Search Results

Search found 938 results on 38 pages for 'mutual recursion'.

Page 6/38 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Recursion in F#

    - by MarkPearl
    Things are slowly coming together – I was able to look at a bit of F# code and intuitively know what it was going to do (yay)… So today I saw a blog post by Bob Palmer on Fibonacci numbers in F# which inspired me to look at bit into recursion. First the C# example… class Program { public static void CountDown(int n) { switch (n) { case 0: Console.WriteLine("End of Count"); break; default: Console.WriteLine(n); CountDown(n-1); break; } } static void Main(string[] args) { CountDown(10); Console.ReadLine(); } }   In F#, the equivalent would look something like this… open System let rec CountDown n = match n with | 0 -> Console.WriteLine("End of Count"); | n -> Console.WriteLine(n); CountDown (n-1); CountDown 10 Console.ReadLine()   Pretty simple stuff. With F# you when making recursive calls you need to explicitly declare that the function is recursive with the “rec” keyword. Otherwise the code is pretty easy to read and self explanatory.

    Read the article

  • What are basic programs like, recursion, Fibonacci, small trick programs?

    - by Mike
    This question may seem daft (I'm a new to 'programming' and should probably stop if this is the type of question I'm required to ask)... What are: "basic programs like, recursion, fibonacci, factorial, string manipulation, small trick programs"? I've recently read Coding Horror - the non programmer and followed the links to Kegel and How to get hired. Then I delved through some similar questions here (hence the block quote) and I realised that as a fully fledged non-programmer I probably wouldn't know if I knew recursion (or any of the others) because I wouldn't know what it looked like, or why it was used, and what the results would look like after it was used. I suppose I'm trying to get a picture of "the basics". What the principles are and why we learn them - where they'll be used and what result/s your looking for. If they'll be used as an interview question during my first interview sometime in 2020 I would like to look less ignorant than those 199 out of 200 who just don't know the how, or the why, of programming. As always...I'll get my coat. Thanks Mike

    Read the article

  • Can continuations be used as a replacement for recursion?

    - by Sam
    The following function generates a 'stack level too deep (SystemStackError)' for n = 5,000 def factorial(n) n == 0 ? 1 : factorial(n -1) * n end Is there a way to avoid this error using continuations/callcc? Note: I know this can be implemented without recursion. e.g. def factorial2(n) (1..n).inject(1) {|result, n| result * n } end

    Read the article

  • How can I improve the recursion capabilities of my ECMAScript implementation?

    - by ChaosPandion
    After some resent tests I have found my implementation cannot handle very much recursion. Although after I ran a few tests in Firefox I found that this may be more common than I originally thought. I believe the basic problem is that my implementation requires 3 calls to make a function call. The first call is made to a method named Call that makes sure the call is being made to a callable object and gets the value of any arguments that are references. The second call is made to a method named Call which is defined in the ICallable interface. This method creates the new execution context and builds the lambda expression if it has not been created. The final call is made to the lambda that the function object encapsulates. Clearly making a function call is quite heavy but I am sure that with a little bit of tweaking I can make recursion a viable tool when using this implementation. public static object Call(ExecutionContext context, object value, object[] args) { var func = Reference.GetValue(value) as ICallable; if (func == null) { throw new TypeException(); } if (args != null && args.Length > 0) { for (int i = 0; i < args.Length; i++) { args[i] = Reference.GetValue(args[i]); } } var reference = value as Reference; if (reference != null) { if (reference.IsProperty) { return func.Call(reference.Value, args); } else { return func.Call(((EnviromentRecord)reference.Value).ImplicitThisValue(), args); } } return func.Call(Undefined.Value, args); } public object Call(object thisObject, object[] arguments) { var lexicalEnviroment = Scope.NewDeclarativeEnviroment(); var variableEnviroment = Scope.NewDeclarativeEnviroment(); var thisBinding = thisObject ?? Engine.GlobalEnviroment.GlobalObject; var newContext = new ExecutionContext(Engine, lexicalEnviroment, variableEnviroment, thisBinding); Engine.EnterContext(newContext); var result = Function.Value(newContext, arguments); Engine.LeaveContext(); return result; }

    Read the article

  • Recursion in the form of a Recursive Func&lt;T, T&gt;

    - by ToStringTheory
    I gotta admit, I am kind of surprised that I didn’t realize I could do this sooner.  I recently had a problem which required a recursive function call to come up with the answer.  After some time messing around with a recursive method, and creating an API that I was not happy with, I was able to create an API that I enjoy, and seems intuitive. Introduction To bring it to a simple example, consider the summation to n: A mathematically identical formula is: In a .NET function, this can be represented by a function: Func<int, int> summation = x => x*(x+1)/2 Calling summation with an input integer will yield the summation to that number: var sum10 = summation(4); //sum10 would be equal to 10 But what if I wanted to get a second level summation…  First some to n, and then use that argument as the input to the same function, to find the second level summation: So as an easy example, calculate the summation to 3, which yields 6.  Then calculate the summation to 6 which yields 21. Represented as a mathematical formula - So what if I wanted to represent this as .NET functions.  I can always do: //using the summation formula from above var sum3 = summation(3); //sets sum3 to 6 var sum3_2 = summation(sum3); //sets sum3 to 21 I could always create a while loop to perform the calculations too: Func<int, int> summation = x => x*(x+1)/2; //for the interests of a smaller example, using shorthand int sumResultTo = 3; int level = 2; while(level-- > 0) { sumResultTo = summation(sumResultTo); } //sumResultTo is equal to 21 now. Or express it as a for-loop, method calls, etc…  I really didn’t like any of the options that I tried.  Then it dawned on me – since I was using a Func<T, T> anyways, why not use the Func’s output from one call as the input as another directly. Some Code So, I decided that I wanted a recursion class.  Something that I would be generic and reusable in case I ever wanted to do something like this again. It is limited to only the Func<T1, T2> level of Func, and T1 must be the same as T2. The first thing in this class is a private field for the function: private readonly Func<T, T> _functionToRecurse; So, I since I want the function to be unchangeable, I have defined it as readonly.  Therefore my constructor looks like: public Recursion(Func<T, T> functionToRecurse) { if (functionToRecurse == null) { throw new ArgumentNullException("functionToRecurse", "The function to recurse can not be null"); } _functionToRecurse = functionToRecurse; } Simple enough.  If you have any questions, feel free to post them in the comments, and I will be sure to answer them. Next, I want enough. If be able to get the result of a function dependent on how many levels of recursion: private Func<T, T> GetXLevel(int level) { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } if (level == 1) return _functionToRecurse; return _GetXLevel(level - 1, _functionToRecurse); } So, if you pass in 1 for the level, you get just the Func<T,T> back.  If you say that you want to go deeper down the rabbit hole, it calls a method which accepts the level it is at, and the function which it needs to use to recurse further: private Func<T, T> _GetXLevel(int level, Func<T, T> prevFunc) { if (level == 1) return y => prevFunc(_functionToRecurse(y)); return _GetXLevel(level - 1, y => prevFunc(_functionToRecurse(y))); } That is really all that is needed for this class. If I exposed the GetXLevel function publicly, I could use that to get the function for a level, and pass in the argument..  But I wanted something better.  So, I used the ‘this’ array operator for the class: public Func<T,T> this[int level] { get { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } return this.GetXLevel(level); } } So, using the same example above of finding the second recursion of the summation of 3: var summator = new Recursion<int>(x => (x * (x + 1)) / 2); var sum_3_level2 = summator[2](3); //yields 21 You can even find just store the delegate to the second level summation, and use it multiple times: var summator = new Recursion<int>(x => (x * (x + 1)) / 2); var sum_level2 = summator[2]; var sum_3_level2 = sum_level2(3); //yields 21 var sum_4_level2 = sum_level2(4); //yields 55 var sum_5_level2 = sum_level2(5); //yields 120 Full Code Don’t think I was just going to hold off on the full file together and make you do the hard work…  Copy this into a new class file: public class Recursion<T> { private readonly Func<T, T> _functionToRecurse; public Recursion(Func<T, T> functionToRecurse) { if (functionToRecurse == null) { throw new ArgumentNullException("functionToRecurse", "The function to recurse can not be null"); } _functionToRecurse = functionToRecurse; } public Func<T,T> this[int level] { get { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } return this.GetXLevel(level); } } private Func<T, T> GetXLevel(int level) { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } if (level == 1) return _functionToRecurse; return _GetXLevel(level - 1, _functionToRecurse); } private Func<T, T> _GetXLevel(int level, Func<T, T> prevFunc) { if (level == 1) return y => prevFunc(_functionToRecurse(y)); return _GetXLevel(level - 1, y => prevFunc(_functionToRecurse(y))); } } Conclusion The great thing about this class, is that it can be used with any function with same input/output parameters.  I strived to find an implementation that I found clean and useful, and I finally settled on this.  If you have feedback – good or bad, I would love to hear it!

    Read the article

  • Wondering how Facebook does the "Mutual friends" feature

    - by Pierre
    Hello, I'm currently developing an application to allow students to manage their courses, and I don't really know how to design the database for a specific feature. The client wants, a lot like Facebook, that when a student displays the list of people currently in a specific course, the people with the most mutual courses are displayed first. As an additional feature, I would like to add a search feature to allow students to search for another one, and displaying first in the search results the people with most mutual courses. I currently use MySQL, I plan to use Cassandra for some other features, and I also use Memcached for result caching. Thanks.

    Read the article

  • Mutual Information / Entropy Calculation Help

    - by Fillip
    Hi, Hoping someone can give me some pointers with this entropy problem. Say X is chosen randomly from the uniform integer distribution 0-32 (inclusive). I calculate the entropy, H(X) = 32 bits, as each Xi has equal probability of occurring. Now, say the following pseudocode executes. int r = rand(0,1); // a random integer 0 or 1 r = r * 33 + X; How would I work out the mutual information between the two variables r and X? Mutual Information is defined as I(X; Y) = H(X) - H(X|Y) but I don't really understand how to apply the conditional entropy H(X|Y) to this problem. Thanks

    Read the article

  • How to update mutual entries in DB?

    - by Sthita
    I am not able to perform mutual update to my Database. My Requirement is like this : Insert IDS UPDate DB Entries ID ConnectedTo ID connectedTo connectedVia 2 1 --- No Entry ----- 2 3 -- No Entry ----- When ID 1 Comes in to picture (Enties happened to Table) 1 4 1 3 2 1 5 2 4 1 1 2 2 5 1 When ID 3 Comes into picture (Enties happened to Table) 3 4 3 5 1 3 1 ---- 3 2 ---- Similarly when ID 4 Comes in to picture 4 9 4 2 3 4 10 4 5 1 4 3 4 2 1 4 1 1 9 4 1 10 4 Its basically Updating the mutual connections.No Duplicate entries should happen. Like for example 2 3 and 3 2 are mutually connected and 1 is associated with them so there is no need to insert (3 2 via 1). I think this is my requirement. Anything possible combinations i have missed please let me know. i will Update. Please help me writing the logic or any example using jdbc and java.

    Read the article

  • What is the relationship between recursion functions and memory stack?

    - by Eslam
    is there's a direct relationship between recursive functions and the memory stack, for more explanation consider that code: public static int triangle(int n) { System.out.println(“Entering: n = ” + n); if (n == 1) { System.out.println(“Returning 1”); return 1; } else { int temp = n + triangle(n - 1); System.out.println(“Returning“ + temp); return temp; } }? in this example where will the values 2,3,4,5 be stored until the function returns ? note that they will be returned in LIFO(LastInFirstOut) is these a special case of recursion that deals with the memory stack or they always goes together?

    Read the article

  • Can anyone help with java? Finding common nodes from two linked lists using recursion

    - by Dan
    I have to write a method that returns a linked list with all the nodes that are common to two linked lists using recursion, without loops. For example, first list is 2 - 5 - 7 - 10 second list is 2 - 4 - 8 - 10 the list that would be returned is 2 - 10 I am getting nowhere with this.. What I have been think of was to check each value of the first list with each value of the second list recursively but the second list would then be cut by one node everytime and I cannot compare the next value in the first list with the the second list. I hope this makes sense... Can anyone help?

    Read the article

  • Recursion with an Array; can't get the right value to return

    - by Matt
    Recursive Solution: Not working! Explanation: An integer, time, is passed into the function. It's then used to provide an end to the FOR statement (counter<time). The IF section (time == 0) provides a base case where the recursion should terminate, returning 0. The ELSE section is where the recursive call occurs: total is a private variable defined in the header file, elsewhere. It's initialized to 0 in a constructor, elsewhere. The function calls itself, recursively, adding productsAndSales[time-1][0] to total, again, and again, until the base call. Then the total is returned, and printed out later. Well, that's what I hoped for anyway. What I imagined would happen is that I would add up all the values in this one column of the array and the value would get returned, and printed out. Instead if returns 0. If I set the IF section to "return 1", I noticed that it returns powers of 2, for whatever value time is. EG: Time = 3, it returns 2*2 + 1. If time = 5, it returns 2*2*2*2 + 1. I don't understand why it's not returning the value I'm expecting. int CompanySales::calcTotals( int time ) { cout << setw( 4 ); if ( time == 0 ) { return 0; } else { return total += calcTotals( productsAndSales[ time-1 ][ 0 ]); } } Iterative Solution: Working! Explanation: An integer, time, is passed into the function. It's then used to provide an end to the FOR statement (counter<time). The FOR statement cycles through an array, adding all of the values in one column together. The value is then returned (and elsewhere in the program, printed out). Works perfectly. int CompanySales::calcTotals( int time ) { int total = 0; cout << setw( 4 ); for ( int counter = 0; counter < time; counter++ ) { total += productsAndSales[counter][0]; } return total0; }

    Read the article

  • Mutual piping on linux

    - by user21919
    I would like the output of A to be input for B and at the same time the output of B to be the input for A, is that possible? I tried the naïve thing: creating named pipes for A (pipeA) and B (pipeB) and then: pipeB | A | pipeA & pipeA | B | pipeB & But that does not work (pipeB is empty and switching the order would not help either). Any help would be appreciated. Example: Command A could be compiled form of this C program: #include <stdio.h> int main() { printf("0\n"); int x = 0; while (scanf("%d", &x) != EOF) { printf("%d\n", x + 1); } return 0; } Command B could be compiled form of this C program: #include <stdio.h> int main() { int x = 0; while (scanf("%d", &x) != EOF) { printf("%d\n", x + x); } return 0; }

    Read the article

  • Why isn't this infinite recursion? How does default variable initialization work in VB.NET?

    - by froadie
    I just made an interesting mistake in my code: Dim endColumn As Integer = startColumn + endColumn - 1 The code was actually supposed to be: Dim endColumn As Integer = startColumn + numColumns - 1 The interesting thing is, I would think that this code should be recursive and loop indefinitely, as the initialization of endColumn sort of calls itself. However, it seems that the code just treats the uninitialized variable as a 0 and so I get startColumn + 0 - 1. What is happening here behind the scenes? When does a variable get assigned a default value?

    Read the article

  • code doesnot delete specific extra files but deletes all, also no recursion for directory, help me t

    - by OM The Eternity
    I have to compare two folder structure and with reference of source folder I want to delete all the files/folders present in other destination folder which do not exist in reference source folder, how could i do this? $original = scan_dir_recursive('/var/www/html/copy2'); $mirror = scan_dir_recursive('/var/www/html/copy1'); function scan_dir_recursive($dir) { $all_paths = array(); $new_paths = scandir($dir); foreach ($new_paths as $path) { if ($path == '.' || $path == '..') { continue; } $path = $dir . DIRECTORY_SEPARATOR . $path; if (is_dir($path)) { $all_paths = array_merge($all_paths, scan_dir_recursive($path)); } else { $all_paths[] = $path; } } return $all_paths; } foreach($mirror as $mirr) { if($mirr != '.' && $mirr != '..') { if(!in_array($mirr, $original)) { unlink($mirr); // delete the file } } } The above code shows what i did.. Here My copy1 folder contains extra files than copy2 folders hence i need these extra files to be deleted. Below given output is are arrays of original Mirror and of difference of both.. Original Array ( [0] => /var/www/html/copy2/Copy (5) of New Text Document.txt [1] => /var/www/html/copy2/Copy of New Text Document.txt ) Mirror Array ( [0] => /var/www/html/copy1/Copy (2) of New Text Document.txt [1] => /var/www/html/copy1/Copy (3) of New Text Document.txt [2] => /var/www/html/copy1/Copy (5) of New Text Document.txt ) Difference Array ( [0] => /var/www/html/copy1/Copy (2) of New Text Document.txt [1] => /var/www/html/copy1/Copy (3) of New Text Document.txt [2] => /var/www/html/copy1/Copy (5) of New Text Document.txt ) when i iterate a loop to delete on difference array all files has to be deleted as per displayed output.. how can i rectify this.. the loop for deletion is given below. $dirs_to_delete = array(); foreach ($diff_path as $path) { if (is_dir($path)) { $dirs_to_delete[] = $path; } else { unlink($path); } } while ($dir = array_pop($dirs_to_delete)) { rmdir($dir); }

    Read the article

  • F# why my recursion is faster than Seq.exists?

    - by user38397
    I am pretty new to F#. I'm trying to understand how I can get a fast code in F#. For this, I tried to write two methods (IsPrime1 and IsPrime2) for benchmarking. My code is: // Learn more about F# at http://fsharp.net open System open System.Diagnostics #light let isDivisible n d = n % d = 0 let IsPrime1 n = Array.init (n-2) ((+) 2) |> Array.exists (isDivisible n) |> not let rec hasDivisor n d = match d with | x when x < n -> (n % x = 0) || (hasDivisor n (d+1)) | _ -> false let IsPrime2 n = hasDivisor n 2 |> not let SumOfPrimes max = [|2..max|] |> Array.filter IsPrime1 |> Array.sum let maxVal = 20000 let s = new Stopwatch() s.Start() let valOfSum = SumOfPrimes maxVal s.Stop() Console.WriteLine valOfSum Console.WriteLine("IsPrime1: {0}", s.ElapsedMilliseconds) ////////////////////////////////// s.Reset() s.Start() let SumOfPrimes2 max = [|2..max|] |> Array.filter IsPrime2 |> Array.sum let valOfSum2 = SumOfPrimes2 maxVal s.Stop() Console.WriteLine valOfSum2 Console.WriteLine("IsPrime2: {0}", s.ElapsedMilliseconds) Console.ReadKey() IsPrime1 takes 760 ms while IsPrime2 takes 260ms for the same result. What's going on here and how I can make my code even faster?

    Read the article

  • Is writing recursive functions hard for you?

    - by null
    I'm taking a computer science course now. I feel it is so hard compared to my polytechnic IT course. I can't understand recursive methods well. How do you manage to get your brain to understand it? When the recursive method returns back, my brain can not trace it nicely. Is there a better way to understand recursion? How do you start learning it? Is it normal that feel that it is very hard at then beginning? Look at the example, I'm very surprised how can I write this if it appears in exam. public class Permute { public static void main(String[] args) { new Permute().printPerms(3); } boolean[] used; int max; public void printPerms(int size) { used = new boolean[size]; max = size; for (int i = 0; i < size; i++) { used[i] = false; } perms(size, ""); } public void perms(int remaining, String res) { if (remaining == 0) { System.out.println(res); } else { for (int i = 0; i < max; i++) { if (!(used[i])) { used[i] = true; perms(remaining - 1, res + " " + i); used[i] = false; } } } } }

    Read the article

  • How to check for mutual existence of Fields in same table in Two columns

    - by ranabra
    I tried using "Exist" and "IN". Not only did I not succeed, it didn't seem as an efficient solution. Here is a simplified example: TblMyTable WorkerUserName  -  WorkerDegree  -  ManagerUserName  -  ManagerDegree I need a query where there is a mutual connection / existence. What I mean is only where the worker, ex. "John" has a manager named "Mary", and where Mary the manager has a worker named "John". John the worker can have several managers and Mary the manager can have several workers. So the result will be (the order doesn't matter) ideally in one line: John - BSc  --  Mary - M.A. or Mary - M.A.  --  John - BSc The punchline is it's only one table. it is not really managers and workers, this is just a simplification of the situation. In the real situation both are equal, in a Table of names of users working with other users. Database is SQL 2005. Many thanx in advance  

    Read the article

  • Equal Gifts Algorithm Problem

    - by 7Aces
    Problem Link - http://opc.iarcs.org.in/index.php/problems/EQGIFTS It is Lavanya's birthday and several families have been invited for the birthday party. As is customary, all of them have brought gifts for Lavanya as well as her brother Nikhil. Since their friends are all of the erudite kind, everyone has brought a pair of books. Unfortunately, the gift givers did not clearly indicate which book in the pair is for Lavanya and which one is for Nikhil. Now it is up to their father to divide up these books between them. He has decided that from each of these pairs, one book will go to Lavanya and one to Nikhil. Moreover, since Nikhil is quite a keen observer of the value of gifts, the books have to be divided in such a manner that the total value of the books for Lavanya is as close as possible to total value of the books for Nikhil. Since Lavanya and Nikhil are kids, no book that has been gifted will have a value higher than 300 Rupees... For the problem, I couldn't think of anything except recursion. The code I wrote is given below. But the problem is that the code is time-inefficient and gives TLE (Time Limit Exceeded) for 9 out of 10 test cases! What would be a better approach to the problem? Code - #include<cstdio> #include<climits> #include<algorithm> using namespace std; int n,g[150][2]; int diff(int a,int b,int f) { ++f; if(f==n) { if(a>b) { return a-b; } else { return b-a; } } return min(diff(a+g[f][0],b+g[f][1],f),diff(a+g[f][1],b+g[f][0],f)); } int main() { int i; scanf("%d",&n); for(i=0;i<n;++i) { scanf("%d%d",&g[i][0],&g[i][1]); } printf("%d",diff(g[0][0],g[0][1],0)); } Note - It is just a practice question, & is not part of a competition.

    Read the article

  • javascript complex recurrsion [on hold]

    - by Achilles
    Given Below is my data in data array. What i am doing in code below is that from that given data i have to construct json in a special format which i also gave below. //code start here var hierarchy={}; hierarchy.name="Hierarchy"; hierarchy.children=[{"name":"","children":[{"name":"","children":[]}]}]; var countryindex; var flagExist=false; var data = [ {country :"America", city:"Kansas", employe:'Jacob'}, {country :"Pakistan", city:"Lahore", employe:'tahir'}, {country :"Pakistan", city:"Islamabad", employe:'fakhar'} , {country :"Pakistan", city:"Lahore", employe:'bilal'}, {country :"India", city:"d", employe:'ali'} , {country :"Pakistan", city:"Karachi", employe:'eden'}, {country :"America", city:"Kansas", employe:'Jeen'} , {country :"India", city:"Banglore", employe:'PP'} , {country :"India", city:"Banglore", employe:'JJ'} , ]; for(var i=0;i<data.length;i++) { for(var j=0;j<hierarchy.children.length;j++) { //for checking country match if(hierarchy.children[j].name==data[i].country) { countryindex=j; flagExist=true; break; } } if(flagExist)//country match now no need to add new country just add city in it { var cityindex; var cityflag=false; //hierarchy.children[countryindex].children.push({"name":data[i].city,"children":[]}) //if(hierarchy.children[index].children!=undefined) for(var k=0;k< hierarchy.children[countryindex].children.length;k++) { //for checking city match if(hierarchy.children[countryindex].children[k].name==data[i].city) { // hierarchy.children[countryindex].children[k].children.push({"name":data[i].employe}) cityflag=true; cityindex=k; break; } } if(cityflag)//city match now add just empolye at that city index { hierarchy.children[countryindex].children[cityindex].children.push({"name":data[i].employe}); cityflag=false; } else//no city match so add new with employe also as this is new city so its emplye will be 1st { hierarchy.children[countryindex].children.push({"name":data[i].city,children:[{"name":data[i].employe}]}); //same as above //hierarchy.children[countryindex].children[length-1].children.push({"name":data[i].employe}); } flagExist=false; } else{ //no country match adding new country //with city also as this is new city of new country console.log("sparta"); hierarchy.children.push({"name":data[i].country,"children":[{"name":data[i].city,"children":[{"name":data[i].employe}]}]}); // hierarchy.children.children.push({"name":data[i].city,"children":[]}); } //console.log(hierarchy); } hierarchy.children.shift(); var j=JSON.stringify(hierarchy); //code ends here //here is the json which i seccessfully formed from the code { "name":"Hierarchy", "children":[ { "name":"America", "children":[ { "name":"Kansas", "children":[{"name":"Jacob"},{"name":"Jeen"}]}]}, { "name":"Pakistan", "children":[ { "name":"Lahore", "children": [ {"name":"tahir"},{"name":"bilal"}]}, { "name":"Islamabad", "children":[{"name":"fakhar"}]}, { "name":"Karachi", "children":[{"name":"eden"}]}]}, { "name":"India", "children": [ { "name":"d", "children": [ {"name":"ali"}]}, { "name":"Banglore", "children":[{"name":"PP"},{"name":"JJ"}]}]}]} Now the orignal problem is that currently i am solving this problem for data of array of three keys and i have to go for 3 nested loops now i want to optimize this solution so that if data array of object has more than 3 key say 5 {country :"America", state:"NewYork",city:"newYOrk",street:"elm", employe:'Jacob'}, or more than my solution will not work and i cannot decide before how many keys will come so i thought recursion may suit best here. But i am horrible in writing recurrsion and the case is also complex. Can some awesome programmer help me writing recurrsion or suggest some other solution.

    Read the article

  • Pathfinding results in false path costs that are too high

    - by user2144536
    I'm trying to implement pathfinding in a game I'm programming using this method. I'm implementing it with recursion but some of the values after the immediate circle of tiles around the player are way off. For some reason I cannot find the problem with it. This is a screen cap of the problem: The pathfinding values are displayed in the center of every tile. Clipped blocks are displayed with the value of 'c' because the values were too high and were covering up the next value. The red circle is the first value that is incorrect. The code below is the recursive method. //tileX is the coordinates of the current tile, val is the current pathfinding value, used[][] is a boolean //array to keep track of which tiles' values have already been assigned public void pathFind(int tileX, int tileY, int val, boolean[][] used) { //increment pathfinding value int curVal = val + 1; //set current tile to true if it hasn't been already used[tileX][tileY] = true; //booleans to know which tiles the recursive call needs to be used on boolean topLeftUsed = false, topUsed = false, topRightUsed = false, leftUsed = false, rightUsed = false, botomLeftUsed = false, botomUsed = false, botomRightUsed = false; //set value of top left tile if necessary if(tileX - 1 >= 0 && tileY - 1 >= 0) { //isClipped(int x, int y) returns true if the coordinates givin are in a tile that can't be walked through (IE walls) //occupied[][] is an array that keeps track of which tiles have an enemy in them // //if the tile is not clipped and not occupied set the pathfinding value if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX - 1][tileY - 1] == false && !(used[tileX - 1][tileY - 1])) { pathFindingValues[tileX - 1][tileY - 1] = curVal; topLeftUsed = true; used[tileX - 1][tileY - 1] = true; } //if it is occupied set it to an arbitrary high number so enemies find alternate routes if the best is clogged if(occupied[tileX - 1][tileY - 1] == true) pathFindingValues[tileX - 1][tileY - 1] = 1000000000; //if it is clipped set it to an arbitrary higher number so enemies don't travel through walls if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY - 1] = 2000000000; } //top middle if(tileY - 1 >= 0 ) { if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX][tileY - 1] == false && !(used[tileX][tileY - 1])) { pathFindingValues[tileX][tileY - 1] = curVal; topUsed = true; used[tileX][tileY - 1] = true; } if(occupied[tileX][tileY - 1] == true) pathFindingValues[tileX][tileY - 1] = 1000000000; if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX][tileY - 1] = 2000000000; } //top right if(tileX + 1 <= used.length && tileY - 1 >= 0) { if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX + 1][tileY - 1] == false && !(used[tileX + 1][tileY - 1])) { pathFindingValues[tileX + 1][tileY - 1] = curVal; topRightUsed = true; used[tileX + 1][tileY - 1] = true; } if(occupied[tileX + 1][tileY - 1] == true) pathFindingValues[tileX + 1][tileY - 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY - 1] = 2000000000; } //left if(tileX - 1 >= 0) { if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX - 1][tileY] == false && !(used[tileX - 1][tileY])) { pathFindingValues[tileX - 1][tileY] = curVal; leftUsed = true; used[tileX - 1][tileY] = true; } if(occupied[tileX - 1][tileY] == true) pathFindingValues[tileX - 1][tileY] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY] = 2000000000; } //right if(tileX + 1 <= used.length) { if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX + 1][tileY] == false && !(used[tileX + 1][tileY])) { pathFindingValues[tileX + 1][tileY] = curVal; rightUsed = true; used[tileX + 1][tileY] = true; } if(occupied[tileX + 1][tileY] == true) pathFindingValues[tileX + 1][tileY] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY] = 2000000000; } //botom left if(tileX - 1 >= 0 && tileY + 1 <= used[0].length) { if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX - 1][tileY + 1] == false && !(used[tileX - 1][tileY + 1])) { pathFindingValues[tileX - 1][tileY + 1] = curVal; botomLeftUsed = true; used[tileX - 1][tileY + 1] = true; } if(occupied[tileX - 1][tileY + 1] == true) pathFindingValues[tileX - 1][tileY + 1] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY + 1] = 2000000000; } //botom middle if(tileY + 1 <= used[0].length) { if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX][tileY + 1] == false && !(used[tileX][tileY + 1])) { pathFindingValues[tileX][tileY + 1] = curVal; botomUsed = true; used[tileX][tileY + 1] = true; } if(occupied[tileX][tileY + 1] == true) pathFindingValues[tileX][tileY + 1] = 1000000000; if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX][tileY + 1] = 2000000000; } //botom right if(tileX + 1 <= used.length && tileY + 1 <= used[0].length) { if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX + 1][tileY + 1] == false && !(used[tileX + 1][tileY + 1])) { pathFindingValues[tileX + 1][tileY + 1] = curVal; botomRightUsed = true; used[tileX + 1][tileY + 1] = true; } if(occupied[tileX + 1][tileY + 1] == true) pathFindingValues[tileX + 1][tileY + 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY + 1] = 2000000000; } //call the method on the tiles that need it if(tileX - 1 >= 0 && tileY - 1 >= 0 && topLeftUsed) pathFind(tileX - 1, tileY - 1, curVal, used); if(tileY - 1 >= 0 && topUsed) pathFind(tileX , tileY - 1, curVal, used); if(tileX + 1 <= used.length && tileY - 1 >= 0 && topRightUsed) pathFind(tileX + 1, tileY - 1, curVal, used); if(tileX - 1 >= 0 && leftUsed) pathFind(tileX - 1, tileY, curVal, used); if(tileX + 1 <= used.length && rightUsed) pathFind(tileX + 1, tileY, curVal, used); if(tileX - 1 >= 0 && tileY + 1 <= used[0].length && botomLeftUsed) pathFind(tileX - 1, tileY + 1, curVal, used); if(tileY + 1 <= used[0].length && botomUsed) pathFind(tileX, tileY + 1, curVal, used); if(tileX + 1 <= used.length && tileY + 1 <= used[0].length && botomRightUsed) pathFind(tileX + 1, tileY + 1, curVal, used); }

    Read the article

  • Having trouble with pathfinding

    - by user2144536
    I'm trying to implement pathfinding in a game I'm programming using this method. I'm implementing it with recursion but some of the values after the immediate circle of tiles around the player are way off. For some reason I cannot find the problem with it. This is a screen cap of the problem: The pathfinding values are displayed in the center of every tile. Clipped blocks are displayed with the value of 'c' because the values were too high and were covering up the next value. The red circle is the first value that is incorrect. The code below is the recursive method. //tileX is the coordinates of the current tile, val is the current pathfinding value, used[][] is a boolean //array to keep track of which tiles' values have already been assigned public void pathFind(int tileX, int tileY, int val, boolean[][] used) { //increment pathfinding value int curVal = val + 1; //set current tile to true if it hasn't been already used[tileX][tileY] = true; //booleans to know which tiles the recursive call needs to be used on boolean topLeftUsed = false, topUsed = false, topRightUsed = false, leftUsed = false, rightUsed = false, botomLeftUsed = false, botomUsed = false, botomRightUsed = false; //set value of top left tile if necessary if(tileX - 1 >= 0 && tileY - 1 >= 0) { //isClipped(int x, int y) returns true if the coordinates givin are in a tile that can't be walked through (IE walls) //occupied[][] is an array that keeps track of which tiles have an enemy in them // //if the tile is not clipped and not occupied set the pathfinding value if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX - 1][tileY - 1] == false && !(used[tileX - 1][tileY - 1])) { pathFindingValues[tileX - 1][tileY - 1] = curVal; topLeftUsed = true; used[tileX - 1][tileY - 1] = true; } //if it is occupied set it to an arbitrary high number so enemies find alternate routes if the best is clogged if(occupied[tileX - 1][tileY - 1] == true) pathFindingValues[tileX - 1][tileY - 1] = 1000000000; //if it is clipped set it to an arbitrary higher number so enemies don't travel through walls if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY - 1] = 2000000000; } //top middle if(tileY - 1 >= 0 ) { if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX][tileY - 1] == false && !(used[tileX][tileY - 1])) { pathFindingValues[tileX][tileY - 1] = curVal; topUsed = true; used[tileX][tileY - 1] = true; } if(occupied[tileX][tileY - 1] == true) pathFindingValues[tileX][tileY - 1] = 1000000000; if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX][tileY - 1] = 2000000000; } //top right if(tileX + 1 <= used.length && tileY - 1 >= 0) { if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX + 1][tileY - 1] == false && !(used[tileX + 1][tileY - 1])) { pathFindingValues[tileX + 1][tileY - 1] = curVal; topRightUsed = true; used[tileX + 1][tileY - 1] = true; } if(occupied[tileX + 1][tileY - 1] == true) pathFindingValues[tileX + 1][tileY - 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY - 1] = 2000000000; } //left if(tileX - 1 >= 0) { if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX - 1][tileY] == false && !(used[tileX - 1][tileY])) { pathFindingValues[tileX - 1][tileY] = curVal; leftUsed = true; used[tileX - 1][tileY] = true; } if(occupied[tileX - 1][tileY] == true) pathFindingValues[tileX - 1][tileY] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY] = 2000000000; } //right if(tileX + 1 <= used.length) { if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX + 1][tileY] == false && !(used[tileX + 1][tileY])) { pathFindingValues[tileX + 1][tileY] = curVal; rightUsed = true; used[tileX + 1][tileY] = true; } if(occupied[tileX + 1][tileY] == true) pathFindingValues[tileX + 1][tileY] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY] = 2000000000; } //botom left if(tileX - 1 >= 0 && tileY + 1 <= used[0].length) { if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX - 1][tileY + 1] == false && !(used[tileX - 1][tileY + 1])) { pathFindingValues[tileX - 1][tileY + 1] = curVal; botomLeftUsed = true; used[tileX - 1][tileY + 1] = true; } if(occupied[tileX - 1][tileY + 1] == true) pathFindingValues[tileX - 1][tileY + 1] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY + 1] = 2000000000; } //botom middle if(tileY + 1 <= used[0].length) { if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX][tileY + 1] == false && !(used[tileX][tileY + 1])) { pathFindingValues[tileX][tileY + 1] = curVal; botomUsed = true; used[tileX][tileY + 1] = true; } if(occupied[tileX][tileY + 1] == true) pathFindingValues[tileX][tileY + 1] = 1000000000; if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX][tileY + 1] = 2000000000; } //botom right if(tileX + 1 <= used.length && tileY + 1 <= used[0].length) { if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX + 1][tileY + 1] == false && !(used[tileX + 1][tileY + 1])) { pathFindingValues[tileX + 1][tileY + 1] = curVal; botomRightUsed = true; used[tileX + 1][tileY + 1] = true; } if(occupied[tileX + 1][tileY + 1] == true) pathFindingValues[tileX + 1][tileY + 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY + 1] = 2000000000; } //call the method on the tiles that need it if(tileX - 1 >= 0 && tileY - 1 >= 0 && topLeftUsed) pathFind(tileX - 1, tileY - 1, curVal, used); if(tileY - 1 >= 0 && topUsed) pathFind(tileX , tileY - 1, curVal, used); if(tileX + 1 <= used.length && tileY - 1 >= 0 && topRightUsed) pathFind(tileX + 1, tileY - 1, curVal, used); if(tileX - 1 >= 0 && leftUsed) pathFind(tileX - 1, tileY, curVal, used); if(tileX + 1 <= used.length && rightUsed) pathFind(tileX + 1, tileY, curVal, used); if(tileX - 1 >= 0 && tileY + 1 <= used[0].length && botomLeftUsed) pathFind(tileX - 1, tileY + 1, curVal, used); if(tileY + 1 <= used[0].length && botomUsed) pathFind(tileX, tileY + 1, curVal, used); if(tileX + 1 <= used.length && tileY + 1 <= used[0].length && botomRightUsed) pathFind(tileX + 1, tileY + 1, curVal, used); }

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >