Search Results

Search found 228 results on 10 pages for 'datacontract'.

Page 6/10 | < Previous Page | 2 3 4 5 6 7 8 9 10  | Next Page >

  • WCF Service Problem Only in Production when return larger objects

    - by Ronnie Overby
    First, here's my service contract: [ServiceContract] public interface IUpdateService { [OperationContract] IEnumerable<SoftwareUpdate> GetUpdates(string version); [OperationContract] bool AreUpdatesAvailable(string version); } And here's SoftwareUpdate: [DataContract] public class SoftwareUpdate { [DataMember] public Version Version { get; set; } [DataMember] public byte[] UpdateArchive { get; set; } } The problem I am having is that, in production, as the UpdateArchive property begins to contain more data.

    Read the article

  • Mapping the System.Exception with FaultException

    - by user357342
    I have used exception sheilding feature of application block, to map System.Exception with class that is marked as DataContract. It works very well. But When I have mapped the System.Exception with FaultException, I got the below error message. "An error has occurred while consuming this service. Please contact your administrator for more information. Error ID: fe2d28b5-8d26-430e-baf4-fe4b39da853c" Please let me know whether I can map the System.Exception with FaultException

    Read the article

  • Designing WCF interface: no out or ref parameters

    - by Captain Comic
    I have a WCF service and web client. Web service implements one method SubmitOrders. This method takes a collection of orders. The problem is that service must return an array of results for each order - true or false. Marking WCF paramters as out or ref makes no sense. What would you recommend? [ServiceContact] public bool SubmitOrders(OrdersInfo) [DataContract] public class OrdersInfo { Order[] Orders; }

    Read the article

  • Linq 2 SQL using base class and WCF

    - by Gena Verdel
    Hi all. I have the following problem: I'm using L2S for generating entity classes. All these classes share the same property ID which is autonumber. So I figured to put this property to base class and extend all entity classes from the base one. In order to be able to read the value I'm using the override modifier on this property in each and every entity class. Up to now it's live and kicking. Then I decided to introduce another tier - services using WCF approach. I've modified the Serialization mode to Unidirectional (and added the IsReference=true attribute to enable two directions), also added [DataContract] attribute to the BaseObject class. WCF is able to transport the whole object but one property , which is ID. Applying [DataMember] attribute on ID property at the base class resulted in nothing. Am I missing something? Is what I'm trying to achieve possible at all? [DataContract()] abstract public class BaseObject : IIccObject public virtual long ID { get; set; } [Table(Name="dbo.Blocks")] [DataContract(IsReference=true)] public partial class Block : INotifyPropertyChanging, INotifyPropertyChanged { private static PropertyChangingEventArgs emptyChangingEventArgs = new PropertyChangingEventArgs(String.Empty); private long _ID; private int _StatusID; private string _Name; private bool _IsWithControlPoints; private long _DivisionID; private string _SHAPE; private EntitySet<BlockByWorkstation> _BlockByWorkstations; private EntitySet<PlanningPointAppropriation> _PlanningPointAppropriations; private EntitySet<Neighbor> _Neighbors; private EntitySet<Neighbor> _Neighbors1; private EntitySet<Task> _Tasks; private EntitySet<PlanningPointByBlock> _PlanningPointByBlocks; private EntityRef<Division> _Division; private bool serializing; #region Extensibility Method Definitions partial void OnLoaded(); partial void OnValidate(System.Data.Linq.ChangeAction action); partial void OnCreated(); partial void OnIDChanging(long value); partial void OnIDChanged(); partial void OnStatusIDChanging(int value); partial void OnStatusIDChanged(); partial void OnNameChanging(string value); partial void OnNameChanged(); partial void OnIsWithControlPointsChanging(bool value); partial void OnIsWithControlPointsChanged(); partial void OnDivisionIDChanging(long value); partial void OnDivisionIDChanged(); partial void OnSHAPEChanging(string value); partial void OnSHAPEChanged(); #endregion public Block() { this.Initialize(); } [Column(Storage="_ID", AutoSync=AutoSync.OnInsert, DbType="BigInt NOT NULL IDENTITY", IsPrimaryKey=true, IsDbGenerated=true)] [DataMember(Order=1)] public override long ID { get { return this._ID; } set { if ((this._ID != value)) { this.OnIDChanging(value); this.SendPropertyChanging(); this._ID = value; this.SendPropertyChanged("ID"); this.OnIDChanged(); } } } [Column(Storage="_StatusID", DbType="Int NOT NULL")] [DataMember(Order=2)] public int StatusID { get { return this._StatusID; } set { if ((this._StatusID != value)) { this.OnStatusIDChanging(value); this.SendPropertyChanging(); this._StatusID = value; this.SendPropertyChanged("StatusID"); this.OnStatusIDChanged(); } } } [Column(Storage="_Name", DbType="NVarChar(255)")] [DataMember(Order=3)] public string Name { get { return this._Name; } set { if ((this._Name != value)) { this.OnNameChanging(value); this.SendPropertyChanging(); this._Name = value; this.SendPropertyChanged("Name"); this.OnNameChanged(); } } } [Column(Storage="_IsWithControlPoints", DbType="Bit NOT NULL")] [DataMember(Order=4)] public bool IsWithControlPoints { get { return this._IsWithControlPoints; } set { if ((this._IsWithControlPoints != value)) { this.OnIsWithControlPointsChanging(value); this.SendPropertyChanging(); this._IsWithControlPoints = value; this.SendPropertyChanged("IsWithControlPoints"); this.OnIsWithControlPointsChanged(); } } } [Column(Storage="_DivisionID", DbType="BigInt NOT NULL")] [DataMember(Order=5)] public long DivisionID { get { return this._DivisionID; } set { if ((this._DivisionID != value)) { if (this._Division.HasLoadedOrAssignedValue) { throw new System.Data.Linq.ForeignKeyReferenceAlreadyHasValueException(); } this.OnDivisionIDChanging(value); this.SendPropertyChanging(); this._DivisionID = value; this.SendPropertyChanged("DivisionID"); this.OnDivisionIDChanged(); } } } [Column(Storage="_SHAPE", DbType="Text", UpdateCheck=UpdateCheck.Never)] [DataMember(Order=6)] public string SHAPE { get { return this._SHAPE; } set { if ((this._SHAPE != value)) { this.OnSHAPEChanging(value); this.SendPropertyChanging(); this._SHAPE = value; this.SendPropertyChanged("SHAPE"); this.OnSHAPEChanged(); } } } [Association(Name="Block_BlockByWorkstation", Storage="_BlockByWorkstations", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=7, EmitDefaultValue=false)] public EntitySet<BlockByWorkstation> BlockByWorkstations { get { if ((this.serializing && (this._BlockByWorkstations.HasLoadedOrAssignedValues == false))) { return null; } return this._BlockByWorkstations; } set { this._BlockByWorkstations.Assign(value); } } [Association(Name="Block_PlanningPointAppropriation", Storage="_PlanningPointAppropriations", ThisKey="ID", OtherKey="MasterBlockID")] [DataMember(Order=8, EmitDefaultValue=false)] public EntitySet<PlanningPointAppropriation> PlanningPointAppropriations { get { if ((this.serializing && (this._PlanningPointAppropriations.HasLoadedOrAssignedValues == false))) { return null; } return this._PlanningPointAppropriations; } set { this._PlanningPointAppropriations.Assign(value); } } [Association(Name="Block_Neighbor", Storage="_Neighbors", ThisKey="ID", OtherKey="FirstBlockID")] [DataMember(Order=9, EmitDefaultValue=false)] public EntitySet<Neighbor> Neighbors { get { if ((this.serializing && (this._Neighbors.HasLoadedOrAssignedValues == false))) { return null; } return this._Neighbors; } set { this._Neighbors.Assign(value); } } [Association(Name="Block_Neighbor1", Storage="_Neighbors1", ThisKey="ID", OtherKey="SecondBlockID")] [DataMember(Order=10, EmitDefaultValue=false)] public EntitySet<Neighbor> Neighbors1 { get { if ((this.serializing && (this._Neighbors1.HasLoadedOrAssignedValues == false))) { return null; } return this._Neighbors1; } set { this._Neighbors1.Assign(value); } } [Association(Name="Block_Task", Storage="_Tasks", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=11, EmitDefaultValue=false)] public EntitySet<Task> Tasks { get { if ((this.serializing && (this._Tasks.HasLoadedOrAssignedValues == false))) { return null; } return this._Tasks; } set { this._Tasks.Assign(value); } } [Association(Name="Block_PlanningPointByBlock", Storage="_PlanningPointByBlocks", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=12, EmitDefaultValue=false)] public EntitySet<PlanningPointByBlock> PlanningPointByBlocks { get { if ((this.serializing && (this._PlanningPointByBlocks.HasLoadedOrAssignedValues == false))) { return null; } return this._PlanningPointByBlocks; } set { this._PlanningPointByBlocks.Assign(value); } } [Association(Name="Division_Block", Storage="_Division", ThisKey="DivisionID", OtherKey="ID", IsForeignKey=true, DeleteOnNull=true, DeleteRule="CASCADE")] public Division Division { get { return this._Division.Entity; } set { Division previousValue = this._Division.Entity; if (((previousValue != value) || (this._Division.HasLoadedOrAssignedValue == false))) { this.SendPropertyChanging(); if ((previousValue != null)) { this._Division.Entity = null; previousValue.Blocks.Remove(this); } this._Division.Entity = value; if ((value != null)) { value.Blocks.Add(this); this._DivisionID = value.ID; } else { this._DivisionID = default(long); } this.SendPropertyChanged("Division"); } } } public event PropertyChangingEventHandler PropertyChanging; public event PropertyChangedEventHandler PropertyChanged; protected virtual void SendPropertyChanging() { if ((this.PropertyChanging != null)) { this.PropertyChanging(this, emptyChangingEventArgs); } } protected virtual void SendPropertyChanged(String propertyName) { if ((this.PropertyChanged != null)) { this.PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } private void attach_BlockByWorkstations(BlockByWorkstation entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_BlockByWorkstations(BlockByWorkstation entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_PlanningPointAppropriations(PlanningPointAppropriation entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_PlanningPointAppropriations(PlanningPointAppropriation entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_Neighbors(Neighbor entity) { this.SendPropertyChanging(); entity.FirstBlock = this; } private void detach_Neighbors(Neighbor entity) { this.SendPropertyChanging(); entity.FirstBlock = null; } private void attach_Neighbors1(Neighbor entity) { this.SendPropertyChanging(); entity.SecondBlock = this; } private void detach_Neighbors1(Neighbor entity) { this.SendPropertyChanging(); entity.SecondBlock = null; } private void attach_Tasks(Task entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_Tasks(Task entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_PlanningPointByBlocks(PlanningPointByBlock entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_PlanningPointByBlocks(PlanningPointByBlock entity) { this.SendPropertyChanging(); entity.Block = null; } private void Initialize() { this._BlockByWorkstations = new EntitySet<BlockByWorkstation>(new Action<BlockByWorkstation>(this.attach_BlockByWorkstations), new Action<BlockByWorkstation>(this.detach_BlockByWorkstations)); this._PlanningPointAppropriations = new EntitySet<PlanningPointAppropriation>(new Action<PlanningPointAppropriation>(this.attach_PlanningPointAppropriations), new Action<PlanningPointAppropriation>(this.detach_PlanningPointAppropriations)); this._Neighbors = new EntitySet<Neighbor>(new Action<Neighbor>(this.attach_Neighbors), new Action<Neighbor>(this.detach_Neighbors)); this._Neighbors1 = new EntitySet<Neighbor>(new Action<Neighbor>(this.attach_Neighbors1), new Action<Neighbor>(this.detach_Neighbors1)); this._Tasks = new EntitySet<Task>(new Action<Task>(this.attach_Tasks), new Action<Task>(this.detach_Tasks)); this._PlanningPointByBlocks = new EntitySet<PlanningPointByBlock>(new Action<PlanningPointByBlock>(this.attach_PlanningPointByBlocks), new Action<PlanningPointByBlock>(this.detach_PlanningPointByBlocks)); this._Division = default(EntityRef<Division>); OnCreated(); } [OnDeserializing()] [System.ComponentModel.EditorBrowsableAttribute(EditorBrowsableState.Never)] public void OnDeserializing(StreamingContext context) { this.Initialize(); } [OnSerializing()] [System.ComponentModel.EditorBrowsableAttribute(EditorBrowsableState.Never)] public void OnSerializing(StreamingContext context) { this.serializing = true; } [OnSerialized()] [System.ComponentModel.EditorBrowsableAttribute(EditorBrowsableState.Never)] public void OnSerialized(StreamingContext context) { this.serializing = false; } }

    Read the article

  • Get Asynchronous HttpResponse through Silverlight (F#)

    - by jack2010
    I am a newbie with F# and SL and playing with getting asynchronous HttpResponse through Silverlight. The following is the F# code pieces, which is tested on VS2010 and Window7 and works well, but the improvement is necessary. Any advices and discussion, especially the callback part, are welcome and great thanks. module JSONExample open System open System.IO open System.Net open System.Text open System.Web open System.Security.Authentication open System.Runtime.Serialization [<DataContract>] type Result<'TResult> = { [<field: DataMember(Name="code") >] Code:string [<field: DataMember(Name="result") >] Result:'TResult array [<field: DataMember(Name="message") >] Message:string } // The elements in the list [<DataContract>] type ChemicalElement = { [<field: DataMember(Name="name") >] Name:string [<field: DataMember(Name="boiling_point") >] BoilingPoint:string [<field: DataMember(Name="atomic_mass") >] AtomicMass:string } //http://blogs.msdn.com/b/dsyme/archive/2007/10/11/introducing-f-asynchronous-workflows.aspx //http://lorgonblog.spaces.live.com/blog/cns!701679AD17B6D310!194.entry type System.Net.HttpWebRequest with member x.GetResponseAsync() = Async.FromBeginEnd(x.BeginGetResponse, x.EndGetResponse) type RequestState () = let mutable request : WebRequest = null let mutable response : WebResponse = null let mutable responseStream : Stream = null member this.Request with get() = request and set v = request <- v member this.Response with get() = response and set v = response <- v member this.ResponseStream with get() = responseStream and set v = responseStream <- v let allDone = new System.Threading.ManualResetEvent(false) let getHttpWebRequest (query:string) = let query = query.Replace("'","\"") let queryUrl = sprintf "http://api.freebase.com/api/service/mqlread?query=%s" "{\"query\":"+query+"}" let request : HttpWebRequest = downcast WebRequest.Create(queryUrl) request.Method <- "GET" request.ContentType <- "application/x-www-form-urlencoded" request let GetAsynResp (request : HttpWebRequest) (callback: AsyncCallback) = let myRequestState = new RequestState() myRequestState.Request <- request let asyncResult = request.BeginGetResponse(callback, myRequestState) () // easy way to get it to run syncrnously w/ the asynch methods let GetSynResp (request : HttpWebRequest) : HttpWebResponse = let response = request.GetResponseAsync() |> Async.RunSynchronously downcast response let RespCallback (finish: Stream -> _) (asynchronousResult : IAsyncResult) = try let myRequestState : RequestState = downcast asynchronousResult.AsyncState let myWebRequest1 : WebRequest = myRequestState.Request myRequestState.Response <- myWebRequest1.EndGetResponse(asynchronousResult) let responseStream = myRequestState.Response.GetResponseStream() myRequestState.ResponseStream <- responseStream finish responseStream myRequestState.Response.Close() () with | :? WebException as e -> printfn "WebException raised!" printfn "\n%s" e.Message printfn "\n%s" (e.Status.ToString()) () | _ as e -> printfn "Exception raised!" printfn "Source : %s" e.Source printfn "Message : %s" e.Message () let printResults (stream: Stream)= let result = try use reader = new StreamReader(stream) reader.ReadToEnd(); finally () let data = Encoding.Unicode.GetBytes(result); let stream = new MemoryStream() stream.Write(data, 0, data.Length); stream.Position <- 0L let JsonSerializer = Json.DataContractJsonSerializer(typeof<Result<ChemicalElement>>) let result = JsonSerializer.ReadObject(stream) :?> Result<ChemicalElement> if result.Code<>"/api/status/ok" then raise (InvalidOperationException(result.Message)) else result.Result |> Array.iter(fun element->printfn "%A" element) let test = // Call Query (w/ generics telling it you wand an array of ChemicalElement back, the query string is wackyJSON too –I didn’t build it don’t ask me! let request = getHttpWebRequest "[{'type':'/chemistry/chemical_element','name':null,'boiling_point':null,'atomic_mass':null}]" //let response = GetSynResp request let response = GetAsynResp request (AsyncCallback (RespCallback printResults)) () ignore(test) System.Console.ReadLine() |> ignore

    Read the article

  • How do I manage the technical debate over WCF vs. Web API?

    - by Saeed Neamati
    I'm managing a team of like 15 developers now, and we are stuck at a point on choosing the technology, where the team is broken into two completely opposite teams, debating over usage of WCF vs. Web API. Team A which supports usage of Web API, brings forward these reasons: Web API is just the modern way of writing services (Wikipedia) WCF is an overhead for HTTP. It's a solution for TCP, and Net Pipes, and other protocols WCF models are not POCO, because of [DataContract] & [DataMember] and those attributes SOAP is not as readable and handy as JSON SOAP is an overhead for network compared to JSON (transport over HTTP) No method overloading Team B which supports the usage of WCF, says: WCF supports multiple protocols (via configuration) WCF supports distributed transactions Many good examples and success stories exist for WCF (while Web API is still young) Duplex is excellent for two-way communication This debate is continuing, and I don't know what to do now. Personally, I think that we should use a tool only for its right place of usage. In other words, we'd better use Web API, if we want to expose a service over HTTP, but use WCF when it comes to TCP and Duplex. By searching the Internet, we can't get to a solid result. Many posts exist for supporting WCF, but on the contrary we also find people complaint about it. I know that the nature of this question might sound arguable, but we need some good hints to decide. We're stuck at a point where choosing a technology by chance might make us regret it later. We want to choose with open eyes. Our usage would be mostly for web, and we would expose our services over HTTP. In some cases (say 5 to 10 percent) we might need distributed transactions though. What should I do now? How do I manage this debate in a constructive way?

    Read the article

  • WCF Versioning, Naming and Endpoint URL

    - by Vinothkumar VJ
    I have a WCF Service and a Main Lib1. Say, I have a Save Profile Service. WCF gets data (with predefined data contract) from client and pass the same to the Main Class Lib1, generate response and send it back to client. WCF Method : SaveProfile(ProfileDTO profile) Current Version 1.0 ProfileDTO have the following UserName Password FirstName DOB (In string yyyy-mm-dd) CreatedDate (In string yyyy-mm-dd) Next Version (V2.0) ProfileDTO have the following UserName Password FirstName DOB (In UnixTimeStamp) CreatedDate (In UnixTimeStamp) Version 3.0 ProfileDTO have the following (With change in UserName and Password length validation) UserName Password FirstName DOB (In UnixTimeStamp) CreatedDate (In UnixTimeStamp) In simple we have DataContract and Workflow change between each version 1. How do I name the methods in WCF Service and Main Class Lib1? 2. Do I have to go with any specific pattern for ease development and maintenance? 3. Do I have to have different endpoints for different version? In the above example I have a method named “SaveProfile”. Do I have to name the methods like “SaveProfile1.0”, “SaveProfile2.0”, etc. If that is the case when there is no change between Version “3.0” and “4.0” then there will difficult in maintenance. I’m looking for a approach that will help in ease maintenance

    Read the article

  • Prevent lazy loading in nHibernate

    - by Ciaran
    Hi, I'm storing some blobs in my database, so I have a Document table and a DocumentContent table. Document contains a filename, description etc and has a DocumentContent property. I have a Silverlight client, so I don't want to load up and send the DocumentContent to the client unless I explicity ask for it, but I'm having trouble doing this. I've read the blog post by Davy Brion. I have tried placing lazy=false in my config and removing the virtual access modifier but have had no luck with it as yet. Every time I do a Session.Get(id), the DocumentContent is retrieved via an outer join. I only want this property to be populated when I explicity join onto this table and ask for it. Any help is appreciated. My NHibernate mapping is as follows: <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Jrm.Model" namespace="Jrm.Model"> <class name="JrmDocument" lazy="false"> <id name="JrmDocumentID"> <generator class="native" /> </id> <property name="FileName"/> <property name="Description"/> <many-to-one name="DocumentContent" class="JrmDocumentContent" unique="true" column="JrmDocumentContentID" lazy="false"/> </class> <class name="JrmDocumentContent" lazy="false"> <id name="JrmDocumentContentID"> <generator class="native" /> </id> <property name="Content" type="BinaryBlob" lazy="false"> <column name="FileBytes" sql-type="varbinary(max)"/> </property> </class> </hibernate-mapping> and my classes are: [DataContract] public class JrmDocument : ModelBase { private int jrmDocumentID; private JrmDocumentContent documentContent; private long maxFileSize; private string fileName; private string description; public JrmDocument() { } public JrmDocument(string fileName, long maxFileSize) { DocumentContent = new JrmDocumentContent(File.ReadAllBytes(fileName)); FileName = new FileInfo(fileName).Name; } [DataMember] public virtual int JrmDocumentID { get { return jrmDocumentID; } set { jrmDocumentID = value; OnPropertyChanged("JrmDocumentID"); } } [DataMember] public JrmDocumentContent DocumentContent { get { return documentContent; } set { documentContent = value; OnPropertyChanged("DocumentContent"); } } [DataMember] public virtual long MaxFileSize { get { return maxFileSize; } set { maxFileSize = value; OnPropertyChanged("MaxFileSize"); } } [DataMember] public virtual string FileName { get { return fileName; } set { fileName = value; OnPropertyChanged("FileName"); } } [DataMember] public virtual string Description { get { return description; } set { description = value; OnPropertyChanged("Description"); } } } [DataContract] public class JrmDocumentContent : ModelBase { private int jrmDocumentContentID; private byte[] content; public JrmDocumentContent() { } public JrmDocumentContent(byte[] bytes) { Content = bytes; } [DataMember] public int JrmDocumentContentID { get { return jrmDocumentContentID; } set { jrmDocumentContentID = value; OnPropertyChanged("JrmDocumentContentID"); } } [DataMember] public byte[] Content { get { return content; } set { content = value; OnPropertyChanged("Content"); } } }

    Read the article

  • Why does DataContractJsonSerializer not include generic like JavaScriptSerializer?

    - by Patrick Magee
    So the JavaScriptSerializer was deprecated in favor of the DataContractJsonSerializer. var client = new WebClient(); var json = await client.DownloadStringTaskAsync(url); // http://example.com/api/people/1 // Deprecated, but clean looking and generally fits in nicely with // other code in my app domain that makes use of generics var serializer = new JavaScriptSerializer(); Person p = serializer.Deserialize<Person>(json); // Now have to make use of ugly typeof to get the Type when I // already know the Type at compile type. Why no Generic type T? var serializer = new DataContractJsonSerializer(typeof(Person)); Person p = serializer.ReadObject(json) as Person; The JavaScriptSerializer is nice and allows you to deserialize using a type of T generic in the function name. Understandably, it's been deprecated for good reason, with the DataContractJsonSerializer, you can decorate your Type to be deserialized with various things so it isn't so brittle like the JavaScriptSerializer, for example [DataMember(name = "personName")] public string Name { get; set; } Is there a particular reason why they decided to only allow users to pass in the Type? Type type = typeof(Person); var serializer = new DataContractJsonSerializer(type); Person p = serializer.ReadObject(json) as Person; Why not this? var serializer = new DataContractJsonSerializer(); Person p = serializer.ReadObject<Person>(json); They can still use reflection with the DataContract decorated attributes based on the T that I've specified on the .ReadObject<T>(json)

    Read the article

  • Auto-hydrate your objects with ADO.NET

    - by Jake Rutherford
    Recently while writing the monotonous code for pulling data out of a DataReader to hydrate some objects in an application I suddenly wondered "is this really necessary?" You've probably asked yourself the same question, and many of you have: - Used a code generator - Used a ORM such as Entity Framework - Wrote the code anyway because you like busy work     In most of the cases I've dealt with when making a call to a stored procedure the column names match up with the properties of the object I am hydrating. Sure that isn't always the case, but most of the time it's 1 to 1 mapping.  Given that fact I whipped up the following method of hydrating my objects without having write all of the code. First I'll show the code, and then explain what it is doing.      /// <summary>     /// Abstract base class for all Shared objects.     /// </summary>     /// <typeparam name="T"></typeparam>     [Serializable, DataContract(Name = "{0}SharedBase")]     public abstract class SharedBase<T> where T : SharedBase<T>     {         private static List<PropertyInfo> cachedProperties;         /// <summary>         /// Hydrates derived class with values from record.         /// </summary>         /// <param name="dataRecord"></param>         /// <param name="instance"></param>         public static void Hydrate(IDataRecord dataRecord, T instance)         {             var instanceType = instance.GetType();                         //Caching properties to avoid repeated calls to GetProperties.             //Noticable performance gains when processing same types repeatedly.             if (cachedProperties == null)             {                 cachedProperties = instanceType.GetProperties().ToList();             }                         foreach (var property in cachedProperties)             {                 if (!dataRecord.ColumnExists(property.Name)) continue;                 var ordinal = dataRecord.GetOrdinal(property.Name);                 var isNullable = property.PropertyType.IsGenericType &&                                  property.PropertyType.GetGenericTypeDefinition() == typeof (Nullable<>);                 var isNull = dataRecord.IsDBNull(ordinal);                 var propertyType = property.PropertyType;                 if (isNullable)                 {                     if (!string.IsNullOrEmpty(propertyType.FullName))                     {                         var nullableType = Type.GetType(propertyType.FullName);                         propertyType = nullableType != null ? nullableType.GetGenericArguments()[0] : propertyType;                     }                 }                 switch (Type.GetTypeCode(propertyType))                 {                     case TypeCode.Int32:                         property.SetValue(instance,                                           (isNullable && isNull) ? (int?) null : dataRecord.GetInt32(ordinal), null);                         break;                     case TypeCode.Double:                         property.SetValue(instance,                                           (isNullable && isNull) ? (double?) null : dataRecord.GetDouble(ordinal),                                           null);                         break;                     case TypeCode.Boolean:                         property.SetValue(instance,                                           (isNullable && isNull) ? (bool?) null : dataRecord.GetBoolean(ordinal),                                           null);                         break;                     case TypeCode.String:                         property.SetValue(instance, (isNullable && isNull) ? null : isNull ? null : dataRecord.GetString(ordinal),                                           null);                         break;                     case TypeCode.Int16:                         property.SetValue(instance,                                           (isNullable && isNull) ? (int?) null : dataRecord.GetInt16(ordinal), null);                         break;                     case TypeCode.DateTime:                         property.SetValue(instance,                                           (isNullable && isNull)                                               ? (DateTime?) null                                               : dataRecord.GetDateTime(ordinal), null);                         break;                 }             }         }     }   Here is a class which utilizes the above: [Serializable] [DataContract] public class foo : SharedBase<foo> {     [DataMember]     public int? ID { get; set; }     [DataMember]     public string Name { get; set; }     [DataMember]     public string Description { get; set; }     [DataMember]     public string Subject { get; set; }     [DataMember]     public string Body { get; set; }            public foo(IDataRecord record)     {         Hydrate(record, this);                }     public foo() {} }   Explanation: - Class foo inherits from SharedBase specifying itself as the type. (NOTE SharedBase is abstract here in the event we want to provide additional methods which could be overridden by the instance class) public class foo : SharedBase<foo> - One of the foo class constructors accepts a data record which then calls the Hydrate method on SharedBase passing in the record and itself. public foo(IDataRecord record) {      Hydrate(record, this); } - Hydrate method on SharedBase will use reflection on the object passed in to determine its properties. At the same time, it will effectively cache these properties to avoid repeated expensive reflection calls public static void Hydrate(IDataRecord dataRecord, T instance) {      var instanceType = instance.GetType();      //Caching properties to avoid repeated calls to GetProperties.      //Noticable performance gains when processing same types repeatedly.      if (cachedProperties == null)      {           cachedProperties = instanceType.GetProperties().ToList();      } . . . - Hydrate method on SharedBase will iterate each property on the object and determine if a column with matching name exists in data record foreach (var property in cachedProperties) {      if (!dataRecord.ColumnExists(property.Name)) continue;      var ordinal = dataRecord.GetOrdinal(property.Name); . . . NOTE: ColumnExists is an extension method I put on IDataRecord which I’ll include at the end of this post. - Hydrate method will determine if the property is nullable and whether the value in the corresponding column of the data record has a null value var isNullable = property.PropertyType.IsGenericType && property.PropertyType.GetGenericTypeDefinition() == typeof (Nullable<>); var isNull = dataRecord.IsDBNull(ordinal); var propertyType = property.PropertyType; . . .  - If Hydrate method determines the property is nullable it will determine the underlying type and set propertyType accordingly - Hydrate method will set the value of the property based upon the propertyType   That’s it!!!   The magic here is in a few places. First, you may have noticed the following: public abstract class SharedBase<T> where T : SharedBase<T> This says that SharedBase can be created with any type and that for each type it will have it’s own instance. This is important because of the static members within SharedBase. We want this behavior because we are caching the properties for each type. If we did not handle things in this way only 1 type could be cached at a time, or, we’d need to create a collection that allows us to cache the properties for each type = not very elegant.   Second, in the constructor for foo you may have noticed this (literally): public foo(IDataRecord record) {      Hydrate(record, this); } I wanted the code for auto-hydrating to be as simple as possible. At first I wasn’t quite sure how I could call Hydrate on SharedBase within an instance of the class and pass in the instance itself. Fortunately simply passing in “this” does the trick. I wasn’t sure it would work until I tried it out, and fortunately it did.   So, to actually use this feature when utilizing ADO.NET you’d do something like the following:        public List<foo> GetFoo(int? fooId)         {             List<foo> fooList;             const string uspName = "usp_GetFoo";             using (var conn = new SqlConnection(_dbConnection))             using (var cmd = new SqlCommand(uspName, conn))             {                 cmd.CommandType = CommandType.StoredProcedure;                 cmd.Parameters.Add(new SqlParameter("@FooID", SqlDbType.Int)                                        {Direction = ParameterDirection.Input, Value = fooId});                 conn.Open();                 using (var dr = cmd.ExecuteReader())                 {                     fooList= (from row in dr.Cast<DbDataRecord>()                                             select                                                 new foo(row)                                            ).ToList();                 }             }             return fooList;         }   Nice! Instead of having line after line manually assigning values from data record to an object you simply create a new instance and pass in the data record. Note that there are certainly instances where columns returned from stored procedure do not always match up with property names. In this scenario you can still use the above method and simply do your manual assignments afterward.

    Read the article

  • How to create a new WCF/MVC/jQuery application from scratch

    - by pjohnson
    As a corporate developer by trade, I don't get much opportunity to create from-the-ground-up web sites; usually it's tweaks, fixes, and new functionality to existing sites. And with hobby sites, I often don't find the challenges I run into with enterprise systems; usually it's starting from Visual Studio's boilerplate project and adding whatever functionality I want to play around with, rarely deploying outside my own machine. So my experience creating a new enterprise-level site was a bit dated, and the technologies to do so have come a long way, and are much more ready to go out of the box. My intention with this post isn't so much to provide any groundbreaking insights, but to just tie together a lot of information in one place to make it easy to create a new site from scratch. Architecture One site I created earlier this year had an MVC 3 front end and a WCF 4-driven service layer. Using Visual Studio 2010, these project types are easy enough to add to a new solution. I created a third Class Library project to store common functionality the front end and services layers both needed to access, for example, the DataContract classes that the front end uses to call services in the service layer. By keeping DataContract classes in a separate project, I avoided the need for the front end to have an assembly/project reference directly to the services code, a bit cleaner and more flexible of an SOA implementation. Consuming the service Even by this point, VS has given you a lot. You have a working web site and a working service, neither of which do much but are great starting points. To wire up the front end and the services, I needed to create proxy classes and WCF client configuration information. I decided to use the SvcUtil.exe utility provided as part of the Windows SDK, which you should have installed if you installed VS. VS also provides an Add Service Reference command since the .NET 1.x ASMX days, which I've never really liked; it creates several .cs/.disco/etc. files, some of which contained hardcoded URL's, adding duplicate files (*1.cs, *2.cs, etc.) without doing a good job of cleaning up after itself. I've found SvcUtil much cleaner, as it outputs one C# file (containing several proxy classes) and a config file with settings, and it's easier to use to regenerate the proxy classes when the service changes, and to then maintain all your configuration in one place (your Web.config, instead of the Service Reference files). I provided it a reference to a copy of my common assembly so it doesn't try to recreate the data contract classes, had it use the type List<T> for collections, and modified the output files' names and .NET namespace, ending up with a command like: svcutil.exe /l:cs /o:MyService.cs /config:MyService.config /r:MySite.Common.dll /ct:System.Collections.Generic.List`1 /n:*,MySite.Web.ServiceProxies http://localhost:59999/MyService.svc I took the generated MyService.cs file and drop it in the web project, under a ServiceProxies folder, matching the namespace and keeping it separate from classes I coded manually. Integrating the config file took a little more work, but only needed to be done once as these settings didn't often change. A great thing Microsoft improved with WCF 4 is configuration; namely, you can use all the default settings and not have to specify them explicitly in your config file. Unfortunately, SvcUtil doesn't generate its config file this way. If you just copy & paste MyService.config's contents into your front end's Web.config, you'll copy a lot of settings you don't need, plus this will get unwieldy if you add more services in the future, each with its own custom binding. Really, as the only mandatory settings are the endpoint's ABC's (address, binding, and contract) you can get away with just this: <system.serviceModel>  <client>    <endpoint address="http://localhost:59999/MyService.svc" binding="wsHttpBinding" contract="MySite.Web.ServiceProxies.IMyService" />  </client></system.serviceModel> By default, the services project uses basicHttpBinding. As you can see, I switched it to wsHttpBinding, a more modern standard. Using something like netTcpBinding would probably be faster and more efficient since the client & service are both written in .NET, but it requires additional server setup and open ports, whereas switching to wsHttpBinding is much simpler. From an MVC controller action method, I instantiated the client, and invoked the method for my operation. As with any object that implements IDisposable, I wrapped it in C#'s using() statement, a tidy construct that ensures Dispose gets called no matter what, even if an exception occurs. Unfortunately there are problems with that, as WCF's ClientBase<TChannel> class doesn't implement Dispose according to Microsoft's own usage guidelines. I took an approach similar to Technology Toolbox's fix, except using partial classes instead of a wrapper class to extend the SvcUtil-generated proxy, making the fix more seamless from the controller's perspective, and theoretically, less code I have to change if and when Microsoft fixes this behavior. User interface The MVC 3 project template includes jQuery and some other common JavaScript libraries by default. I updated the ones I used to the latest versions using NuGet, available in VS via the Tools > Library Package Manager > Manage NuGet Packages for Solution... > Updates. I also used this dialog to remove packages I wasn't using. Given that it's smart enough to know the difference between the .js and .min.js files, I was hoping it would be smart enough to know which to include during build and publish operations, but this doesn't seem to be the case. I ended up using Cassette to perform the minification and bundling of my JavaScript and CSS files; ASP.NET 4.5 includes this functionality out of the box. The web client to web server link via jQuery was easy enough. In my JavaScript function, unobtrusively wired up to a button's click event, I called $.ajax, corresponding to an action method that returns a JsonResult, accomplished by passing my model class to the Controller.Json() method, which jQuery helpfully translates from JSON to a JavaScript object.$.ajax calls weren't perfectly straightforward. I tried using the simpler $.post method instead, but ran into trouble without specifying the contentType parameter, which $.post doesn't have. The url parameter is simple enough, though for flexibility in how the site is deployed, I used MVC's Url.Action method to get the URL, then sent this to JavaScript in a JavaScript string variable. If the request needed input data, I used the JSON.stringify function to convert a JavaScript object with the parameters into a JSON string, which MVC then parses into strongly-typed C# parameters. I also specified "json" for dataType, and "application/json; charset=utf-8" for contentType. For success and error, I provided my success and error handling functions, though success is a bit hairier. "Success" in this context indicates whether the HTTP request succeeds, not whether what you wanted the AJAX call to do on the web server was successful. For example, if you make an AJAX call to retrieve a piece of data, the success handler will be invoked for any 200 OK response, and the error handler will be invoked for failed requests, e.g. a 404 Not Found (if the server rejected the URL you provided in the url parameter) or 500 Internal Server Error (e.g. if your C# code threw an exception that wasn't caught). If an exception was caught and handled, or if the data requested wasn't found, this would likely go through the success handler, which would need to do further examination to verify it did in fact get back the data for which it asked. I discuss this more in the next section. Logging and exception handling At this point, I had a working application. If I ran into any errors or unexpected behavior, debugging was easy enough, but of course that's not an option on public web servers. Microsoft Enterprise Library 5.0 filled this gap nicely, with its Logging and Exception Handling functionality. First I installed Enterprise Library; NuGet as outlined above is probably the best way to do so. I needed a total of three assembly references--Microsoft.Practices.EnterpriseLibrary.ExceptionHandling, Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Logging, and Microsoft.Practices.EnterpriseLibrary.Logging. VS links with the handy Enterprise Library 5.0 Configuration Console, accessible by right-clicking your Web.config and choosing Edit Enterprise Library V5 Configuration. In this console, under Logging Settings, I set up a Rolling Flat File Trace Listener to write to log files but not let them get too large, using a Text Formatter with a simpler template than that provided by default. Logging to a different (or additional) destination is easy enough, but a flat file suited my needs. At this point, I verified it wrote as expected by calling the Microsoft.Practices.EnterpriseLibrary.Logging.Logger.Write method from my C# code. With those settings verified, I went on to wire up Exception Handling with Logging. Back in the EntLib Configuration Console, under Exception Handling, I used a LoggingExceptionHandler, setting its Logging Category to the category I already had configured in the Logging Settings. Then, from code (e.g. a controller's OnException method, or any action method's catch block), I called the Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.ExceptionPolicy.HandleException method, providing the exception and the exception policy name I had configured in the Exception Handling Settings. Before I got this configured correctly, when I tried it out, nothing was logged. In working with .NET, I'm used to seeing an exception if something doesn't work or isn't set up correctly, but instead working with these EntLib modules reminds me more of JavaScript (before the "use strict" v5 days)--it just does nothing and leaves you to figure out why, I presume due in part to the listener pattern Microsoft followed with the Enterprise Library. First, I verified logging worked on its own. Then, verifying/correcting where each piece wires up to the next resolved my problem. Your C# code calls into the Exception Handling module, referencing the policy you pass the HandleException method; that policy's configuration contains a LoggingExceptionHandler that references a logCategory; that logCategory should be added in the loggingConfiguration's categorySources section; that category references a listener; that listener should be added in the loggingConfiguration's listeners section, which specifies the name of the log file. One final note on error handling, as the proper way to handle WCF and MVC errors is a whole other very lengthy discussion. For AJAX calls to MVC action methods, depending on your configuration, an exception thrown here will result in ASP.NET'S Yellow Screen Of Death being sent back as a response, which is at best unnecessarily and uselessly verbose, and at worst a security risk as the internals of your application are exposed to potential hackers. I mitigated this by overriding my controller's OnException method, passing the exception off to the Exception Handling module as above. I created an ErrorModel class with as few properties as possible (e.g. an Error string), sending as little information to the client as possible, to both maximize bandwidth and mitigate risk. I then return an ErrorModel in JSON format for AJAX requests: if (filterContext.HttpContext.Request.IsAjaxRequest()){    filterContext.Result = Json(new ErrorModel(...));    filterContext.ExceptionHandled = true;} My $.ajax calls from the browser get a valid 200 OK response and go into the success handler. Before assuming everything is OK, I check if it's an ErrorModel or a model containing what I requested. If it's an ErrorModel, or null, I pass it to my error handler. If the client needs to handle different errors differently, ErrorModel can contain a flag, error code, string, etc. to differentiate, but again, sending as little information back as possible is ideal. Summary As any experienced ASP.NET developer knows, this is a far cry from where ASP.NET started when I began working with it 11 years ago. WCF services are far more powerful than ASMX ones, MVC is in many ways cleaner and certainly more unit test-friendly than Web Forms (if you don't consider the code/markup commingling you're doing again), the Enterprise Library makes error handling and logging almost entirely configuration-driven, AJAX makes a responsive UI more feasible, and jQuery makes JavaScript coding much less painful. It doesn't take much work to get a functional, maintainable, flexible application, though having it actually do something useful is a whole other matter.

    Read the article

  • Windows Azure Service Bus Scatter-Gather Implementation

    - by Alan Smith
    One of the more challenging enterprise integration patterns that developers may wish to implement is the Scatter-Gather pattern. In this article I will show the basic implementation of a scatter-gather pattern using the topic-subscription model of the windows azure service bus. I’ll be using the implementation in demos, and also as a lab in my training courses, and the pattern will also be included in the next release of my free e-book the “Windows Azure Service Bus Developer Guide”. The Scatter-Gather pattern answers the following scenario. How do you maintain the overall message flow when a message needs to be sent to multiple recipients, each of which may send a reply? Use a Scatter-Gather that broadcasts a message to multiple recipients and re-aggregates the responses back into a single message. The Enterprise Integration Patterns website provides a description of the Scatter-Gather pattern here.   The scatter-gather pattern uses a composite of the publish-subscribe channel pattern and the aggregator pattern. The publish-subscribe channel is used to broadcast messages to a number of receivers, and the aggregator is used to gather the response messages and aggregate them together to form a single message. Scatter-Gather Scenario The scenario for this scatter-gather implementation is an application that allows users to answer questions in a poll based voting scenario. A poll manager application will be used to broadcast questions to users, the users will use a voting application that will receive and display the questions and send the votes back to the poll manager. The poll manager application will receive the users’ votes and aggregate them together to display the results. The scenario should be able to scale to support a large number of users.   Scatter-Gather Implementation The diagram below shows the overall architecture for the scatter-gather implementation.       Messaging Entities Looking at the scatter-gather pattern diagram it can be seen that the topic-subscription architecture is well suited for broadcasting a message to a number of subscribers. The poll manager application can send the question messages to a topic, and each voting application can receive the question message on its own subscription. The static limit of 2,000 subscriptions per topic in the current release means that 2,000 voting applications can receive question messages and take part in voting. The vote messages can then be sent to the poll manager application using a queue. The voting applications will send their vote messages to the queue, and the poll manager will receive and process the vote messages. The questions topic and answer queue are created using the Windows Azure Developer Portal. Each instance of the voting application will create its own subscription in the questions topic when it starts, allowing the question messages to be broadcast to all subscribing voting applications. Data Contracts Two simple data contracts will be used to serialize the questions and votes as brokered messages. The code for these is shown below.   [DataContract] public class Question {     [DataMember]     public string QuestionText { get; set; } }     To keep the implementation of the voting functionality simple and focus on the pattern implementation, the users can only vote yes or no to the questions.   [DataContract] public class Vote {     [DataMember]     public string QuestionText { get; set; }       [DataMember]     public bool IsYes { get; set; } }     Poll Manager Application The poll manager application has been implemented as a simple WPF application; the user interface is shown below. A question can be entered in the text box, and sent to the topic by clicking the Add button. The topic and subscriptions used for broadcasting the messages are shown in a TreeView control. The questions that have been broadcast and the resulting votes are shown in a ListView control. When the application is started any existing subscriptions are cleared form the topic, clients are then created for the questions topic and votes queue, along with background workers for receiving and processing the vote messages, and updating the display of subscriptions.   public MainWindow() {     InitializeComponent();       // Create a new results list and data bind it.     Results = new ObservableCollection<Result>();     lsvResults.ItemsSource = Results;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Clear out any old subscriptions.     NamespaceManager = new NamespaceManager(serviceBusUri, credentials);     IEnumerable<SubscriptionDescription> subs =         NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);     foreach (SubscriptionDescription sub in subs)     {         NamespaceManager.DeleteSubscription(sub.TopicPath, sub.Name);     }       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create the topic and queue clients.     ScatterGatherTopicClient =         factory.CreateTopicClient(AccountDetails.ScatterGatherTopic);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker threads.     VotesBackgroundWorker = new BackgroundWorker();     VotesBackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     VotesBackgroundWorker.RunWorkerAsync();       SubscriptionsBackgroundWorker = new BackgroundWorker();     SubscriptionsBackgroundWorker.DoWork += new DoWorkEventHandler(UpdateSubscriptions);     SubscriptionsBackgroundWorker.RunWorkerAsync(); }     When the poll manager user nters a question in the text box and clicks the Add button a question message is created and sent to the topic. This message will be broadcast to all the subscribing voting applications. An instance of the Result class is also created to keep track of the votes cast, this is then added to an observable collection named Results, which is data-bound to the ListView control.   private void btnAddQuestion_Click(object sender, RoutedEventArgs e) {     // Create a new result for recording votes.     Result result = new Result()     {         Question = txtQuestion.Text     };     Results.Add(result);       // Send the question to the topic     Question question = new Question()     {         QuestionText = result.Question     };     BrokeredMessage msg = new BrokeredMessage(question);     ScatterGatherTopicClient.Send(msg);       txtQuestion.Text = ""; }     The Results class is implemented as follows.   public class Result : INotifyPropertyChanged {     public string Question { get; set; }       private int m_YesVotes;     private int m_NoVotes;       public event PropertyChangedEventHandler PropertyChanged;       public int YesVotes     {         get { return m_YesVotes; }         set         {             m_YesVotes = value;             NotifyPropertyChanged("YesVotes");         }     }       public int NoVotes     {         get { return m_NoVotes; }         set         {             m_NoVotes = value;             NotifyPropertyChanged("NoVotes");         }     }       private void NotifyPropertyChanged(string prop)     {         if(PropertyChanged != null)         {             PropertyChanged(this, new PropertyChangedEventArgs(prop));         }     } }     The INotifyPropertyChanged interface is implemented so that changes to the number of yes and no votes will be updated in the ListView control. Receiving the vote messages from the voting applications is done asynchronously, using a background worker thread.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         // Receive a vote message from the queue         BrokeredMessage msg = ScatterGatherQueueClient.Receive();         if (msg != null)         {             // Deserialize the message.             Vote vote = msg.GetBody<Vote>();               // Update the results.             foreach (Result result in Results)             {                 if (result.Question.Equals(vote.QuestionText))                 {                     if (vote.IsYes)                     {                         result.YesVotes++;                     }                     else                     {                         result.NoVotes++;                     }                     break;                 }             }               // Mark the message as complete.             msg.Complete();         }       } }     When a vote message is received, the result that matches the vote question is updated with the vote from the user. The message is then marked as complete. A second background thread is used to update the display of subscriptions in the TreeView, with a dispatcher used to update the user interface. // This runs on a background worker. private void UpdateSubscriptions(object sender, DoWorkEventArgs e) {     while (true)     {         // Get a list of subscriptions.         IEnumerable<SubscriptionDescription> subscriptions =             NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);           // Update the user interface.         SimpleDelegate setQuestion = delegate()         {             trvSubscriptions.Items.Clear();             TreeViewItem topicItem = new TreeViewItem()             {                 Header = AccountDetails.ScatterGatherTopic             };               foreach (SubscriptionDescription subscription in subscriptions)             {                 TreeViewItem subscriptionItem = new TreeViewItem()                 {                     Header = subscription.Name                 };                 topicItem.Items.Add(subscriptionItem);             }             trvSubscriptions.Items.Add(topicItem);               topicItem.ExpandSubtree();         };         this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);           Thread.Sleep(3000);     } }       Voting Application The voting application is implemented as another WPF application. This one is more basic, and allows the user to vote “Yes” or “No” for the questions sent by the poll manager application. The user interface for that application is shown below. When an instance of the voting application is created it will create a subscription in the questions topic using a GUID as the subscription name. The application can then receive copies of every question message that is sent to the topic. Clients for the new subscription and the votes queue are created, along with a background worker to receive the question messages. The voting application is set to receiving mode, meaning it is ready to receive a question message from the subscription.   public MainWindow() {     InitializeComponent();       // Set the mode to receiving.     IsReceiving = true;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create a subcription for this instance     NamespaceManager mgr = new NamespaceManager(serviceBusUri, credentials);     string subscriptionName = Guid.NewGuid().ToString();     mgr.CreateSubscription(AccountDetails.ScatterGatherTopic, subscriptionName);       // Create the subscription and queue clients.     ScatterGatherSubscriptionClient = factory.CreateSubscriptionClient         (AccountDetails.ScatterGatherTopic, subscriptionName);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker thread.     BackgroundWorker = new BackgroundWorker();     BackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     BackgroundWorker.RunWorkerAsync(); }     I took the inspiration for creating the subscriptions in the voting application from the chat application that uses topics and subscriptions blogged by Ovais Akhter here. The method that receives the question messages runs on a background thread. If the application is in receive mode, a question message will be received from the subscription, the question will be displayed in the user interface, the voting buttons enabled, and IsReceiving set to false to prevent more questing from being received before the current one is answered.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         if (IsReceiving)         {             // Receive a question message from the topic.             BrokeredMessage msg = ScatterGatherSubscriptionClient.Receive();             if (msg != null)             {                 // Deserialize the message.                 Question question = msg.GetBody<Question>();                   // Update the user interface.                 SimpleDelegate setQuestion = delegate()                 {                     lblQuestion.Content = question.QuestionText;                     btnYes.IsEnabled = true;                     btnNo.IsEnabled = true;                 };                 this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);                 IsReceiving = false;                   // Mark the message as complete.                 msg.Complete();             }         }         else         {             Thread.Sleep(1000);         }     } }     When the user clicks on the Yes or No button, the btnVote_Click method is called. This will create a new Vote data contract with the appropriate question and answer and send the message to the poll manager application using the votes queue. The user voting buttons are then disabled, the question text cleared, and the IsReceiving flag set to true to allow a new message to be received.   private void btnVote_Click(object sender, RoutedEventArgs e) {     // Create a new vote.     Vote vote = new Vote()     {         QuestionText = (string)lblQuestion.Content,         IsYes = ((sender as Button).Content as string).Equals("Yes")     };       // Send the vote message.     BrokeredMessage msg = new BrokeredMessage(vote);     ScatterGatherQueueClient.Send(msg);       // Update the user interface.     lblQuestion.Content = "";     btnYes.IsEnabled = false;     btnNo.IsEnabled = false;     IsReceiving = true; }     Testing the Application In order to test the application, an instance of the poll manager application is started; the user interface is shown below. As no instances of the voting application have been created there are no subscriptions present in the topic. When an instance of the voting application is created the subscription will be displayed in the poll manager. Now that a voting application is subscribing, a questing can be sent from the poll manager application. When the message is sent to the topic, the voting application will receive the message and display the question. The voter can then answer the question by clicking on the appropriate button. The results of the vote are updated in the poll manager application. When two more instances of the voting application are created, the poll manager will display the new subscriptions. More questions can then be broadcast to the voting applications. As the question messages are queued up in the subscription for each voting application, the users can answer the questions in their own time. The vote messages will be received by the poll manager application and aggregated to display the results. The screenshots of the applications part way through voting are shown below. The messages for each voting application are queued up in sequence on the voting application subscriptions, allowing the questions to be answered at different speeds by the voters.

    Read the article

  • .NET WebAPI Serialization k_BackingField Nastiness

    - by Micah
    When i serialize the following: [Serializable] public class Error { public string Status { get; set; } public string Message { get; set; } public string ErrorReferenceCode { get; set; } public List<FriendlyError> Errors { get; set; } } I get this disgusting mess: <ErrorRootOfstring xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.datacontract.org/2004/07/Printmee.Api"> <_x003C_Errors_x003E_k__BackingField> An exception has occurred. Please contact printmee support </_x003C_Errors_x003E_k__BackingField> <_x003C_LookupCode_x003E_k__BackingField>988232ec-6bc9-48f3-8116-7ff7c71302dd</_x003C_LookupCode_x003E_k__BackingField> </ErrorRootOfstring> What gives? How can i make this pretty? JSON responses also contain the k_BackingField

    Read the article

  • "The creator of this fault did not specify a Reason" Exception

    - by Michael Kniskern
    I have the following code in WCF service to throw a custom fault based on certain situations. I am getting a "The creator of this fault did not specify a Reason" exception. What am I doing wrong? //source code if(!DidNotPass) { InvalidRoutingCodeFault fault = new InvalidRoutingCodeFault("Invalid Routing Code - No Approval Started"); throw new FaultException<InvalidRoutingCodeFault>(fault); } //operation contract [OperationContract] [FaultContract(typeof(InvalidRoutingCodeFault))] bool MyMethod(); //data contract [DataContract(Namespace="http://myuri.org/Simple")] public class InvalidRoutingCodeFault { private string m_ErrorMessage = string.Empty; public InvalidRoutingCodeFault(string message) { this.m_ErrorMessage = message; } [DataMember] public string ErrorMessage { get { return this.m_ErrorMessage; } set { this.m_ErrorMessage = value; } } }

    Read the article

  • How to trace WCF serialization issues / exceptions

    - by Fabiano
    Hi I occasionally run into the problem that an application exception is thrown during the WCF-serialization (after returning a DataContract from my OperationContract). The only (and less meaningfull) message I get is System.ServiceModel.CommunicationException : The underlying connection was closed: The connection was closed unexpectedly. without any insight to the inner exception, which makes it really hard to find out what caused the error during serialization. Does someone know a good way how you can trace, log and debug these exceptions? Or even better can I catch the exception, handle them and send a defined FaulMessage to the client? thank you

    Read the article

  • DataContractSerializer case-insensitive datamember bug

    - by Andrew Bullock
    Here is my class: [DataContract] public class EventIndex : IExtensibleDataObject { public ExtensionDataObject ExtensionData { get; set; } [DataMember] private readonly IList<EventDescription> events; public IEnumerable<EventDescription> Events { get { return events; } } public EventIndex() { events = new List<EventDescription>(); } } As you can see, events is marked as a member. When I try and deserialize one of these classes, ReadObject throws a NullReferenceException. After a morning spent inside reflector, it turns out that its trying to deserialize the events collection into the Events getter. If I rename one of the members (events\ Events) I don't have an issue. Is there a way to make this work properly, without renaming workarounds or other such nonsense?

    Read the article

  • Catches communication exception instead of custom fault exception - WCF

    - by Ismail S
    On Server I'm throwing the exception like this. catch(SqlException exception) { if (exception.Message.Contains("Custom error from stored proc")) { //Exception to be thrown when authentication fails. throw new FaultException<MyServiceFault>(new MyServiceFault { MessageText = exception.Message }); } } And on client end I'm catching the exception catch(FaultException<MyServiceFault> faultException) { } Here is my MyServiceFault [DataContract] public class MyServiceFault { [DataMember] public string MessageText { get; set; } [DataMember] public Guid Id { get; set; } } The problem is that on client, it doesn't go to MyServiceFault catch block instead it goes to communication exception catch block and throws this error System.ServiceModel.CommunicationException: The underlying connection was closed: The connection was closed unexpectedly. ---> System.Net.WebException I've also decorated my service method [FaultContract(typeof(MyServiceFault))] in the interface which is implemented by my service. In my web.config servicebehaviour tag consist <serviceDebug includeExceptionDetailInFaults="true" /> Any idea where I'm going wrong

    Read the article

  • DataContractSerializer KnownType attribute not being respected?

    - by e28Makaveli
    I have a class that is decorated with a KnownType attribute with a type of the class. Is this not allowed? [KnownType(typeof(Occ600UIConfig))] public class Occ600UIConfig { } If so, why is the DCS throwing the following exception? {"Error in line 1 position 387. Element 'http://schemas.microsoft.com/2003/10/Serialization/Arrays:Value' contains data of the 'http://schemas.datacontract.org/2004/07/OCC600.Infrastructure.Dictionary.BusinessEntities:Occ600UIConfig' data contract. The deserializer has no knowledge of any type that maps to this contract. Add the type corresponding to 'Occ600UIConfig' to the list of known types - for example, by using the KnownTypeAttribute attribute or by adding it to the list of known types passed to DataContractSerializer."}

    Read the article

  • Why is my WCF RIA Services custom object deserializing with an extra list member?

    - by oasasaurus
    I have been developing a Silverlight WCF RIA Services application dealing with mock financial transactions. To more efficiently send summary data to the client without going overboard with serialized entities I have created a summary class that isn’t in my EDM, and figured out how to serialize and send it over the wire to the SL client using DataContract() and DataMember(). Everything seemed to be working out great, until I tried to bind controls to a list inside my custom object. The list seems to always get deserialized with an extra, almost empty entity in it that I don’t know how to get rid of. So, here are some of the pieces. First the relevant bits from the custom object class: <DataContract()> _ Public Class EconomicsSummary Public Sub New() RecentTransactions = New List(Of Transaction) TotalAccountHistory = New List(Of Transaction) End Sub Public Sub New(ByVal enUser As EntityUser) Me.UserId = enUser.UserId Me.UserName = enUser.UserName Me.Accounts = enUser.Accounts Me.Jobs = enUser.Jobs RecentTransactions = New List(Of Transaction) TotalAccountHistory = New List(Of Transaction) End Sub <DataMember()> _ <Key()> _ Public Property UserId As System.Guid <DataMember()> _ Public Property NumTransactions As Integer <DataMember()> _ <Include()> _ <Association("Summary_RecentTransactions", "UserId", "User_UserId")> _ Public Property RecentTransactions As List(Of Transaction) <DataMember()> _ <Include()> _ <Association("Summary_TotalAccountHistory", "UserId", "User_UserId")> _ Public Property TotalAccountHistory As List(Of Transaction) End Class Next, the relevant parts of the function called to return the object: Public Function GetEconomicsSummary(ByVal guidUserId As System.Guid) As EconomicsSummary Dim objOutput As New EconomicsSummary(enUser) For Each objTransaction As Transaction In (From t As Transaction In Me.ObjectContext.Transactions.Include("Account") Where t.Account.aspnet_User_UserId = guidUserId Select t Order By t.TransactionDate Descending Take 10) objTransaction.User_UserId = objOutput.UserId objOutput.RecentTransactions.Add(objTransaction) Next objOutput.NumTransactions = objOutput.RecentTransactions.Count … Return objOutput End Function Notice that I’m collecting the NumTransactions count before serialization. Should be 10 right? It is – BEFORE serialization. The DataGrid is bound to the data source as follows: <sdk:DataGrid AutoGenerateColumns="False" Height="100" MaxWidth="{Binding ElementName=aciSummary, Path=ActualWidth}" ItemsSource="{Binding Source={StaticResource EconomicsSummaryRecentTransactionsViewSource}, Mode=OneWay}" Name="gridRecentTransactions" RowDetailsVisibilityMode="VisibleWhenSelected" IsReadOnly="True"> <sdk:DataGrid.Columns> <sdk:DataGridTextColumn x:Name="TransactionDateColumn" Binding="{Binding Path=TransactionDate, StringFormat=\{0:d\}}" Header="Date" Width="SizeToHeader" /> <sdk:DataGridTextColumn x:Name="AccountNameColumn" Binding="{Binding Path=Account.Title}" Header="Account" Width="SizeToCells" /> <sdk:DataGridTextColumn x:Name="CurrencyAmountColumn" Binding="{Binding Path=CurrencyAmount, StringFormat=\{0:c\}}" Header="Amount" Width="SizeToHeader" /> <sdk:DataGridTextColumn x:Name="TitleColumn" Binding="{Binding Path=Title}" Header="Description" Width="SizeToCells" /> <sdk:DataGridTextColumn x:Name="ItemQuantityColumn" Binding="{Binding Path=ItemQuantity}" Header="Qty" Width="SizeToHeader" /> </sdk:DataGrid.Columns> </sdk:DataGrid> You might be wondering where the ItemsSource is coming from, that looks like this: <CollectionViewSource x:Key="EconomicsSummaryRecentTransactionsViewSource" Source="{Binding Path=DataView.RecentTransactions, ElementName=EconomicsSummaryDomainDataSource}" /> When I noticed that the DataGrid had the extra row I tried outputting some data after the data source finishes loading, as follows: Private Sub EconomicsSummaryDomainDataSource_LoadedData(ByVal sender As System.Object, ByVal e As System.Windows.Controls.LoadedDataEventArgs) Handles EconomicsSummaryDomainDataSource.LoadedData If e.HasError Then System.Windows.MessageBox.Show(e.Error.ToString, "Load Error", System.Windows.MessageBoxButton.OK) e.MarkErrorAsHandled() End If Dim objSummary As EconomicsSummary = CType(EconomicsSummaryDomainDataSource.Data(0), EconomicsSummary) Dim sb As New StringBuilder("") sb.AppendLine(String.Format("Num Transactions: {0} ({1})", objSummary.RecentTransactions.Count.ToString(), objSummary.NumTransactions.ToString())) For Each objTransaction As Transaction In objSummary.RecentTransactions sb.AppendLine(String.Format("Recent TransactionId {0} dated {1} CurrencyAmount {2} NewBalance {3}", objTransaction.TransactionId.ToString, objTransaction.TransactionDate.ToString("d"), objTransaction.CurrencyAmount.ToString("c"), objTransaction.NewBalance.ToString("c"))) Next txtDebug.Text = sb.ToString() End Sub Output from that looks like this: Num Transactions: 11 (10) Recent TransactionId 2283 dated 6/1/2010 CurrencyAmount $31.00 NewBalance $392.00 Recent TransactionId 2281 dated 5/31/2010 CurrencyAmount $33.00 NewBalance $361.00 Recent TransactionId 2279 dated 5/28/2010 CurrencyAmount $8.00 NewBalance $328.00 Recent TransactionId 2277 dated 5/26/2010 CurrencyAmount $22.00 NewBalance $320.00 Recent TransactionId 2275 dated 5/24/2010 CurrencyAmount $5.00 NewBalance $298.00 Recent TransactionId 2273 dated 5/21/2010 CurrencyAmount $19.00 NewBalance $293.00 Recent TransactionId 2271 dated 5/20/2010 CurrencyAmount $20.00 NewBalance $274.00 Recent TransactionId 2269 dated 5/19/2010 CurrencyAmount $48.00 NewBalance $254.00 Recent TransactionId 2267 dated 5/18/2010 CurrencyAmount $42.00 NewBalance $206.00 Recent TransactionId 2265 dated 5/14/2010 CurrencyAmount $5.00 NewBalance $164.00 Recent TransactionId 0 dated 6/1/2010 CurrencyAmount $0.00 NewBalance $361.00 So I have a few different questions: -First and foremost, where the devil is that extra Transaction entity coming from and how do I get rid of it? Does it have anything to do with the other list of Transaction entities being serialized as part of the EconomicsSummary class (TotalAccountHistory)? Do I need to decorate the EconomicsSummary class members a little more/differently? -Second, where are the peculiar values coming from on that extra entity? PRE-POSTING UPDATE 1: I did a little checking, it looks like that last entry is the first one in the TotalAccountHistory list. Do I need to do something with CollectionDataContract()? PRE-POSTING UPDATE 2: I fixed one bug in TotalAccountHistory, since the objects weren’t coming from the database their keys weren’t unique. So I set the keys on the Transaction entities inside TotalAccountHistory to be unique and guess what? Now, after deserialization RecentTransactions contains all its original items, plus every item in TotalAccountHistory. I’m pretty sure this has to do with the deserializer getting confused by two collections of the same type. But I don’t yet know how to resolve it…

    Read the article

  • Deserialization of JSON object by using DataContractJsonSerializer in C#

    - by user2539667
    enter code hereI'm sure this question has been asked over and over again, but for some reason, I still can't manage to get this to work. I want to deserialize a JSON object that contains a single member; a string array: [{"idTercero":"cod_Tercero"}] This is the class that I'm trying to deserialize into: [DataContract] public class rptaOk { [DataMember] public string idTercero { get; set; } public rptaOk() { } public rptaOk(string idTercero) { this.idTercero = idTercero; } } This is the method that I try to deserialize: public T Deserialise<T>(string json) { DataContractJsonSerializer deserializer = new DataContractJsonSerializer(typeof(T)); using (MemoryStream stream = new MemoryStream(Encoding.Unicode.GetBytes(json))) { T result = (T)deserializer.ReadObject(stream); return result; } } And so try to fill the object: rptaOk deserializedRpta = deserializarOk(rpta); But for some reason, this returns "" MessageBox.Show(deserializedRpta.idTercero);

    Read the article

  • Only send populated object properties over WCF?

    - by dlanod
    I have an object that is being sent across WCF that is essentially a property holder - it can potentially have a large number of properties, i.e. up to 100, but in general only a small subset will be set, up to 10 for instance. Example: [DataContract(Namespace = "...")] public class Monkey { [DataMember] public string Arms { get; set; } [DataMember] public string Legs { get; set; } [DataMember] public string Heads { get; set; } [DataMember] public string Feet { get; set; } [DataMember] public string Bodies { get; set; } /* repeat another X times */ } Is there a way to tell WCF to only send the populated properties over the wire? It seems like a potential waste of bandwidth to send over the full object.

    Read the article

  • NetDataContractSerialization throwing deserialization error

    - by htanias
    hi, I have methods which return interface and some methods which accepts interface as parameters. I am trying to use Net DataContractSerializer but I am getting following error... The formatter threw an exception while trying to deserialize the message: There was an error while trying to deserialize parameter http://tempuri.org/:id. The InnerException message was 'Error in line 1 position 120. XML 'Element' 'http://tempuri.org/:id' does not contain expected attribute 'http://schemas.microsoft.com/2003/10/Serialization/:Type'. The deserializer has no knowledge of which type to deserialize. Check that the type being serialized has the same contract as the type being deserialized.'. Please see InnerException for more details. Please help me how to resolve this error.... If I use Netdatacontract attribute on Operation Contract, can i use DataContract and Datamember attribute on serializable class??? Thanks in advance...

    Read the article

  • DataContractJsonSerializer set value extension point

    - by svinto
    using System.IO; using System.Runtime.Serialization; using System.Runtime.Serialization.Json; using System.Text; namespace ConsoleApplication1 { internal class Program { private static void Main(string[] args) { var pony = new Pony(); var serializer = new DataContractJsonSerializer(pony.GetType()); var example = @"{""Foo"":null}"; var stream = new MemoryStream(Encoding.UTF8.GetBytes(example.ToCharArray())); stream.Position = 0; pony = (Pony) serializer.ReadObject(stream); // The previous line throws an exception. } } [DataContract] public class Pony { [DataMember] private int Foo { get; set; } } } Sometimes the serialization throws a casting error on Int32s being set to null. Is there any way to hook into the Json-serializer?

    Read the article

  • Setting the initial value of a property when using DataContractSerializer

    - by Eric
    If I am serializing and later deserializing a class using DataContractSerializer how can I control the initial values of properties that were not serialized? Consider the Person class below. Its data contract is set to serialize the FirstName and LastName properties but not the IsNew property. I want IsNew to initialize to TRUE whether a new Person is being instantiate as a new instance or being deserialized from a file. This is easy to do through the constructor, but as I understand it DataContractSerializer does not call the constructor as they could require parameters. [DataContract(Name="Person")] public class Person { [DataMember(Name="FirstName")] public string FirstName { get; set; } [DataMember(Name = "LastName")] public string LastName { get; set; } public bool IsNew { get; set; } public Person(string first, string last) { this.FirstName = first; this.LastName = last; this.IsNew = true; } }

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10  | Next Page >