape POAckOrTimeout FirstShippingBid Loop <DescriptionOfLoop> A (potentially abbreviated) description of what the loop is. ForEachValuationReport WhileErrorFlagTrue Role Link   See “Roles” in messaging naming conventions above.   Suspend <ReasonDescription> Describe what action an administrator must take to resume the orchestration.  More detail can be passed to error property – and should include what should be done by the administrator before resuming the orchestration. ReEstablishCreditLink Terminate <ReasonDescription> Describe why the orchestration terminated.  More detail can be passed to error property. TimeoutsExpired Call Rules Call<PolicyName> The policy name may need to be abbreviated. CallLendingPolicy Compensate Compensate or Compensate<TxName> If the shape compensates nested transactions, names should be suffixed with the name of the nested transaction – otherwise it should simple be Compensate. CompensateTransferFunds Orchestration Types Type Standard Notes Example Multi-Part Message Types <LogicalDocumentType>   Multi-part types encapsulate multiple parts.  The WSDL spec indicates “parts are a flexible mechanism for describing the logical abstract content of a message.”  The name of the multi-part type should correspond to the “logical” document type, i.e. what the sum of the parts describes. InvoiceReceipt   (which might encapsulate an invoice acknowledgement and a payment voucher.) Multi-Part Messsage Part <SchemaNameOfPart> Should be named (most often) simply for the schema (or simple type) associated with the part. InvoiceHeader Messages <SchemaName> or <MuliPartMessageTypeName> Should be named based on the corresponding schema type or multi-part message type.  If there is more than one variable of a type, name for its use within the orchestration. ReportDataMV UpdatedReportDataMV Variables <DescriptiveName>   TargetFilePath StringProcessor Port Types <FunctionDescription>PortType Should be named to suggest the nature of an endpoint, with pascal casing and suffixed with “PortType”.   If there will be more than one Port for a Port Type, the Port Type should be named according to the abstract service supplied.   The WSDL spec indicates port types are “a named set of abstract operations and the abstract messages involved” that also encapsulates the message pattern (i.e. one-way, request-response, solicit-response) that all operations on the port type adhere to. ReceiveReportResponsePortType  or CallEAEPortType (This is a two way port, so Receove or Send alone would not be appropriate.  Could have been ProcessEAERequestPortType etc....) Ports <FunctionDescription>Port Should be named to suggest a grouping of functionality, with pascal casing and suffixed with “Port.”  ReceiveReportResponsePort CallEAEPort Correlation types <DescriptiveName> Should be named based on the logical name of what is being used to correlate.  PurchaseOrderNumber Correlation sets <DescriptiveName> Should be named based on the corresponding correlation type.  If there is more than one, it should be named to reflect its specific purpose within the orchestration.   PurchaseOrderNumber Orchestration parameters <DescriptiveName> Should be named to match the caller’s names for the corresponding variables where appropriate.

    Read the article

  • Custom Memory Allocator for STL map

    - by Prasoon Tiwari
    This question is about construction of instances of custom allocator during insertion into a std::map. Here is a custom allocator for std::map<int,int> along with a small program that uses it: #include <stddef.h> #include <stdio.h> #include <map> #include <typeinfo> class MyPool { public: void * GetNext() { return malloc(24); } void Free(void *ptr) { free(ptr); } }; template<typename T> class MyPoolAlloc { public: static MyPool *pMyPool; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template<typename X> struct rebind { typedef MyPoolAlloc<X> other; }; MyPoolAlloc() throw() { printf("-------Alloc--CONSTRUCTOR--------%08x %32s\n", this, typeid(T).name()); } MyPoolAlloc(const MyPoolAlloc&) throw() { printf(" Copy Constructor ---------------%08x %32s\n", this, typeid(T).name()); } template<typename X> MyPoolAlloc(const MyPoolAlloc<X>&) throw() { printf(" Construct T Alloc from X Alloc--%08x %32s %32s\n", this, typeid(T).name(), typeid(X).name()); } ~MyPoolAlloc() throw() { printf(" Destructor ---------------------%08x %32s\n", this, typeid(T).name()); }; pointer address(reference __x) const { return &__x; } const_pointer address(const_reference __x) const { return &__x; } pointer allocate(size_type __n, const void * hint = 0) { if (__n != 1) perror("MyPoolAlloc::allocate: __n is not 1.\n"); if (NULL == pMyPool) { pMyPool = new MyPool(); printf("======>Creating a new pool object.\n"); } return reinterpret_cast<T*>(pMyPool->GetNext()); } //__p is not permitted to be a null pointer void deallocate(pointer __p, size_type __n) { pMyPool->Free(reinterpret_cast<void *>(__p)); } size_type max_size() const throw() { return size_t(-1) / sizeof(T); } void construct(pointer __p, const T& __val) { printf("+++++++ %08x %s.\n", __p, typeid(T).name()); ::new(__p) T(__val); } void destroy(pointer __p) { printf("-+-+-+- %08x.\n", __p); __p->~T(); } }; template<typename T> inline bool operator==(const MyPoolAlloc<T>&, const MyPoolAlloc<T>&) { return true; } template<typename T> inline bool operator!=(const MyPoolAlloc<T>&, const MyPoolAlloc<T>&) { return false; } template<typename T> MyPool* MyPoolAlloc<T>::pMyPool = NULL; int main(int argc, char *argv[]) { std::map<int, int, std::less<int>, MyPoolAlloc<std::pair<const int,int> > > m; //random insertions in the map m.insert(std::pair<int,int>(1,2)); m[5] = 7; m[8] = 11; printf("======>End of map insertions.\n"); return 0; } Here is the output of this program: -------Alloc--CONSTRUCTOR--------bffcdaa6 St4pairIKiiE Construct T Alloc from X Alloc--bffcda77 St13_Rb_tree_nodeISt4pairIKiiEE St4pairIKiiE Copy Constructor ---------------bffcdad8 St13_Rb_tree_nodeISt4pairIKiiEE Destructor ---------------------bffcda77 St13_Rb_tree_nodeISt4pairIKiiEE Destructor ---------------------bffcdaa6 St4pairIKiiE ======Creating a new pool object. Construct T Alloc from X Alloc--bffcd9df St4pairIKiiE St13_Rb_tree_nodeISt4pairIKiiEE +++++++ 0985d028 St4pairIKiiE. Destructor ---------------------bffcd9df St4pairIKiiE Construct T Alloc from X Alloc--bffcd95f St4pairIKiiE St13_Rb_tree_nodeISt4pairIKiiEE +++++++ 0985d048 St4pairIKiiE. Destructor ---------------------bffcd95f St4pairIKiiE Construct T Alloc from X Alloc--bffcd95f St4pairIKiiE St13_Rb_tree_nodeISt4pairIKiiEE +++++++ 0985d068 St4pairIKiiE. Destructor ---------------------bffcd95f St4pairIKiiE ======End of map insertions. Construct T Alloc from X Alloc--bffcda23 St4pairIKiiE St13_Rb_tree_nodeISt4pairIKiiEE -+-+-+- 0985d068. Destructor ---------------------bffcda23 St4pairIKiiE Construct T Alloc from X Alloc--bffcda43 St4pairIKiiE St13_Rb_tree_nodeISt4pairIKiiEE -+-+-+- 0985d048. Destructor ---------------------bffcda43 St4pairIKiiE Construct T Alloc from X Alloc--bffcda43 St4pairIKiiE St13_Rb_tree_nodeISt4pairIKiiEE -+-+-+- 0985d028. Destructor ---------------------bffcda43 St4pairIKiiE Destructor ---------------------bffcdad8 St13_Rb_tree_nodeISt4pairIKiiEE Last two columns of the output show that an allocator for std::pair<const int, int> is constructed everytime there is a insertion into the map. Why is this necessary? Is there a way to suppress this? Thanks! Edit: This code tested on x86 machine with g++ version 4.1.2. If you wish to run it on a 64-bit machine, you'll have to change at least the line return malloc(24). Changing to return malloc(48) should work.

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • Trouble installing Matlab

    - by user94143
    So whenever I try to install Matlab, the first image appears, but then goes away and that's the end of it. Here's what I'm doing- user@host$> cd ~/mathworks_downloads user@host$> unzip matlab_R2012a_student_glnx86_installer.zip user@host$> ./install The Matlab logo and image pop up here for a few seconds before going away. This is the output I receive- Could not find JRE for glnxa64. Trying glnx86. Preparing installation files ... Installing ... Exception in thread "main" java.lang.NoClassDefFoundError: Could not initialize class java.awt.Component at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Unknown Source) at $Proxy11.<clinit>(Unknown Source) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(Unknown Source) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(Unknown Source) at java.lang.reflect.Constructor.newInstance(Unknown Source) at java.lang.reflect.Proxy.newProxyInstance(Unknown Source) at com.google.inject.internal.ConstructionContext.createProxy(ConstructionContext.java:81) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:70) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.InjectorImpl$4$1.call(InjectorImpl.java:758) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:754) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.internal.ProviderMethod.get(ProviderMethod.java:95) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.InjectorImpl$4$1.call(InjectorImpl.java:758) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:754) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.spi.ProviderLookup$1.get(ProviderLookup.java:89) at com.google.inject.internal.ProviderMethod.get(ProviderMethod.java:95) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.SingleParameterInjector.inject(SingleParameterInjector.java:42) at com.google.inject.SingleParameterInjector.getAll(SingleParameterInjector.java:66) at com.google.inject.ConstructorInjector.construct(ConstructorInjector.java:84) at com.google.inject.ConstructorBindingImpl$Factory.get(ConstructorBindingImpl.java:111) at com.google.inject.FactoryProxy.get(FactoryProxy.java:56) at com.google.inject.ProviderToInternalFactoryAdapter$1.call(ProviderToInternalFactoryAdapter.java:45) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:811) at com.google.inject.ProviderToInternalFactoryAdapter.get(ProviderToInternalFactoryAdapter.java:42) at com.google.inject.Scopes$1$1.get(Scopes.java:54) at com.google.inject.InternalFactoryToProviderAdapter.get(InternalFactoryToProviderAdapter.java:48) at com.google.inject.InjectorImpl$4$1.call(InjectorImpl.java:758) at com.google.inject.InjectorImpl.callInContext(InjectorImpl.java:804) at com.google.inject.InjectorImpl$4.get(InjectorImpl.java:754) at com.google.inject.InjectorImpl.getInstance(InjectorImpl.java:793) at com.mathworks.wizard.WizardLauncher.startWizard(WizardLauncher.java:160) at com.mathworks.wizard.WizardLauncher.start(WizardLauncher.java:75) at com.mathworks.wizard.AbstractLauncher.launch(AbstractLauncher.java:27) at com.mathworks.wizard.AbstractLauncher.launchStandalone(AbstractLauncher.java:18) at com.mathworks.studentinstaller.Launcher.main(Launcher.java:23) Finished After that, nothing happens, although apparently a Matlab window is supposed to open. Is this a problem caused by the fact that I'm running OpenJKD 7 instead of JRE 7u7?

    Read the article

  • ConcurrentDictionary<TKey,TValue> used with Lazy<T>

    - by Reed
    In a recent thread on the MSDN forum for the TPL, Stephen Toub suggested mixing ConcurrentDictionary<T,U> with Lazy<T>.  This provides a fantastic model for creating a thread safe dictionary of values where the construction of the value type is expensive.  This is an incredibly useful pattern for many operations, such as value caches. The ConcurrentDictionary<TKey, TValue> class was added in .NET 4, and provides a thread-safe, lock free collection of key value pairs.  While this is a fantastic replacement for Dictionary<TKey, TValue>, it has a potential flaw when used with values where construction of the value class is expensive. The typical way this is used is to call a method such as GetOrAdd to fetch or add a value to the dictionary.  It handles all of the thread safety for you, but as a result, if two threads call this simultaneously, two instances of TValue can easily be constructed. If TValue is very expensive to construct, or worse, has side effects if constructed too often, this is less than desirable.  While you can easily work around this with locking, Stephen Toub provided a very clever alternative – using Lazy<TValue> as the value in the dictionary instead. This looks like the following.  Instead of calling: MyValue value = dictionary.GetOrAdd( key, () => new MyValue(key)); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We would instead use a ConcurrentDictionary<TKey, Lazy<TValue>>, and write: MyValue value = dictionary.GetOrAdd( key, () => new Lazy<MyValue>( () => new MyValue(key))) .Value; This simple change dramatically changes how the operation works.  Now, if two threads call this simultaneously, instead of constructing two MyValue instances, we construct two Lazy<MyValue> instances. However, the Lazy<T> class is very cheap to construct.  Unlike “MyValue”, we can safely afford to construct this twice and “throw away” one of the instances. We then call Lazy<T>.Value at the end to fetch our “MyValue” instance.  At this point, GetOrAdd will always return the same instance of Lazy<MyValue>.  Since Lazy<T> doesn’t construct the MyValue instance until requested, the actual MyClass instance returned is only constructed once.

    Read the article

  • Different behavior of functors (copies, assignments) in VS2010 (compared with VS2005)

    - by Patrick
    When moving from VS2005 to VS2010 we noticed a performance decrease, which seemed to be caused by additional copies of a functor. The following code illustrates the problem. It is essential to have a map where the value itself is a set. On both the map and the set we defined a comparison functor (which is templated in the example). #include <iostream> #include <map> #include <set> class A { public: A(int i, char c) : m_i(i), m_c(c) { std::cout << "Construct object " << m_c << m_i << std::endl; } A(const A &a) : m_i(a.m_i), m_c(a.m_c) { std::cout << "Copy object " << m_c << m_i << std::endl; } ~A() { std::cout << "Destruct object " << m_c << m_i << std::endl; } void operator= (const A &a) { m_i = a.m_i; m_c = a.m_c; std::cout << "Assign object " << m_c << m_i << std::endl; } int m_i; char m_c; }; class B : public A { public: B(int i) : A(i, 'B') { } static const char s_c = 'B'; }; class C : public A { public: C(int i) : A(i, 'C') { } static const char s_c = 'C'; }; template <class X> class compareA { public: compareA() : m_i(999) { std::cout << "Construct functor " << X::s_c << m_i << std::endl; } compareA(const compareA &a) : m_i(a.m_i) { std::cout << "Copy functor " << X::s_c << m_i << std::endl; } ~compareA() { std::cout << "Destruct functor " << X::s_c << m_i << std::endl; } void operator= (const compareA &a) { m_i = a.m_i; std::cout << "Assign functor " << X::s_c << m_i << std::endl; } bool operator() (const X &x1, const X &x2) const { std::cout << "Comparing object " << x1.m_i << " with " << x2.m_i << std::endl; return x1.m_i < x2.m_i; } private: int m_i; }; typedef std::set<C, compareA<C> > SetTest; typedef std::map<B, SetTest, compareA<B> > MapTest; int main() { int i = 0; std::cout << "--- " << i++ << std::endl; MapTest mapTest; std::cout << "--- " << i++ << std::endl; SetTest &setTest = mapTest[0]; std::cout << "--- " << i++ << std::endl; } If I compile this code with VS2005 I get the following output: --- 0 Construct functor B999 Copy functor B999 Copy functor B999 Destruct functor B999 Destruct functor B999 --- 1 Construct object B0 Construct functor C999 Copy functor C999 Copy functor C999 Destruct functor C999 Destruct functor C999 Copy object B0 Copy functor C999 Copy functor C999 Copy functor C999 Destruct functor C999 Destruct functor C999 Copy object B0 Copy functor C999 Copy functor C999 Copy functor C999 Destruct functor C999 Destruct functor C999 Destruct functor C999 Destruct object B0 Destruct functor C999 Destruct object B0 --- 2 If I compile this with VS2010, I get the following output: --- 0 Construct functor B999 Copy functor B999 Copy functor B999 Destruct functor B999 Destruct functor B999 --- 1 Construct object B0 Construct functor C999 Copy functor C999 Copy functor C999 Destruct functor C999 Destruct functor C999 Copy object B0 Copy functor C999 Copy functor C999 Copy functor C999 Destruct functor C999 Destruct functor C999 Copy functor C999 Assign functor C999 Assign functor C999 Destruct functor C999 Copy object B0 Copy functor C999 Copy functor C999 Copy functor C999 Destruct functor C999 Destruct functor C999 Copy functor C999 Assign functor C999 Assign functor C999 Destruct functor C999 Destruct functor C999 Destruct object B0 Destruct functor C999 Destruct object B0 --- 2 The output for the first statement (constructing the map) is identical. The output for the second statement (creating the first element in the map and getting a reference to it), is much bigger in the VS2010 case: Copy constructor of functor: 10 times vs 8 times Assignment of functor: 2 times vs. 0 times Destructor of functor: 10 times vs 8 times My questions are: Why does the STL copy a functor? Isn't it enough to construct it once for every instantiation of the set? Why is the functor constructed more in the VS2010 case than in the VS2005 case? (didn't check VS2008) And why is it assigned two times in VS2010 and not in VS2005? Are there any tricks to avoid the copy of functors? I saw a similar question at http://stackoverflow.com/questions/2216041/prevent-unnecessary-copies-of-c-functor-objects but I'm not sure that's the same question. Thanks in advance, Patrick

    Read the article

  • Is it possible to create your own custom locale

    - by smerlin
    Since Windows doesnt have a C++ locale with UTF8 support by default, i would like to construct a custom locale object which supports UTF8 (by creating it with a custom ctype facet). How can i construct a locale object with a my own ctype implementation (i only found functions to construct a locale using an already existing locale as base..) If C++ does not support construction of locales with a custom ctype facet at all, why is that so ?

    Read the article

  • Quickly Warning

    - by bradjones
    Every time I run my application I receive these warning errors can anyone tell me what is causing them? $ quickly run /usr/lib/python2.7/dist-packages/gi/overrides/Gtk.py:391: Warning: g_object_set_property: construct property "type" for object `Window' can't be set after construction Gtk.Window.__init__(self, type=type, **kwds) /usr/lib/python2.7/dist-packages/gi/overrides/Gtk.py:391: Warning: g_object_set_property: construct property "type" for object `AppWindow' can't be set after construction Gtk.Window.__init__(self, type=type, **kwds)

    Read the article

  • Is this a problem typically solved with IOC?

    - by Dirk
    My current application allows users to define custom web forms through a set of admin screens. it's essentially an EAV type application. As such, I can't hard code HTML or ASP.NET markup to render a given page. Instead, the UI requests an instance of a Form object from the service layer, which in turn constructs one using a several RDMBS tables. Form contains the kind of classes you would expect to see in such a context: Form= IEnumerable<FormSections>=IEnumerable<FormFields> Here's what the service layer looks like: public class MyFormService: IFormService{ public Form OpenForm(int formId){ //construct and return a concrete implementation of Form } } Everything works splendidly (for a while). The UI is none the wiser about what sections/fields exist in a given form: It happily renders the Form object it receives into a functional ASP.NET page. A few weeks later, I get a new requirement from the business: When viewing a non-editable (i.e. read-only) versions of a form, certain field values should be merged together and other contrived/calculated fields should are added. No problem I say. Simply amend my service class so that its methods are more explicit: public class MyFormService: IFormService{ public Form OpenFormForEditing(int formId){ //construct and return a concrete implementation of Form } public Form OpenFormForViewing(int formId){ //construct and a concrete implementation of Form //apply additional transformations to the form } } Again everything works great and balance has been restored to the force. The UI continues to be agnostic as to what is in the Form, and our separation of concerns is achieved. Only a few short weeks later, however, the business puts out a new requirement: in certain scenarios, we should apply only some of the form transformations I referenced above. At this point, it feels like the "explicit method" approach has reached a dead end, unless I want to end up with an explosion of methods (OpenFormViewingScenario1, OpenFormViewingScenario2, etc). Instead, I introduce another level of indirection: public interface IFormViewCreator{ void CreateView(Form form); } public class MyFormService: IFormService{ public Form OpenFormForEditing(int formId){ //construct and return a concrete implementation of Form } public Form OpenFormForViewing(int formId, IFormViewCreator formViewCreator){ //construct a concrete implementation of Form //apply transformations to the dynamic field list return formViewCreator.CreateView(form); } } On the surface, this seems like acceptable approach and yet there is a certain smell. Namely, the UI, which had been living in ignorant bliss about the implementation details of OpenFormForViewing, must possess knowledge of and create an instance of IFormViewCreator. My questions are twofold: Is there a better way to achieve the composability I'm after? (perhaps by using an IoC container or a home rolled factory to create the concrete IFormViewCreator)? Did I fundamentally screw up the abstraction here?

    Read the article

  • How do I work with constructs in PHPUnit?

    - by Ben Dauphinee
    I am new into PHPUnit, and just digging through the manual. I cannot find a decent example of how to build a complete test from end to end though, and so, am left with questions. One of these is how can I prep my environment to properly test my code? I am trying to figure out how to properly pass various configuration values needed for both the test setup/teardown methods, and the configs for the class itself. // How can I set these variables on testing start? protected $_db = null; protected $_config = null; // So that this function runs properly? public function setUp(){ $this->_acl = new acl( $this->_db, // The database connection for the class passed // from whatever test construct $this->_config // Config values passed in from construct ); } // Can I just drop in a construct like this, and have it work properly? // And if so, how can I set the construct call properly? public function __construct( Zend_Db_Adapter_Abstract $db, $config = array(), $baselinedatabase = NULL, $databaseteardown = NULL ){ $this->_db = $db; $this->_config = $config; $this->_baselinedatabase = $baselinedatabase; $this->_databaseteardown = $databaseteardown; } // Or is the wrong idea to be pursuing?

    Read the article

  • How are Flash library symbols constructed? Why are width/height already available in constructor?

    - by Triynko
    Suppose I draw a square on the stage, convert it to a symbol, export it for ActionScript with a classname of "MySquare" (and of course a base class of MovieClip). How is it that in the MySquare constructor, the width and height of this MovieClip are already available? In fact, any named instances in the clip are also available. I'm confused about how the Flash player seems to be able to pre-construct my movie clip by populating its properties and child clips before my constructor for the class ever runs. I thought that it would have to first construct the clip, calling my constructor code, and then construct and add any children, but obviously the player is doing something special for clips designed in the Flash authoring environment.

    Read the article

  • Android: Constructing a triangle based on Geographical information

    - by Aidan
    Hi Guys, I'm constructing a geolocation based application and I'm trying to figure out a way to make my application realise when a user is facing the direction of the given location (a particular long / lat co-ord). I've got the math figured, I just have the triangle to construct. Here's a further clarification of what I want to do.. I just want to know is there a way to get java to construct 2 other co-ordinates based on my orientation in relation to true north and my current co-ordinate? I'd like to construct a tri-angle, 45 degrees out each way of my current location (one of the points) and 1 kilometer in that direction. The problem is I don't know how to make Android/Java recognise that I want to find that point in the direction I'm currently facing.. Anyone got any ideas?

    Read the article

  • Any side effect of not using USES_CONVERSION

    - by Yan Cheng CHEOK
    Recently, I have a utilities function of // T2CA #include "ATLCONV.H" std::string Utils::CString2String(const CString& cString) { #if _MSC_VER > 1200 // Convert a TCHAR string to a LPCSTR // construct a std::string using the LPCSTR input CT2CA tmp(cString); std::string strStd (tmp); #else // Deprecated in VC2008. // construct a std::string using the LPCSTR input std::string strStd (T2CA (cString)); #endif return strStd; } I do several simple test it seems work fine. However, when I google around, I see most usage of T2CA in VC6, before they call, they will invoke USES_CONVERSION; Is there any thing I had missed out? Shall I invoke my function by : #else // Deprecated in VC2008. // construct a std::string using the LPCSTR input USES_CONVERSION; std::string strStd (T2CA (cString)); #endif

    Read the article

  • naming a method - using set() when *not* setting a property?

    - by user151841
    Is setX() method name appropriate for only for setting class property X? For instance, I have a class where the output is a string of an html table. Before you can you can call getTable, you have to call setTable(), which just looks at a other properties and decides how to construct the table. It doesn't actually directly set any class property -- only causes the property to be set. When it's called, the class will construct strHtmlTable, but you can't specify it. So, calling it setTable breaks the convention of get and set being interfaces for class properties. Is there another naming convention for this kind of method? Edit: in this particular class, there are at least two ( and in total 8 optional ) other methods that must be called before the class knows everything it needs to to construct the table. I chose to have the data set as separate methods rather than clutter up the __construct() with 8 optional parameters which I'll never remember the order of.

    Read the article

  • Are unspecified and undefined behavior required to be consistent between compiles?

    - by sharptooth
    Let's pretend my program contains a specific construct the C++ Standard states to be unspecified behavior. This basically means the implementation has to do something reasonable but is allowed not to document it. But is the implementation required to produce the same behavior every time it compiles a specific construct with unspecified behavior or is it allowed to produce different behavior in different compiles? What about undefined behavior? Let's pretend my program contains a construct that is UB according to the Standard. The implementation is allowed to exhibit any behavior. But can this behavior differ between compiles of the same program on the same compiler with same settings in the same environment? In other words, if I dereference a null pointer on line 78 in file X.cpp and the implementation formats the drive in such case does it mean that it will do the same after the program is recompiled?

    Read the article

  • MEF CompositionInitializer for WPF

    - by Reed
    The Managed Extensibility Framework is an amazingly useful addition to the .NET Framework.  I was very excited to see System.ComponentModel.Composition added to the core framework.  Personally, I feel that MEF is one tool I’ve always been missing in my .NET development. Unfortunately, one perfect scenario for MEF tends to fall short of it’s full potential is in Windows Presentation Foundation development.  In particular, there are many times when the XAML parser constructs objects in WPF development, which makes composition of those parts difficult.  The current release of MEF (Preview Release 9) addresses this for Silverlight developers via System.ComponentModel.Composition.CompositionInitializer.  However, there is no equivalent class for WPF developers. The CompositionInitializer class provides the means for an object to compose itself.  This is very useful with WPF and Silverlight development, since it allows a View, such as a UserControl, to be generated via the standard XAML parser, and still automatically pull in the appropriate ViewModel in an extensible manner.  Glenn Block has demonstrated the usage for Silverlight in detail, but the same issues apply in WPF. As an example, let’s take a look at a very simple case.  Take the following XAML for a Window: <Window x:Class="WpfApplication1.MainView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="220" Width="300"> <Grid> <TextBlock Text="{Binding TheText}" /> </Grid> </Window> This does nothing but create a Window, add a simple TextBlock control, and use it to display the value of our “TheText” property in our DataContext class.  Since this is our main window, WPF will automatically construct and display this Window, so we need to handle constructing the DataContext and setting it ourselves. We could do this in code or in XAML, but in order to do it directly, we would need to hard code the ViewModel type directly into our XAML code, or we would need to construct the ViewModel class and set it in the code behind.  Both have disadvantages, and the disadvantages grow if we’re using MEF to compose our ViewModel. Ideally, we’d like to be able to have MEF construct our ViewModel for us.  This way, it can provide any construction requirements for our ViewModel via [ImportingConstructor], and it can handle fully composing the imported properties on our ViewModel.  CompositionInitializer allows this to occur. We use CompositionInitializer within our View’s constructor, and use it for self-composition of our View.  Using CompositionInitializer, we can modify our code behind to: public partial class MainView : Window { public MainView() { InitializeComponent(); CompositionInitializer.SatisfyImports(this); } [Import("MainViewModel")] public object ViewModel { get { return this.DataContext; } set { this.DataContext = value; } } } We then can add an Export on our ViewModel class like so: [Export("MainViewModel")] public class MainViewModel { public string TheText { get { return "Hello World!"; } } } MEF will automatically compose our application, decoupling our ViewModel injection to the DataContext of our View until runtime.  When we run this, we’ll see: There are many other approaches for using MEF to wire up the extensible parts within your application, of course.  However, any time an object is going to be constructed by code outside of your control, CompositionInitializer allows us to continue to use MEF to satisfy the import requirements of that object. In order to use this from WPF, I’ve ported the code from MEF Preview 9 and Glenn Block’s (now obsolete) PartInitializer port to Windows Presentation Foundation.  There are some subtle changes from the Silverlight port, mainly to handle running in a desktop application context.  The default behavior of my port is to construct an AggregateCatalog containing a DirectoryCatalog set to the location of the entry assembly of the application.  In addition, if an “Extensions” folder exists under the entry assembly’s directory, a second DirectoryCatalog for that folder will be included.  This behavior can be overridden by specifying a CompositionContainer or one or more ComposablePartCatalogs to the System.ComponentModel.Composition.Hosting.CompositionHost static class prior to the first use of CompositionInitializer. Please download CompositionInitializer and CompositionHost for VS 2010 RC, and contact me with any feedback. Composition.Initialization.Desktop.zip Edit on 3/29: Glenn Block has since updated his version of CompositionInitializer (and ExportFactory<T>!), and made it available here: http://cid-f8b2fd72406fb218.skydrive.live.com/self.aspx/blog/Composition.Initialization.Desktop.zip This is a .NET 3.5 solution, and should soon be pushed to CodePlex, and made available on the main MEF site.

    Read the article

  • Parallelism in .NET – Part 16, Creating Tasks via a TaskFactory

    - by Reed
    The Task class in the Task Parallel Library supplies a large set of features.  However, when creating the task, and assigning it to a TaskScheduler, and starting the Task, there are quite a few steps involved.  This gets even more cumbersome when multiple tasks are involved.  Each task must be constructed, duplicating any options required, then started individually, potentially on a specific scheduler.  At first glance, this makes the new Task class seem like more work than ThreadPool.QueueUserWorkItem in .NET 3.5. In order to simplify this process, and make Tasks simple to use in simple cases, without sacrificing their power and flexibility, the Task Parallel Library added a new class: TaskFactory. The TaskFactory class is intended to “Provide support for creating and scheduling Task objects.”  Its entire purpose is to simplify development when working with Task instances.  The Task class provides access to the default TaskFactory via the Task.Factory static property.  By default, TaskFactory uses the default TaskScheduler to schedule tasks on a ThreadPool thread.  By using Task.Factory, we can automatically create and start a task in a single “fire and forget” manner, similar to how we did with ThreadPool.QueueUserWorkItem: Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides us with the same level of simplicity we had with ThreadPool.QueueUserWorkItem, but even more power.  For example, we can now easily wait on the task: // Start our task on a background thread var task = Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); // Do other work on the main thread, // while the task above executes in the background this.ExecuteWorkSynchronously(); // Wait for the background task to finish task.Wait(); TaskFactory simplifies creation and startup of simple background tasks dramatically. In addition to using the default TaskFactory, it’s often useful to construct a custom TaskFactory.  The TaskFactory class includes an entire set of constructors which allow you to specify the default configuration for every Task instance created by that factory.  This is particularly useful when using a custom TaskScheduler.  For example, look at the sample code for starting a task on the UI thread in Part 15: // Given the following, constructed on the UI thread // TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // When inside a background task, we can do string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); This is actually quite a bit more complicated than necessary.  When we create the uiScheduler instance, we can use that to construct a TaskFactory that will automatically schedule tasks on the UI thread.  To do that, we’d create the following on our main thread, prior to constructing our background tasks: // Construct a task scheduler from the current SynchronizationContext (UI thread) var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Construct a new TaskFactory using our UI scheduler var uiTaskFactory = new TaskFactory(uiScheduler); If we do this, when we’re on a background thread, we can use this new TaskFactory to marshal a Task back onto the UI thread.  Our previous code simplifies to: // When inside a background task, we can do string status = GetUpdatedStatus(); // Update our UI uiTaskFactory.StartNew( () => statusLabel.Text = status); Notice how much simpler this becomes!  By taking advantage of the convenience provided by a custom TaskFactory, we can now marshal to set data on the UI thread in a single, clear line of code!

    Read the article

  • Critique of SEO of this HTML

    - by Tom Gullen
    I'm designing a new site which I want to be as SEO friendly as possible, fast and responsive, semantic and very accessible. A lot of these things, embarrassingly are quite new to me. Have I miss applied anything? I want the template to be perfect. Live demo: http://69.24.73.172/demos/newDemo/ HTML: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8" /> <title>Welcome to Scirra.com</title> <meta name="description" content="Construct 2, the HTML5 games creator." /> <meta name="keywords" content="game maker, game builder, html5, create games, games creator" /> <link rel="stylesheet" href="css/default.css" type="text/css" /> <link rel="stylesheet" href="plugins/coin-slider/coin-slider-styles.css" type="text/css" /> </head> <body> <div class="topBar"></div> <div class="mainBox"> <header> <div class="headWrapper"> <div class="s searchWrap"> <input type="text" name="SearchBox" id="SearchBox" tabindex="1" /> <div class="s searchIco"></div> </div> <!-- Logo placeholder --> </div> <div class="menuWrapper"><nav> <ul class="mainMenu"> <li><a href="#">Home</a></li> <li><a href="#">Forum</a></li> <li><a href="#" class="mainSelected">Construct</a></li> <li><a href="#">Arcade</a></li> <li><a href="#">Manual</a></li> </ul> <ul class="underMenu"> <li><a href="#">Homepage</a></li> <li><a href="#" class="underSelected">Construct</a></li> <li><a href="#">Products</a></li> <li><a href="#">Community Forum</a></li> <li><a href="#">Contact Us</a></li> </ul> </nav></div> </header> <div class="contentWrapper"> <div class="wideCol"> <div id="coin-slider" class="slideShowWrapper"> <a href="#" target="_blank"> <img src="images/screenshot1.jpg" alt="Screenshot" /> <span> Scirra software allows you to bring your imagination to life </span> </a> <a href="#"> <img src="images/screenshot2.jpg" alt="Screenshot" /> <span> Export your creations to HTML5 pages </span> </a> <a href="#"> <img src="images/screenshot3.jpg" alt="Screenshot" /> <span> Another description of some image </span> </a> <a href="#"> <img src="images/screenshot4.jpg" alt="Screenshot" /> <span> Something motivational to tell people </span> </a> </div> <div class="newsWrapper"> <h2>Latest from Twitter</h2> <div id="twitterFeed"> <p>The news on the block is this. Something has happened some news or something. <span class="smallDate">About 6 hours ago</span></p> <p>Another thing has happened lets tell the world some news or something. Lots to think about. Lots to do.<span class="smallDate">About 6 hours ago</span></p> <p>Shocker! Santa Claus is not real. This is breaking news, we must spread it. <span class="smallDate">About 6 hours ago</span></p> </div> </div> </div> <div class="thinCol"> <h1>Main Heading</h1> <p>Some paragraph goes here. It tells you about the picture. Cool! Have you thought about downloading Construct 2? Well you can download it with the link below. This column will expand vertically.</p> <h3>Help Me!</h3> <p>This column will keep expanging and expanging. It pads stuff out to make other things look good imo.</p> <h3>Why Download?</h3> <p>As well as other features, we also have some other features. Check out our <a href="#">other features</a>. Each of our other features is really cool and there to help everyone suceed.</p> <a href="#" class="s downloadBox" title="Download Construct 2 Now"> <div class="downloadHead">Download</div> <div class="downloadSize">24.5 MB</div> </a> </div> <div class="clear"></div> <h2>This Weeks Spotlight</h2> <div class="halfColWrapper"> <img src="images/spotlight1.png" class="spotLightImg" alt="Spotlight User" /> <p>Our spotlight member this week is Pooh-Bah. He writes good stuff. Read it. <a class="moreInfoLink" href="#">Learn More</a></p> </div> <div class="halfColWrapper r"> <img src="images/spotlight2.png" class="spotLightImg" alt="Spotlight Game" /> <p>Killer Bears is a scary ass game from JimmyJones. How many bears can you escape from? <a class="moreInfoLink" href="#">Learn More</a></p> </div> <div class="clear"></div> </div> </div><div class="mainEnder"></div> <footer> <div class="footerWrapper"> <div class="footerBox"> <div class="footerItem"> <h4>Community</h4> <ul> <li><a href="#">The Blog</a></li> <li><a href="#">Community Forum</a></li> <li><a href="#">RSS Feed</a></li> <li> <a class="s footIco facebook" href="http://www.facebook.com/ScirraOfficial" target="_blank" title="Visit Scirra on Facebook"></a> <a class="s footIco twitter" href="http://twitter.com/Scirra" target="_blank" title="Follow Scirra on Twitter"></a> <a class="s footIco youtube" href="http://www.youtube.com/user/ScirraVideos" target="_blank" title="Visit Scirra on Youtube"></a> </li> </ul> </div> <div class="footerItem"> <h4>About Us</h4> <ul> <li><a href="#">Contact Information</a></li> <li><a href="#">Advertising</a></li> <li><a href="#">History</a></li> <li><a href="#">Privacy Policy</a></li> <li><a href="#">Terms and Conditions</a></li> </ul> </div> <div class="footerItem"> <h4>Want to Help?</h4> <p>You can contribute to the community <a href="#">in lots of ways</a>. We have a large active friendly community, and there are lots of ways to join in!</p> <a href="#" class="ralign"><strong>Learn More</strong></a> </div> <div class="clear"></div> </div> </div> <div class="copyright"> Copyright &copy; 2011 Scirra.com. All rights reserved. </div> </footer> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js"></script> <script type="text/javascript" src="js/common.js"></script> <script type="text/javascript" src="plugins/coin-slider/coin-slider.min.js"></script> <script type="text/javascript" src="js/homepage.js"></script> </body> </html>

    Read the article

  • What program should i use for Ludum Dare?

    - by mFontoura
    I want to participate for the first time on Ludum Dare, but i'm not confortable yet with a language to pick one for making a game on a weekend. So i was looking for a program 'gamemaker' style, just to make something for LD. I was going for Construct 2, but i use Linux and they don't have a linux version. So the alternative i use is Stencyl, witch is great and probably is what i'm going to use. However, i wanted to know if there is something similar and better for Linux. Also, if i get a computer with Win8, is it worth the trouble for Construct 2?

    Read the article

  • Any open source editor to make video games online without programming knowledge?

    - by chelder
    With Scratch we can create video games online, from its web platform, and publish them on the same web. I could download its source code and use it, as many others already did (see Scratch modifications). Unfortunately, we need programming knowledge to use it. Actually, Scratch is mainly for teaching kids to code. I also found editors like Construct 2, GameSalad Creator and many others (just type on Google: create a video game without programming). With those editors we can create video games without coding. Unfortunately they are neither open source nor web platform. They need to be installed on Windows or Mac. Do you know some editor like Construct 2 or GameSalad Creator but open source and executable from a web server? Maybe some HTML5 game engine can do it?

    Read the article

  • What are the typical applications of Lisp macros?

    - by Giorgio
    I am trying to learn some LISP and I have read a lot about the importance of LISP macros so I would like to get some working experience with them. Can you suggest a practical application area that would allow me to use macros to solve a real-world problem, and to understand the usefulness of this programming construct? NOTE This is not a generic what project should I do next question. I am interested to understand which kinds of problems are typically solved by means of LISP macros. E.g., are they good for implementing abstract data types? Why was this construct added to the language? What kinds of problems does it solve that cannot be solved by means of simple functions?

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >