Search Results

Search found 10844 results on 434 pages for 'device mapper'.

Page 6/434 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • raid md device is not remove from memory, how to overcome this problem

    - by santhosha
    i create raid 10 , i removed two arrays form md11 one by one , after that i going to editing the contents those are mounted ( it will be not responding stage), after i try for remove arrays those are left it is shows device or resource busy ( is not removed from memory). i try to terminate process this is also not work, i absorve from 4 days resync will be 8.0% it can not modifying. cat /proc/mdstat Personalities : [raid1] [raid0] [raid6] [raid5] [raid4] [linear] [raid10] md11 : active raid10 sde1[3] sdj14 286743936 blocks 64K chunks 2 near-copies [4/1] [___U] [1:2:3:0] [=...................] resync = 8.0% (23210368/286743936) finish=289392.6min speed=15K/sec mdadm -D /dev/md11 /dev/md11: Version : 00.90.03 Creation Time : Sun Jan 16 16:20:01 2011 Raid Level : raid10 Array Size : 286743936 (273.46 GiB 293.63 GB) Device Size : 143371968 (136.73 GiB 146.81 GB) Raid Devices : 4 Total Devices : 2 Preferred Minor : 11 Persistence : Superblock is persistent Update Time : Sun Jan 16 16:56:07 2011 State : active, degraded, resyncing Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Layout : near=2, far=1 Chunk Size : 64K Rebuild Status : 8% complete UUID : 5e124ea4:79a01181:dc4110d3:a48576ea Events : 0.23 Number Major Minor RaidDevice State 0 0 0 0 removed 1 0 0 1 removed 4 8 145 2 faulty spare rebuilding /dev/sdj1 3 8 65 3 active sync /dev/sde1 umount /dev/md11 umount: /dev/md11: not mounted mdadm -S /dev/md11 mdadm: fail to stop array /dev/md11: Device or resource busy lsof /dev/md11 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME mount 2128 root 3r BLK 9,11 4058 /dev/md11 mount 5018 root 3r BLK 9,11 4058 /dev/md11 mdadm 27605 root 3r BLK 9,11 4058 /dev/md11 mount 30562 root 3r BLK 9,11 4058 /dev/md11 badblocks 30591 root 3r BLK 9,11 4058 /dev/md11 kill -9 2128 kill -9 5018 kill -9 27605 kill -9 30562 kill -3 30591 mdadm -S /dev/md11 mdadm: fail to stop array /dev/md11: Device or resource busy lsof /dev/md11 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME mount 2128 root 3r BLK 9,11 4058 /dev/md11 mount 5018 root 3r BLK 9,11 4058 /dev/md11 mdadm 27605 root 3r BLK 9,11 4058 /dev/md11 mount 30562 root 3r BLK 9,11 4058 /dev/md11 badblocks 30591 root 3r BLK 9,11 4058 /dev/md11 cat /proc/mdstat Personalities : [raid1] [raid0] [raid6] [raid5] [raid4] [linear] [raid10] md11 : active raid10 sde1[3] sdj14 286743936 blocks 64K chunks 2 near-copies [4/1] [___U] [1:2:3:0] [=...................] resync = 8.0% (23210368/286743936) finish=289392.6min speed=15K/sec

    Read the article

  • USB Hub and Ubuntu

    - by aserwin
    I have a powered 7 port hub connected to my Ubuntu box and it does nothing. The devices (zip drive and web cam) work direct, but aren't recognized through the hub. This worked fine in Windows 7. I can't prove it is the OS because this is a new motherboard and processor. Any advice? EDIT : Output from lsusb -v Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:12.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0503 highspeed power enable connect Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:13.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:16.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0001 Self Powered Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:12.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:13.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:14.5 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 2 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Device Status: 0x0001 Self Powered Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:16.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0303 lowspeed power enable connect Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0001 Self Powered Bus 008 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 1 Single TT bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:02:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 2 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection TT think time 8 FS bits bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Device Status: 0x0001 Self Powered Bus 009 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 3.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 3 bMaxPacketSize0 9 idVendor 0x1d6b Linux Foundation idProduct 0x0003 3.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:02:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 31 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 bMaxBurst 0 Hub Descriptor: bLength 12 bDescriptorType 42 nNbrPorts 2 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere bHubDecLat 0.0 micro seconds wHubDelay 0 nano seconds DeviceRemovable 0x00 Hub Port Status: Port 1: 0000.02a0 5Gbps power Rx.Detect Port 2: 0000.02a0 5Gbps power Rx.Detect Binary Object Store Descriptor: bLength 5 bDescriptorType 15 wTotalLength 15 bNumDeviceCaps 1 SuperSpeed USB Device Capability: bLength 10 bDescriptorType 16 bDevCapabilityType 3 bmAttributes 0x00 Latency Tolerance Messages (LTM) Supported wSpeedsSupported 0x0008 Device can operate at SuperSpeed (5Gbps) bFunctionalitySupport 3 Lowest fully-functional device speed is SuperSpeed (5Gbps) bU1DevExitLat 3 micro seconds bU2DevExitLat 2047 micro seconds Device Status: 0x0001 Self Powered Bus 001 Device 002: ID 04a9:1709 Canon, Inc. PIXMA MP150 Scanner Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x04a9 Canon, Inc. idProduct 0x1709 PIXMA MP150 Scanner bcdDevice 1.08 iManufacturer 1 Canon iProduct 2 MP150 iSerial 3 20BC24 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 62 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xc0 Self Powered MaxPower 2mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 255 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x07 EP 7 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x88 EP 8 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x89 EP 9 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 11 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 7 Printer bInterfaceSubClass 1 Printer bInterfaceProtocol 2 Bidirectional iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0001 Self Powered Bus 007 Device 002: ID 046d:c517 Logitech, Inc. LX710 Cordless Desktop Laser Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x046d Logitech, Inc. idProduct 0xc517 LX710 Cordless Desktop Laser bcdDevice 38.10 iManufacturer 1 Logitech iProduct 2 USB Receiver iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 98mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 59 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 2 Mouse iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 177 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered) This is with the powered hub plugged in.

    Read the article

  • USB device not accepting address

    - by Mike Williamson
    I have a series of machines that I am building for work that have usb card readers. When I boot them I get a long series of messages: ... [ 2347.768419] hub 1-6:1.0: unable to enumerate USB device on port 6 [ 2347.968178] usb 1-6.6: new full-speed USB device number 10 using ehci_hcd [ 2352.552020] usb 1-6.6: device not accepting address 10, error -32 [ 2352.568421] hub 1-6:1.0: unable to enumerate USB device on port 6 [ 2352.768179] usb 1-6.6: new full-speed USB device number 12 using ehci_hcd [ 2357.352033] usb 1-6.6: device not accepting address 12, error -32 ... On some older machines this only takes a few attempts before the card reader finally accepts an address, while on newer machines it can take many minutes. Changing hardware is not an option and plugging the usb card reader into a different port is only an option for the older manchines. This was a problem under 11.04 and I am now running the 12.04 beta and its still happening. Is there something I can do in the software (a udev rule perhaps?) that would fix this? Any advice appreciated. I'm happy to provide more details if you need them.

    Read the article

  • E160 ubuntu 12.04 can't detect the modem

    - by Matt
    i've got problem with e160 on ubuntu 12.04. I'cant configure network manager and connect because NM can't see the e160. I;ve tried lot of solutions with no result. ateusz@mateusz-Aspire-5738:~$ sudo usb_modeswitch -v 0x12d1 -p 0x1003 -H [sudo] password for mateusz: aLooking for default devices ... found matching product ID adding device Found device in default mode, class or configuration (1) Accessing device 002 on bus 001 ... Getting the current device configuration ... OK, got current device configuration (1) Using first interface: 0x00 Using endpoints 0x01 (out) and 0x82 (in) Not a storage device, skipping SCSI inquiry USB description data (for identification) ------------------------- Manufacturer: HUAWEI Technology Product: HUAWEI Mobile Serial No.: not provided ------------------------- Sending Huawei control message ... OK, Huawei control message sent - Run lsusb to note any changes. Bye. Dmesg [ 521.480062] usb 1-4: reset high-speed USB device number 4 using ehci_hcd [ 521.617792] option 1-4:1.1: GSM modem (1-port) converter detected [ 521.617945] usb 1-4: GSM modem (1-port) converter now attached to ttyUSB0 [ 521.618062] option 1-4:1.0: GSM modem (1-port) converter detected [ 521.618232] usb 1-4: GSM modem (1-port) converter now attached to ttyUSB1 [ 530.840276] option: option_instat_callback: error -108 [ 530.840455] option1 ttyUSB1: GSM modem (1-port) converter now disconnected from ttyUSB1 [ 530.840484] option 1-4:1.0: device disconnected [ 537.680378] option1 ttyUSB0: GSM modem (1-port) converter now disconnected from ttyUSB0 [ 537.680398] option 1-4:1.1: device disconnected [ 537.792088] usb 1-4: reset high-speed USB device number 4 using ehci_hcd [ 537.929549] option 1-4:1.1: GSM modem (1-port) converter detected [ 537.929702] usb 1-4: GSM modem (1-port) converter now attached to ttyUSB0 [ 537.929818] option 1-4:1.0: GSM modem (1-port) converter detected [ 537.929993] usb 1-4: GSM modem (1-port) converter now attached to ttyUSB1 [ 547.224294] option: option_instat_callback: error -108 [ 547.224470] option1 ttyUSB1: GSM modem (1-port) converter now disconnected from ttyUSB1 [ 547.224511] option 1-4:1.0: device disconnected [ 556.988066] tty_ldisc_hangup: waiting (usb-storage) for ttyUSB0 took too long, but we keep waiting... [ 558.990663] option1 ttyUSB0: GSM modem (1-port) converter now disconnected from ttyUSB0 [ 558.990698] option 1-4:1.1: device disconnected [ 559.100068] usb 1-4: reset high-speed USB device number 4 using ehci_hcd [ 559.241293] option 1-4:1.1: GSM modem (1-port) converter detected [ 559.241446] usb 1-4: GSM modem (1-port) converter now attached to ttyUSB0 [ 559.241565] option 1-4:1.0: GSM modem (1-port) converter detected [ 559.241739] usb 1-4: GSM modem (1-port) converter now attached to ttyUSB1 [ 568.728283] option: option_instat_callback: error -108 [ 568.728466] option1 ttyUSB1: GSM modem (1-port) converter now disconnected from ttyUSB1 [ 568.728496] option 1-4:1.0: device disconnected lsusb Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 008 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 002 Device 003: ID 064e:a103 Suyin Corp. Acer/HP Integrated Webcam [CN0314] Bus 005 Device 002: ID 09da:c20a A4 Tech Co., Ltd Bus 001 Device 002: ID 12d1:1003 Huawei Technologies Co., Ltd. E220 HSDPA Modem / E230/E270/E870 HSDPA/HSUPA Modem

    Read the article

  • Linux Device Driver: Symbol "memcpy" not found

    - by Hinton
    Hello, I'm trying to write a Linux device driver. I've got it to work really well, until I tried to use "memcpy". I don't even get a compiler error, when I "make" it just warns me: WARNING: "memcpy" [/root/homedir/sv/main.ko] undefined! OK and when I try to load via insmod, I get on the console: insmod: error inserting './main.ko': -1 Unknown symbol in module and on dmesg: main: Unknown symbol memcpy (err 0) I include the following: #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/kernel.h> /* printk() */ #include <linux/slab.h> /* kmalloc() */ #include <linux/fs.h> /* everything... */ #include <linux/errno.h> /* error codes */ #include <linux/types.h> /* size_t */ #include <linux/fcntl.h> /* O_ACCMODE */ #include <linux/cdev.h> #include <asm/system.h> /* cli(), *_flags */ #include <asm/uaccess.h> /* copy_*_user */ The function using memcpy: static int dc_copy_to_user(char __user *buf, size_t count, loff_t *f_pos, struct sv_data_dev *dev) { char data[MAX_KEYLEN]; size_t i = 0; /* Copy the bulk as long as there are 10 more bytes to copy */ while (i < (count + MAX_KEYLEN)) { memcpy(data, &dev->data[*f_pos + i], MAX_KEYLEN); ec_block(dev->key, data, MAX_KEYLEN); if (copy_to_user(&buf[i], data, MAX_KEYLEN)) { return -EFAULT; } i += MAX_KEYLEN; } return 0; } Could someone help me? I thought the thing was in linux/string.h, but I get the error just the same. I'm using kernel 2.6.37-rc1 (I'm doing in in user-mode-linux, which works only since 2.6.37-rc1). Any help is greatly appreciated. # Context dependent makefile that can be called directly and will invoke itself # through the kernel module building system. KERNELDIR=/usr/src/linux ifneq ($(KERNELRELEASE),) EXTRA_CFLAGS+=-I $(PWD) -ARCH=um obj-m := main.o else KERNELDIR ?= /lib/modules/$(shell uname -r)/build PWD = $(shell pwd) all: $(MAKE) V=1 ARCH=um -C $(KERNELDIR) M=$(PWD) modules clean: rm -rf Module.symvers .*.cmd *.ko .*.o *.o *.mod.c .tmp_versions *.order endif

    Read the article

  • What happened to the Windows "Midi Mapper"

    - by interstar
    I wrote a windows program many years ago, which created music by sending notes to the "midi mapper" (and thence to the midi-synth on my sound-card) Today, I have a soft-synth which, allegedly accepts midi information, so I'd assume it should be possible to use today's equivalent of a midi-mapper to route the midi output from my program to the soft-synth. There's clearly no longer a midi-mapper application in windows, but my program still works (on XP) in that it drives the built-in soundcard synth, so there must be some sort of midi handling layer in windows. How can I get at this? And maybe redirect the midi to the soft-synth?

    Read the article

  • NULL pointer dereference in swiotlb_unmap_sg_attrs() on disk IO

    - by Inductiveload
    I'm getting an error I really don't understand when reading or writing files using a PCIe block device driver. I seem to be hitting an issue in swiotlb_unmap_sg_attrs(), which appears to be doing a NULL dereference of the sg pointer, but I don't know where this is coming from, as the only scatterlist I use myself is allocated as part of the device info structure and persists as long as the driver does. There is a stacktrace to go with the problem. It tends to vary a bit in exact details, but it always crashes in swiotlb_unmap_sq_attrs(). I think it's likely I have a locking issue, as I am not sure how to handle the locks around the IO functions. The lock is already held when the request function is called, I release it before the IO functions themselves are called, as they need an (MSI) IRQ to complete. The IRQ handler updates a "status" value, which the IO function is waiting for. When the IO function returns, I then take the lock back up and return to request queue handling. The crash happens in blk_fetch_request() during the following: if (!__blk_end_request(req, res, bytes)){ printk(KERN_ERR "%s next request\n", DRIVER_NAME); req = blk_fetch_request(q); } else { printk(KERN_ERR "%s same request\n", DRIVER_NAME); } where bytes is updated by the request handler to be the total length of IO (summed length of each scatter-gather segment).

    Read the article

  • The HTG Guide to Using a Bluetooth Keyboard with Your Android Device

    - by Matt Klein
    Android devices aren’t usually associated with physical keyboards. But, since Google is now bundling their QuickOffice app with the newly-released Kit-Kat, it appears inevitable that at least some Android tablets (particularly 10-inch models) will take on more productivity roles. In recent years, physical keyboards have been rendered obsolete by swipe style input methods such as Swype and Google Keyboard. Physical keyboards tend to make phones thick and plump, and that won’t fly today when thin (and even flexible and curved) is in vogue. So, you’ll be hard-pressed to find smartphone manufacturers launching new models with physical keyboards, thus rendering sliders to a past chapter in mobile phone evolution. It makes sense to ditch the clunky keyboard phone in favor of a lighter, thinner model. You’re going to carry around in your pocket or purse all day, why have that extra bulk and weight? That said, there is sound logic behind pairing tablets with keyboards. Microsoft continues to plod forward with its Surface models, and while critics continue to lavish praise on the iPad, its functionality is obviously enhanced and extended when you add a physical keyboard. Apple even has an entire page devoted specifically to iPad-compatible keyboards. But an Android tablet and a keyboard? Does such a thing even exist? They do actually. There are docking keyboards and keyboard/case combinations, there’s the Asus Transformer family, Logitech markets a Windows 8 keyboard that speaks “Android”, and these are just to name a few. So we know that keyboard products that are designed to work with Android exist, but what about an everyday Bluetooth keyboard you might use with Windows or OS X? How-To Geek wanted look at how viable it is to use such a keyboard with Android. We conducted some research and examined some lists of Android keyboard shortcuts. Most of what we found was long outdated. Many of the shortcuts don’t even apply anymore, while others just didn’t work. Regardless, after a little experimentation and a dash of customization, it turns out using a keyboard with Android is kind of fun, and who knows, maybe it will catch on. Setting things up Setting up a Bluetooth keyboard with Android is very easy. First, you’ll need a Bluetooth keyboard and of course an Android device, preferably running version 4.1 (Jelly Bean) or higher. For our test, we paired a second-generation Google Nexus 7 running Android 4.3 with a Samsung Series 7 keyboard. In Android, enable Bluetooth if it isn’t already on. We’d like to note that if you don’t normally use Bluetooth accessories and peripherals with your Android device (or any device really), it’s best practice to leave Bluetooth off because, like GPS, it drains the device’s battery more quickly. To enable Bluetooth, simply go to “Settings” -> “Bluetooth” and tap the slider button to “On”. To set up the keyboard, make sure it is on and then tap “Bluetooth” in the Android settings. On the resulting screen, your Android device should automatically search for and hopefully find your keyboard. If you don’t get it right the first time, simply turn the keyboard on again and then tap “Search for Devices” to try again. If it still doesn’t work, make sure you have fresh batteries and the keyboard isn’t paired to another device. If it is, you will need to unpair it before it will work with your Android device (consult your keyboard manufacturer’s documentation or Google if you don’t know how to do this). When Android finds your keyboard, select it under “Available Devices” … … and you should be prompted to type in a code: If successful, you will see that device is now “Connected” and you’re ready to go. If you want to test things out, try pressing the “Windows” key (“Apple” or “Command”) + ESC, and you will be whisked to your Home screen. So, what can you do? Traditional Mac and Windows users know there’s usually a keyboard shortcut for just about everything (and if there isn’t, there’s all kinds of ways to remap keys to do a variety of commands, tasks, and functions). So where does Android fall in terms of baked-in keyboard commands? There answer to that is kind of enough, but not too much. There are definitely established combos you can use to get around, but they aren’t clear and there doesn’t appear to be any one authority on what they are. Still, there is enough keyboard functionality in Android to make it a viable option, if only for those times when you need to get something done (long e-mail or important document) and an on-screen keyboard simply won’t do. It’s important to remember that Android is, and likely always will be a touch-first interface. That said, it does make some concessions to physical keyboards. In other words, you can get around Android fairly well without having to lift your hands off the keys, but you will still have to tap the screen regularly, unless you add a mouse. For example, you can wake your device by tapping a key rather than pressing its power button. However, if your device is slide or pattern-locked, then you’ll have to use the touchscreen to unlock it – a password or PIN however, works seamlessly with a keyboard – other things like widgets and app controls and features, have to be tapped. You get the idea. Keyboard shortcuts and navigation As we said, baked-in keyboard shortcut combos aren’t necessarily abundant nor apparent. The one thing you can always do is search. Any time you want to Google something, start typing from the Home screen and the search screen will automatically open and begin displaying results. Other than that, here is what we were able to figure out: ESC = go back CTRL + ESC = menu CTRL + ALT + DEL = restart (no questions asked) ALT + SPACE = search page (say “OK Google” to voice search) ALT + TAB (ALT + SHIFT + TAB) = switch tasks Also, if you have designated volume function keys, those will probably work too. There’s also some dedicated app shortcuts like calculator, Gmail, and a few others: CMD + A = calculator CMD + C = contacts CMD + E = e-mail CMD + G = Gmail CMD + L = Calendar CMD + P = Play Music CMD + Y = YouTube Overall, it’s not a long comprehensive list and there’s no dedicated keyboard combos for the full array of Google’s products. Granted, it’s hard to imagine getting a lot of mileage out of a keyboard with Maps but with something like Keep, you could type out long, detailed lists on your tablet, and then view them on your smartphone when you go out shopping. You can also use the arrow keys to navigate your Home screen over shortcuts and open the app drawer. When something on the screen is selected, it will be highlighted in blue. Press “Enter” to open your selection. Additionally, if an app has its own set of shortcuts, e.g. Gmail has quite a few unique shortcuts to it, as does Chrome, some – though not many – will work in Android (not for YouTube though). Also, many “universal” shortcuts such as Copy (CTRL + C), Cut (CTRL + X), Paste (CTRL + V), and Select All (CTRL + A) work where needed – such as in instant messaging, e-mail, social media apps, etc. Creating custom application shortcuts What about custom shortcuts? When we were researching this article, we were under the impression that it was possible to assign keyboard combinations to specific apps, such as you could do on older Android versions such as Gingerbread. This no long seems to be the case and nowhere in “Settings” could we find a way to assign hotkey combos to any of our favorite, oft-used apps or functions. If you do want custom keyboard shortcuts, what can you do? Luckily, there’s an app on Google Play that allows you to, among other things, create custom app shortcuts. It is called External Keyboard Helper (EKH) and while there is a free demo version, the pay version is only a few bucks. We decided to give EKH a whirl and through a little experimentation and finally reading the developer’s how-to, we found we could map custom keyboard combos to just about anything. To do this, first open the application and you’ll see the main app screen. Don’t worry about choosing a custom layout or anything like that, you want to go straight to the “Advanced settings”: In the “Advanced settings” select “Application shortcuts” to continue: You can have up to 16 custom application shortcuts. We are going to create a custom shortcut to the Facebook app. We choose “A0”, and from the resulting list, Facebook. You can do this for any number of apps, services, and settings. As you can now see, the Facebook app has now been linked to application-zero (A0): Go back to the “Advanced settings” and choose “Customize keyboard mappings”: You will be prompted to create a custom keyboard layout so we choose “Custom 1”: When you choose to create a custom layout, you can do a great many more things with your keyboard. For example, many keyboards have predefined function (Fn) keys, which you can map to your tablet’s brightness controls, toggle WiFi on/off, and much more. A word of advice, the application automatically remaps certain keys when you create a custom layout. This might mess up some existing keyboard combos. If you simply want to add some functionality to your keyboard, you can go ahead and delete EKH’s default changes and start your custom layout from scratch. To create a new combo, select “Add new key mapping”: For our new shortcut, we are going to assign the Facebook app to open when we key in “ALT + F”. To do this, we press the “F” key while in the “Scancode” field and we see it returns a value of “33”. If we wanted to use a different key, we can press “Change” and scan another key’s numerical value. We now want to assign the “ALT” key to application “A0”, previously designated as the Facebook app. In the “AltGr” field, we enter “A0” and then “Save” our custom combo. And now we see our new application shortcut. Now, as long as we’re using our custom layout, every time we press “ALT + F”, the Facebook app will launch: External Keyboard Helper extends far beyond simple application shortcuts and if you are looking for deeper keyboard customization options, you should definitely check it out. Among other things, EKH also supports dozens of languages, allows you to quickly switch between layouts using a key or combo, add up to 16 custom text shortcuts, and much more! It can be had on Google Play for $2.53 for the full version, but you can try the demo version for free. More extensive documentation on how to use the app is also available. Android? Keyboard? Sure, why not? Unlike traditional desktop operating systems, you don’t need a physical keyboard and mouse to use a mobile operating system. You can buy an iPad or Nexus 10 or Galaxy Note, and never need another accessory or peripheral – they work as intended right out of the box. It’s even possible you can write the next great American novel on one these devices, though that might require a lot of practice and patience. That said, using a keyboard with Android is kind of fun. It’s not revelatory but it does elevate the experience. You don’t even need to add customizations (though they are nice) because there are enough existing keyboard shortcuts in Android to make it usable. Plus, when it comes to inputting text such as in an editor or terminal application, we fully advocate big, physical keyboards. Bottom line, if you’re looking for a way to enhance your Android tablet, give a keyboard a chance. Do you use your Android device for productivity? Is a physical keyboard an important part of your setup? Do you have any shortcuts that we missed? Sound off in the comments and let us know what you think.     

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • SCSI direct-access device appears as multiple lun's

    - by unixdj
    I have a similarly described problem to this question: http://superuser.com/questions/90181/same-scsi-drive-appears-multiple-times-on-the-controller-list where a SCSI direct-access device appears as multiple lun's, when it should only be one. The device is a SCSI-1 device, the SCSI controller card is an Adaptec AHA-7850 (rev 03), and system is PC / Linux 2.6. This device worked fine with RHEL4, and appeared as a single device / lun when the OS booted, but I've just tried plugging the device into a newer Linux disto (CentOS 5.4) and it now sees the device as 8 luns; with consequently 8 device files /dev/sgb to /dev/sgi. Any clues of how to figure out where the problem / fix is, would be great.

    Read the article

  • HTG Explains: What Does “Bricking” a Device Mean?

    - by Chris Hoffman
    When someone breaks a device and turns it into an expensive brick, people say they “bricked” it. We’ll cover exactly what causes bricking and why, how you can avoid it, and what to do if you have a bricked device. Bear in mind that many people use the term “bricking” incorrectly and refer to a device that isn’t working properly as “bricked.” if you can easily recover the device through a software process, it’s technically not “bricked.” Image Credit: Esparta Palma on Flickr HTG Explains: What is the Windows Page File and Should You Disable It? How To Get a Better Wireless Signal and Reduce Wireless Network Interference How To Troubleshoot Internet Connection Problems

    Read the article

  • How to disable hiddev96 in linux (or tell it to ignore a specific device)

    - by Miky D
    I'm having problems with a CentOS 5.0 system when using a certain USB device. The problem is that the device advertises itself as a HID device and linux is happy to try to provide support for it: In /ver/log/messages I see a line that reads: hiddev96: USB HID 1.11 Device [KXX USB PRO] on usb-0000:00:1d.0-1 My question comes down to: Is there a way to tell linux to not use hiddev96 for that device in particular? If yes, how? If not, what are my options - can I turn hiddev96 off completely? UPDATE I should probably have been a bit more specific about what is going on. The machine is running Centos 5.0, and on top of it I'm running VMWare workstation with Windows XP - which is where the USB device is actually supposed to operate. All works fine for other USB devices (i.e. VMWare successfully connects the USB device to the guest OS and the OS can use it, but for this particular device VMWare connects it to the guest OS, but the OS can't read/write to it) Every attempt locks up the application that is trying to communicate with the device. I've reason to believe that it is because the device is a HID device and there's some contention between the Linux host and the Windows guest OS in accessing the device. Below is the output from modprobe -l|grep -i hid as requested by @Karolis: # modprobe -l | grep -i hid /lib/modules/2.6.18-53.1.14.el5/kernel/net/bluetooth/hidp/hidp.ko /lib/modules/2.6.18-53.1.14.el5/kernel/drivers/usb/misc/phidgetservo.ko /lib/modules/2.6.18-53.1.14.el5/kernel/drivers/usb/misc/phidgetkit.ko And here is the output of lsmod # lsmod Module Size Used by udf 76997 1 vboxdrv 65696 0 autofs4 24517 2 hidp 23105 2 rfcomm 42457 0 l2cap 29633 10 hidp,rfcomm tun 14657 0 vmnet 49980 16 vmblock 20512 3 vmmon 945236 0 sunrpc 144253 1 cpufreq_ondemand 10573 1 video 19269 0 sbs 18533 0 backlight 10049 0 i2c_ec 9025 1 sbs button 10705 0 battery 13637 0 asus_acpi 19289 0 ac 9157 0 ipv6 251393 27 lp 15849 0 snd_hda_intel 24025 2 snd_hda_codec 202689 1 snd_hda_intel snd_seq_dummy 7877 0 snd_seq_oss 32577 0 nvidia 7824032 31 snd_seq_midi_event 11073 1 snd_seq_oss snd_seq 49713 5 snd_seq_dummy,snd_seq_oss,snd_seq_midi_event snd_seq_device 11725 3 snd_seq_dummy,snd_seq_oss,snd_seq snd_pcm_oss 42945 0 snd_mixer_oss 19009 1 snd_pcm_oss snd_pcm 72133 3 snd_hda_intel,snd_hda_codec,snd_pcm_oss joydev 13313 0 sg 36061 0 parport_pc 29157 1 snd_timer 24645 2 snd_seq,snd_pcm snd 52421 13 snd_hda_intel,snd_hda_codec,snd_seq_oss,snd_seq,snd_seq_device,snd_pcm_oss,snd_mixer_oss,snd_pcm,snd_timer ndiswrapper 170384 0 parport 37513 2 lp,parport_pc hci_usb 20317 2 ide_cd 40033 1 tg3 104389 0 i2c_i801 11469 0 bluetooth 53925 8 hidp,rfcomm,l2cap,hci_usb soundcore 11553 1 snd cdrom 36705 1 ide_cd serio_raw 10693 0 snd_page_alloc 14281 2 snd_hda_intel,snd_pcm i2c_core 23745 3 i2c_ec,nvidia,i2c_i801 pcspkr 7105 0 dm_snapshot 20709 0 dm_zero 6209 0 dm_mirror 28741 0 dm_mod 58201 8 dm_snapshot,dm_zero,dm_mirror ahci 23621 4 libata 115833 1 ahci sd_mod 24897 5 scsi_mod 132685 3 sg,libata,sd_mod ext3 123337 3 jbd 56553 1 ext3 ehci_hcd 32973 0 ohci_hcd 23261 0 uhci_hcd 25421 0

    Read the article

  • Does not recognize usb sticks and drives

    - by Peter
    When connecting any usb stick to my thinkpad ubuntu 10.10 does not recognize them. I don't see anything on the desktop. the output of "dmesg | tail -n10" gives me: [ 1965.696388] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1965.884537] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.072503] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.260349] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.506227] usb 1-1: new high speed USB device using ehci_hcd and address 9 [ 1966.572375] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.760379] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.948358] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1967.136335] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1967.325423] hub 1-0:1.0: unable to enumerate USB device on port 1 When connecting my usb scanner to the same port: [ 2008.480135] usb 1-1: new high speed USB device using ehci_hcd and address 65 [ 2008.548389] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2008.736786] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2008.924379] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.112348] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.300443] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.488536] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.732180] usb 1-1: new high speed USB device using ehci_hcd and address 71 [ 2014.796299] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2018.000128] usb 2-1: new full speed USB device using uhci_hcd and address 3 And ubuntu 10.10 recognizes that scanner. So: What can i do to see my usb stick? BTW: on my other Thinkpad running fedora 14 it works perfectly... Cheers -Peter

    Read the article

  • Create Device Reccieve SMS Parse To Text ( SMS Gateway )

    - by Chris Okyen
    I want to use a server as a device to run a script to parse a SMS text in the following way. I. The person types in a specific and special cell phone number (Similar to Facebook’s 32556 number used to post on your wall) II. The user types a text message. III. The user sends the text message. IV. The message is sent to some kind of Device (the server) or SMS Gateway and receives it. V. The thing described above that the message is sent to then parse the test message. I understand that these three question will mix Programming and Server Stuff and could reside here or at DBA.SE How would I make such a cell phone number (described in step I) that would be sent to the Device? How do I create the device that then would receive it? Finally, how do I Parse the text message?

    Read the article

  • Device or resource busy errors when setting up a RAID array

    - by JGazlyVFX
    I'm trying to create a Raid array and these are the errors I keep getting. I have repartitioned the drives several times. root@BitchStewie:/dev# sudo mdadm --verbose --create /dev/md1 --chunk=64 --level=0 --raid-devices=12 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1 /dev/sdf1 /dev/sdg1 /dev/sdh1 /dev/sdi1 /dev/sdj1 /dev/sdk1 /dev/sdl1 /dev/sdm1 mdadm: super1.x cannot open /dev/sdb1: Device or resource busy mdadm: ddf: Cannot use /dev/sdb1: Device or resource busy mdadm: Cannot use /dev/sdb1: It is busy mdadm: device /dev/sdb1 not suitable for any style of array

    Read the article

  • ubuntu 10.10 does not recognize usb sticks and drives

    - by Peter
    When connecting any usb stick to my thinkpad ubuntu 10.10 does not recognize them. I don't see anything on the desktop. the output of "dmesg | tail -n10" gives me: [ 1965.696388] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1965.884537] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.072503] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.260349] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.506227] usb 1-1: new high speed USB device using ehci_hcd and address 9 [ 1966.572375] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.760379] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1966.948358] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1967.136335] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 1967.325423] hub 1-0:1.0: unable to enumerate USB device on port 1 When connecting my usb scanner to the same port: [ 2008.480135] usb 1-1: new high speed USB device using ehci_hcd and address 65 [ 2008.548389] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2008.736786] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2008.924379] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.112348] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.300443] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.488536] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2009.732180] usb 1-1: new high speed USB device using ehci_hcd and address 71 [ 2014.796299] hub 1-0:1.0: unable to enumerate USB device on port 1 [ 2018.000128] usb 2-1: new full speed USB device using uhci_hcd and address 3 And ubuntu 10.10 recognizes that scanner. So: What can i do to see my usb stick? BTW: on my other Thinkpad running fedora 14 it works perfectly... Cheers -Peter

    Read the article

  • How to disable hiddev96 in linux (or tell it to ignore a specific device)

    - by Miky D
    I'm having problems with a CentOS 5.0 system when using a certain USB device. The problem is that the device advertises itself as a HID device and linux is happy to try to provide support for it: In /ver/log/messages I see a line that reads: hiddev96: USB HID 1.11 Device [KXX USB PRO] on usb-0000:00:1d.0-1 My question comes down to: Is there a way to tell linux to not use hiddev96 for that device in particular? If yes, how? If not, what are my options - can I turn hiddev96 off completely? UPDATE I should probably have been a bit more specific about what is going on. The machine is running Centos 5.0, and on top of it I'm running VMWare workstation with Windows XP - which is where the USB device is actually supposed to operate. All works fine for other USB devices (i.e. VMWare successfully connects the USB device to the guest OS and the OS can use it, but for this particular device VMWare connects it to the guest OS, but the OS can't read/write to it) Every attempt locks up the application that is trying to communicate with the device. I've reason to believe that it is because the device is a HID device and there's some contention between the Linux host and the Windows guest OS in accessing the device. Below is the output from modprobe -l|grep -i hid as requested by @Karolis: # modprobe -l | grep -i hid /lib/modules/2.6.18-53.1.14.el5/kernel/net/bluetooth/hidp/hidp.ko /lib/modules/2.6.18-53.1.14.el5/kernel/drivers/usb/misc/phidgetservo.ko /lib/modules/2.6.18-53.1.14.el5/kernel/drivers/usb/misc/phidgetkit.ko And here is the output of lsmod # lsmod Module Size Used by udf 76997 1 vboxdrv 65696 0 autofs4 24517 2 hidp 23105 2 rfcomm 42457 0 l2cap 29633 10 hidp,rfcomm tun 14657 0 vmnet 49980 16 vmblock 20512 3 vmmon 945236 0 sunrpc 144253 1 cpufreq_ondemand 10573 1 video 19269 0 sbs 18533 0 backlight 10049 0 i2c_ec 9025 1 sbs button 10705 0 battery 13637 0 asus_acpi 19289 0 ac 9157 0 ipv6 251393 27 lp 15849 0 snd_hda_intel 24025 2 snd_hda_codec 202689 1 snd_hda_intel snd_seq_dummy 7877 0 snd_seq_oss 32577 0 nvidia 7824032 31 snd_seq_midi_event 11073 1 snd_seq_oss snd_seq 49713 5 snd_seq_dummy,snd_seq_oss,snd_seq_midi_event snd_seq_device 11725 3 snd_seq_dummy,snd_seq_oss,snd_seq snd_pcm_oss 42945 0 snd_mixer_oss 19009 1 snd_pcm_oss snd_pcm 72133 3 snd_hda_intel,snd_hda_codec,snd_pcm_oss joydev 13313 0 sg 36061 0 parport_pc 29157 1 snd_timer 24645 2 snd_seq,snd_pcm snd 52421 13 snd_hda_intel,snd_hda_codec,snd_seq_oss,snd_seq,snd_seq_device,snd_pcm_oss,snd_mixer_oss,snd_pcm,snd_timer ndiswrapper 170384 0 parport 37513 2 lp,parport_pc hci_usb 20317 2 ide_cd 40033 1 tg3 104389 0 i2c_i801 11469 0 bluetooth 53925 8 hidp,rfcomm,l2cap,hci_usb soundcore 11553 1 snd cdrom 36705 1 ide_cd serio_raw 10693 0 snd_page_alloc 14281 2 snd_hda_intel,snd_pcm i2c_core 23745 3 i2c_ec,nvidia,i2c_i801 pcspkr 7105 0 dm_snapshot 20709 0 dm_zero 6209 0 dm_mirror 28741 0 dm_mod 58201 8 dm_snapshot,dm_zero,dm_mirror ahci 23621 4 libata 115833 1 ahci sd_mod 24897 5 scsi_mod 132685 3 sg,libata,sd_mod ext3 123337 3 jbd 56553 1 ext3 ehci_hcd 32973 0 ohci_hcd 23261 0 uhci_hcd 25421 0

    Read the article

  • Files backup utility with incremental backups that would keep backup device clean

    - by Wojtek
    I've tested a few of backup utilities and still haven't found one that would satisfy me. Almost every one of them has two options: - full backup - not an option to use frequently - incremental backup - seems right, but there's one thing about it: Incremental backup builds on a base of a full backup, backing up only those files, that were created/changed. The thing is, that after some time you've got a lot of unwanted files from the old backups bloating your backup device. Also, if you'd accidentally delete your full (first) backup file, then the differential backups would be corrupted (you wouldn't be able to restore them). The thing I'm looking for is a program, that would backup files simply by copying them. It would check the backup device whether it contains the file (unchanged): - if yes, it should proceed to the next file (we've got current version backed up) - if no, it would copy the file to the backup device - if the device contains a file that is no longer on our disk, the program would delete it from the backup device Is there any such utility, that would work this way? If not, do you have any hints on how to backup fairly big amounts of data (around 20gb) quite frequently with incremental backups and not be exposed to those unwanted effects of backup size puffing up?

    Read the article

  • Extra fire simulation on iPad device

    - by Nezam
    I have with me an iOS app for iPad which creates a few fire simulations over a png.Well,its working well exactly how we wanted it but when we are testing it on a device,we get an extra fire simulation.Heres the screen: iPad Simulator: This is how it should display (iPad Simulation) iPad Device: This is how its displaying (iPad Device) M ready to share whichever portion of my code which gets me to my solution once someone gets hit here.Thanks in advance

    Read the article

  • ALSA samples capture: cannot open device

    - by Randagio
    I'm quite new to Linux (Lubuntu 12.04 for sake of precision) and ALSA programming at all. I'm trying to write a C program to capture audio from internal PC microphone for processing it. So as first step I google a bit and I found this article for capturing audio samples A tutorial on using the ALSA Audio API but when I compile it and execute it with: ./capture "default" or ./capture "hw:0,0" and all the possible variants on theme it always raises the error: cannot open device hw:0,0 (no such file or directory). So the issue is: what is the name of the mic audio device to pass as parameter to record the audio from mic ? The mic is working ok because the Sound Recorder program records sounds perfectly and I can playback them. The output of the aplay -l is the following : **** List of PLAYBACK Hardware Devices **** card 0: I82801DBICH4 [Intel 82801DB-ICH4], device 0: Intel ICH [Intel 82801DB-ICH4] Subdevices: 1/1 Subdevice #0: subdevice #0 card 0: I82801DBICH4 [Intel 82801DB-ICH4], device 4: Intel ICH - IEC958 [Intel 82801DB-ICH4 - IEC958] Subdevices: 1/1 Subdevice #0: subdevice #0 and this is the amixer output (cut) Simple mixer control 'Master',0 Capabilities: pvolume pswitch penum Playback channels: Front Left - Front Right Limits: Playback 0 - 31 Mono: Front Left: Playback 31 [100%] [0.00dB] [on] Front Right: Playback 31 [100%] [0.00dB] [on] Simple mixer control 'Master Mono',0 Capabilities: pvolume pvolume-joined pswitch pswitch-joined penum Playback channels: Mono Limits: Playback 0 - 31 Mono: Playback 4 [13%] [-40.50dB] [on] Simple mixer control 'PCM',0 Capabilities: pvolume pswitch penum Playback channels: Front Left - Front Right Limits: Playback 0 - 31 Mono: Front Left: Playback 31 [100%] [12.00dB] [on] Front Right: Playback 31 [100%] [12.00dB] [on] Simple mixer control 'CD',0 Capabilities: pvolume pswitch cswitch cswitch-exclusive penum Capture exclusive group: 0 Playback channels: Front Left - Front Right Capture channels: Front Left - Front Right Limits: Playback 0 - 31 Front Left: Playback 0 [0%] [-34.50dB] [off] Capture [off] Front Right: Playback 0 [0%] [-34.50dB] [off] Capture [off] Simple mixer control 'Mic',0 Capabilities: pvolume pvolume-joined pswitch pswitch-joined cswitch cswitch-exclusive penum Capture exclusive group: 0 Playback channels: Mono Capture channels: Front Left - Front Right Limits: Playback 0 - 31 Mono: Playback 22 [71%] [-1.50dB] [on] Front Left: Capture [on] Front Right: Capture [on] Simple mixer control 'Mic Boost (+20dB)',0 Capabilities: pswitch pswitch-joined penum Playback channels: Mono Mono: Playback [off] Simple mixer control 'Mic Select',0 Capabilities: enum Items: 'Mic1' 'Mic2' Item0: 'Mic1' Simple mixer control 'Stereo Mic',0 Capabilities: pswitch pswitch-joined penum Playback channels: Mono Mono: Playback [off] so for aplay it seems I have no recording device, but for amixer I've got the mic, a mic boost and mic stereo as well with all those gorgeous stuffs on their place !!. If so, how could my Sound Recorder record the audio without any problem at all ?!?! For sure I'm giving the wrong device name to the command line for capturing audio but I'm loosing the hope for finding the correct one ! Please help....before I tear my hair out !!!

    Read the article

  • `power/persist` file not found in USB device sysfs directory

    - by intuited
    The file /usr/share/doc/linux-doc/usb/persist.txt.gz mentions that the USB-persist capability can be enabled for a given USB device by writing 1 to the file persist in that device's directory in /sys/bus/usb/devices/$device/power. This is said — if I understood correctly — to allow mountings of volumes on the drive to persist across power loss during suspend. However, I've discovered that the device I'd like to enable this facility for — a USB hard drive — does not have such a file in its corresponding directory, and that attempts to create it are rebuffed. Is there perhaps a kernel module that needs to be loaded for this to work? Do I need to build a custom kernel? I'm running ubuntu 10.10.

    Read the article

  • Force usb to use same device id, instead of new one

    - by m s kumar
    I am having some trouble in automating the task. I am testing some android based mobiles in linux machine. The automation script uses the device id under "/dev/bus/usb/001/"053" it will be always under bus 001 only.. But the dev is will be random like if i insert one mobile then the dev id will be 053, if remove and insert it again then the dev id will be 054.. The problem is, when some tests runs on the device and if device gets rebooted then new dev id is showing for the rebooted one and my scripts failing due to new dev id.. Is there any way to force usb devices to use same dev id instead of new one. So that there will be no issues to my tests even after device reboots. Thanks in advance.

    Read the article

  • manage 2 wireless device

    - by yi.tang.uni
    I erased Windows 7 and installed Ubuntu 12.04 on my Dell Latitude E4200. I an very happy with my choice but with little pity. I cannot use the wireless service in my university as the build-in device works unstable. I bought a USB wireless device, which solve the problem. However, the build-in device keep to sent me message about unable to connect, which waste laptop's cup & battery. The phsical bottom to turn off wireless affect both devices. So the question is: "How can I manually shut down wireless device?" There is another interest comes to my mind: "Does 2 wireless improve the overall internet usage if I run a high-internet-consuming program like BT ?" Thank for your time and energy.

    Read the article

  • How can I select an audio output device in directshow

    - by Vibhore Tanwer
    I was wondering how I can select the output device for audio in directshow. I am able to get available audio output devices in directshow. But how can I make one of these to be audio output device. Its always going for the default audio device. I want to be able to output audio on my choice of device. I have been struggling through google but couldn't find anything useful. All I could get was this link but it doesn't really solve my problem. Any help will be really helpful for me.

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >