Search Results

Search found 1714 results on 69 pages for 'optimizer hints'.

Page 6/69 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • C++/msvc6 application crashes due to heap corruption, any hints?

    - by David Alfonso
    Hello all, let me say first that I'm writing this question after months of trying to find out the root of a crash happening in our application. I'll try to detail as much as possible what I've already found out about it. About the application It runs on Windows XP Professional SP2. It's built with Microsoft Visual C++ 6.0 with Service Pack 6. It's MFC based. It uses several external dlls (e.g. Xerces, ZLib or ACE). It has high performance requirements. It does a lot of network and hard disk I/O, but it's also cpu intensive. It has an exception handling mechanism which generates a minidump when an unhandled exception occurs. Facts about the crash It only happens on multiprocessor/multicore machines and under heavy loads of work. It happens at random (neither we nor our client have found a pattern yet). We cannot reproduce the crash on our testing lab. It only happens on some production systems (but always in multicore machines) It always ends up crashing at the same point, although the complete stack is not always the same. Let me add the stack of the crashing thread (obtained using WinDbg, sorry we don't have symbols) ChildEBP RetAddr Args to Child WARNING: Stack unwind information not available. Following frames may be wrong. 030af6c8 7c9206eb 77bfc3c9 01a80000 00224bc3 MyApplication+0x2a85b9 030af960 7c91e9c0 7c92901b 00000ab4 00000000 ntdll!RtlAllocateHeap+0xeac (FPO: [Non-Fpo]) 030af98c 7c9205c8 00000001 00000000 00000000 ntdll!ZwWaitForSingleObject+0xc (FPO: [3,0,0]) 030af9c0 7c920551 01a80898 7c92056d 313adfb0 ntdll!RtlpFreeToHeapLookaside+0x22 (FPO: [2,0,4]) 030afa8c 4ba3ae96 000307da 00130005 00040012 ntdll!RtlFreeHeap+0x1e9 (FPO: [Non-Fpo]) 030afacc 77bfc2e3 0214e384 3087c8d8 02151030 0x4ba3ae96 030afb00 7c91e306 7c80bfc1 00000948 00000001 msvcrt!free+0xc8 (FPO: [Non-Fpo]) 030afb20 0042965b 030afcc0 0214d780 02151218 ntdll!ZwReleaseSemaphore+0xc (FPO: [3,0,0]) 030afb7c 7c9206eb 02e6c471 02ea0000 00000008 MyApplication+0x2965b 030afe60 7c9205c8 02151248 030aff38 7c920551 ntdll!RtlAllocateHeap+0xeac (FPO: [Non-Fpo]) 030afe74 7c92056d 0210bfb8 02151250 02151250 ntdll!RtlpFreeToHeapLookaside+0x22 (FPO: [2,0,4]) 030aff38 77bfc2de 01a80000 00000000 77bfc2e3 ntdll!RtlFreeHeap+0x647 (FPO: [Non-Fpo]) 7c92056d c5ffffff ce7c94be ff7c94be 00ffffff msvcrt!free+0xc3 (FPO: [Non-Fpo]) 7c920575 ff7c94be 00ffffff 12000000 907c94be 0xc5ffffff 7c920579 00ffffff 12000000 907c94be 90909090 0xff7c94be *** WARNING: Unable to verify checksum for xerces-c_2_7.dll *** ERROR: Symbol file could not be found. Defaulted to export symbols for xerces-c_2_7.dll - 7c92057d 12000000 907c94be 90909090 8b55ff8b MyApplication+0xbfffff 7c920581 907c94be 90909090 8b55ff8b 08458bec xerces_c_2_7 7c920585 90909090 8b55ff8b 08458bec 04408b66 0x907c94be 7c920589 8b55ff8b 08458bec 04408b66 0004c25d 0x90909090 7c92058d 08458bec 04408b66 0004c25d 90909090 0x8b55ff8b The address MyApplication+0x2a85b9 corresponds to a call to erase() of a std::list. What I have tried so far Reviewing all the code related to the point where the crash ends happening. Trying to enable pageheap on our testing lab though nothing useful has been found by now. We have substituted the std::list for a C array and then it crashes in other part of the code (although it is related code, it's not in the code where the old list resided). Coincidentally, now it crashes in another erase, though this time of a std::multiset. Let me copy the stack contained in the dump: ntdll.dll!_RtlpCoalesceFreeBlocks@16() + 0x124e bytes ntdll.dll!_RtlFreeHeap@12() + 0x91f bytes msvcrt.dll!_free() + 0xc3 bytes MyApplication.exe!006a4fda() [Frames below may be incorrect and/or missing, no symbols loaded for MyApplication.exe] MyApplication.exe!0069f305() ntdll.dll!_NtFreeVirtualMemory@16() + 0xc bytes ntdll.dll!_RtlpSecMemFreeVirtualMemory@16() + 0x1b bytes ntdll.dll!_ZwWaitForSingleObject@12() + 0xc bytes ntdll.dll!_RtlpFreeToHeapLookaside@8() + 0x26 bytes ntdll.dll!_RtlFreeHeap@12() + 0x114 bytes msvcrt.dll!_free() + 0xc3 bytes c5ffffff() Possible solutions (that I'm aware of) which cannot be applied "Migrate the application to a newer compiler": We are working on this but It's not a solution at the moment. "Enable pageheap (normal or full)": We can't enable pageheap on production machines as this affects performance heavily. I think that's all I remember now, if I have forgotten something I'll add it asap. If you can give me some hint or propose some possible solution, don't hesitate to answer! Thank you in advance for your time and advice.

    Read the article

  • How do I write JPA QL statements that hints to the runtime to use the DEFAULT value ?

    - by Jacques René Mesrine
    I have a table like so: mysql> show create table foo; CREATE TABLE foo ( network bigint NOT NULL, activeDate datetime NULL default '0000-00-00 00:00:00', ... ) In the domain object, FooVO the activeDate member is annotated as Temporal. If I don't set activeDate to a valid Date instance, a new record is inserted with NULLs. I want the default value to take effect if I don't set the activeDate member. Thanks.

    Read the article

  • SQL Server 2005 Reporting Services: How to count rows that are not null? Any hints for calculating t

    - by user329266
    Is there a way to count only records that are not null; similar to "COUNTA" in Excel? I would think this would be very simple process, but nothing I have tried has worked. If necessary, I can try to work this into my SQL query, but the query is already incredibly complicated. Also, I've found very little documentation for how to calculate report totals, and how to total from groups. Would anyone have any recommendations on what to use as a reference?

    Read the article

  • getaddrinfo appears to return different results between Windows and Ubuntu?

    - by MrDuk
    I have the following two sets of code: Windows #undef UNICODE #include <winsock2.h> #include <ws2tcpip.h> #include <stdio.h> // link with Ws2_32.lib #pragma comment (lib, "Ws2_32.lib") int __cdecl main(int argc, char **argv) { //----------------------------------------- // Declare and initialize variables WSADATA wsaData; int iResult; INT iRetval; DWORD dwRetval; argv[1] = "www.google.com"; argv[2] = "80"; int i = 1; struct addrinfo *result = NULL; struct addrinfo *ptr = NULL; struct addrinfo hints; struct sockaddr_in *sockaddr_ipv4; // struct sockaddr_in6 *sockaddr_ipv6; LPSOCKADDR sockaddr_ip; char ipstringbuffer[46]; DWORD ipbufferlength = 46; /* // Validate the parameters if (argc != 3) { printf("usage: %s <hostname> <servicename>\n", argv[0]); printf("getaddrinfo provides protocol-independent translation\n"); printf(" from an ANSI host name to an IP address\n"); printf("%s example usage\n", argv[0]); printf(" %s www.contoso.com 0\n", argv[0]); return 1; } */ // Initialize Winsock iResult = WSAStartup(MAKEWORD(2, 2), &wsaData); if (iResult != 0) { printf("WSAStartup failed: %d\n", iResult); return 1; } //-------------------------------- // Setup the hints address info structure // which is passed to the getaddrinfo() function ZeroMemory( &hints, sizeof(hints) ); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; // hints.ai_protocol = IPPROTO_TCP; printf("Calling getaddrinfo with following parameters:\n"); printf("\tnodename = %s\n", argv[1]); printf("\tservname (or port) = %s\n\n", argv[2]); //-------------------------------- // Call getaddrinfo(). If the call succeeds, // the result variable will hold a linked list // of addrinfo structures containing response // information dwRetval = getaddrinfo(argv[1], argv[2], &hints, &result); if ( dwRetval != 0 ) { printf("getaddrinfo failed with error: %d\n", dwRetval); WSACleanup(); return 1; } printf("getaddrinfo returned success\n"); // Retrieve each address and print out the hex bytes for(ptr=result; ptr != NULL ;ptr=ptr->ai_next) { printf("getaddrinfo response %d\n", i++); printf("\tFlags: 0x%x\n", ptr->ai_flags); printf("\tFamily: "); switch (ptr->ai_family) { case AF_UNSPEC: printf("Unspecified\n"); break; case AF_INET: printf("AF_INET (IPv4)\n"); sockaddr_ipv4 = (struct sockaddr_in *) ptr->ai_addr; printf("\tIPv4 address %s\n", inet_ntoa(sockaddr_ipv4->sin_addr) ); break; case AF_INET6: printf("AF_INET6 (IPv6)\n"); // the InetNtop function is available on Windows Vista and later // sockaddr_ipv6 = (struct sockaddr_in6 *) ptr->ai_addr; // printf("\tIPv6 address %s\n", // InetNtop(AF_INET6, &sockaddr_ipv6->sin6_addr, ipstringbuffer, 46) ); // We use WSAAddressToString since it is supported on Windows XP and later sockaddr_ip = (LPSOCKADDR) ptr->ai_addr; // The buffer length is changed by each call to WSAAddresstoString // So we need to set it for each iteration through the loop for safety ipbufferlength = 46; iRetval = WSAAddressToString(sockaddr_ip, (DWORD) ptr->ai_addrlen, NULL, ipstringbuffer, &ipbufferlength ); if (iRetval) printf("WSAAddressToString failed with %u\n", WSAGetLastError() ); else printf("\tIPv6 address %s\n", ipstringbuffer); break; case AF_NETBIOS: printf("AF_NETBIOS (NetBIOS)\n"); break; default: printf("Other %ld\n", ptr->ai_family); break; } printf("\tSocket type: "); switch (ptr->ai_socktype) { case 0: printf("Unspecified\n"); break; case SOCK_STREAM: printf("SOCK_STREAM (stream)\n"); break; case SOCK_DGRAM: printf("SOCK_DGRAM (datagram) \n"); break; case SOCK_RAW: printf("SOCK_RAW (raw) \n"); break; case SOCK_RDM: printf("SOCK_RDM (reliable message datagram)\n"); break; case SOCK_SEQPACKET: printf("SOCK_SEQPACKET (pseudo-stream packet)\n"); break; default: printf("Other %ld\n", ptr->ai_socktype); break; } printf("\tProtocol: "); switch (ptr->ai_protocol) { case 0: printf("Unspecified\n"); break; case IPPROTO_TCP: printf("IPPROTO_TCP (TCP)\n"); break; case IPPROTO_UDP: printf("IPPROTO_UDP (UDP) \n"); break; default: printf("Other %ld\n", ptr->ai_protocol); break; } printf("\tLength of this sockaddr: %d\n", ptr->ai_addrlen); printf("\tCanonical name: %s\n", ptr->ai_canonname); } freeaddrinfo(result); WSACleanup(); return 0; } Ubuntu /* ** listener.c -- a datagram sockets "server" demo */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <netdb.h> #define MYPORT "4950" // the port users will be connecting to #define MAXBUFLEN 100 // get sockaddr, IPv4 or IPv6: void *get_in_addr(struct sockaddr *sa) { if (sa->sa_family == AF_INET) { return &(((struct sockaddr_in*)sa)->sin_addr); } return &(((struct sockaddr_in6*)sa)->sin6_addr); } int main(void) { int sockfd; struct addrinfo hints, *servinfo, *p; int rv; int numbytes; struct sockaddr_storage their_addr; char buf[MAXBUFLEN]; socklen_t addr_len; char s[INET6_ADDRSTRLEN]; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; // set to AF_INET to force IPv4 hints.ai_socktype = SOCK_DGRAM; hints.ai_flags = AI_PASSIVE; // use my IP if ((rv = getaddrinfo(NULL, MYPORT, &hints, &servinfo)) != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv)); return 1; } // loop through all the results and bind to the first we can for(p = servinfo; p != NULL; p = p->ai_next) { if ((sockfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol)) == -1) { perror("listener: socket"); continue; } if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) { close(sockfd); perror("listener: bind"); continue; } break; } if (p == NULL) { fprintf(stderr, "listener: failed to bind socket\n"); return 2; } freeaddrinfo(servinfo); printf("listener: waiting to recvfrom...\n"); addr_len = sizeof their_addr; if ((numbytes = recvfrom(sockfd, buf, MAXBUFLEN-1 , 0, (struct sockaddr *)&their_addr, &addr_len)) == -1) { perror("recvfrom"); exit(1); } printf("listener: got packet from %s\n", inet_ntop(their_addr.ss_family, get_in_addr((struct sockaddr *)&their_addr), s, sizeof s)); printf("listener: packet is %d bytes long\n", numbytes); buf[numbytes] = '\0'; printf("listener: packet contains \"%s\"\n", buf); close(sockfd); return 0; } When I attempt www.google.com, I don't get the ipv6 socket returned on Windows - why is this? Outputs: (ubuntu) caleb@ub1:~/Documents/dev/cs438/mp0/MP0$ ./a.out www.google.com IP addresses for www.google.com: IPv4: 74.125.228.115 IPv4: 74.125.228.116 IPv4: 74.125.228.112 IPv4: 74.125.228.113 IPv4: 74.125.228.114 IPv6: 2607:f8b0:4004:803::1010 Outputs: (win) Calling getaddrinfo with following parameters: nodename = www.google.com servname (or port) = 80 getaddrinfo returned success getaddrinfo response 1 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.114 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 2 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.115 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 3 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.116 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 4 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.112 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 5 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.113 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null)

    Read the article

  • Unexpected SQL Server 2008 Performance Tip: Avoid local variables in WHERE clause

    - by Jim Duffy
    Sometimes an application needs to have every last drop of performance it can get, others not so much. We’re in the process of converting some legacy Visual FoxPro data into SQL Server 2008 for an application and ran into a situation that required some performance tweaking. I figured the Making Microsoft SQL Server 2008 Fly session that Yavor Angelov (SQL Server Program Manager – Query Processing) presented at PDC 2009 last November would be a good place to start. I was right. One tip among the list of incredibly useful tips Yavor presented was “local variables are bad news for the Query Optimizer and they cause the Query Optimizer to guess”. What that means is you should be avoiding code like this in your stored procs even though it seems such an intuitively good idea. DECLARE @StartDate datetime SET @StartDate = '20091125' SELECT * FROM Orders WHERE OrderDate = @StartDate Instead you should be referencing the value directly in the WHERE clause so the Query Optimizer can create a better execution plan. SELECT * FROM Orders WHERE OrderDate = '20091125' My first thought about this one was we reference variables in the form of passed in parameters in WHERE clauses in many of our stored procs. Not to worry though because parameters ARE available to the Query Optimizer as it compiles the execution plan. I highly recommend checking out Yavor’s session for additional tips to help you squeeze every last drop of performance out of your queries. Have a day. :-|

    Read the article

  • 11g???????????????

    - by Liu Maclean(???)
    11g???????????????? ??11g?auto stats gather job????auto task?,???10g?????????: SQL> select client_name,status from DBA_AUTOTASK_CLIENT; CLIENT_NAME STATUS ---------------------------------------------------------------- -------- auto optimizer stats collection ENABLED auto space advisor ENABLED sql tuning advisor ENABLED begin DBMS_AUTO_TASK_ADMIN.DISABLE(client_name => 'auto optimizer stats collection', operation => NULL, window_name => NULL); end; / PL/SQL procedure successfully completed. SQL> select client_name,status from DBA_AUTOTASK_CLIENT; CLIENT_NAME STATUS ---------------------------------------------------------------- -------- auto optimizer stats collection DISABLED auto space advisor ENABLED sql tuning advisor ENABLED

    Read the article

  • SQL SERVER – Understanding XML – Contest Win Joes 2 Pros Combo (USD 198) – Day 5 of 5

    - by pinaldave
    August 2011 we ran a contest where every day we give away one book for an entire month. The contest had extreme success. Lots of people participated and lots of give away. I have received lots of questions if we are doing something similar this month. Absolutely, instead of running a contest a month long we are doing something more interesting. We are giving away USD 198 worth gift every day for this week. We are giving away Joes 2 Pros 5 Volumes (BOOK) SQL 2008 Development Certification Training Kit every day. One copy in India and One in USA. Total 2 of the giveaway (worth USD 198). All the gifts are sponsored from the Koenig Training Solution and Joes 2 Pros. The books are available here Amazon | Flipkart | Indiaplaza How to Win: Read the Question Read the Hints Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India residents only) 2 Winners will be randomly selected announced on August 20th. Question of the Day: Is following XML a well formed XML Document? <?xml version=”1.0″?> <address> <firstname>Pinal</firstname> <lastname>Dave</lastname> <title>Founder</title> <company>SQLAuthority.com</company> </address> a) Yes b) No c) I do not know Query Hints: BIG HINT POST A common observation by people seeing an XML file for the first time is that it looks like just a bunch of data inside a text file. XML files are text-based documents, which makes them easy to read.  All of the data is literally spelled out in the document and relies on a just a few characters (<, >, =) to convey relationships and structure of the data.  XML files can be used by any commonly available text editor, like Notepad. Much like a book’s Table of Contents, your first glance at well-formed XML will tell you the subject matter of the data and its general structure. Hints appearing within the data help you to quickly identify the main theme (similar to book’s subject), its headers (similar to chapter titles or sections of a book), data elements (similar to a book’s characters or chief topics), and so forth. We’ll learn to recognize and use the structural “hints,” which are XML’s markup components (e.g., XML tags, root elements). The XML Raw and Auto modes are great for displaying data as all attributes or all elements – but not both at once. If you want your XML stream to have some of its data shown in attributes and some shown as elements, then you can use the XML Path mode. If you are using an XML Path stream, then by default all values will be shown as elements. However, it is possible to pick one or more elements to be shown with an attribute(s) as well. Additional Hints: I have previously discussed various concepts from SQL Server Joes 2 Pros Volume 5. SQL Joes 2 Pros Development Series – OpenXML Options SQL Joes 2 Pros Development Series – Preparing XML in Memory SQL Joes 2 Pros Development Series – Shredding XML SQL Joes 2 Pros Development Series – Using Root With Auto XML Mode SQL Joes 2 Pros Development Series – Using Root With Auto XML Mode SQL Joes 2 Pros Development Series – What is XML? SQL Joes 2 Pros Development Series – What is XML? – 2 Next Step: Answer the Quiz in Contact Form in following format Question - Answer Name of the country (The contest is open for USA and India) Bonus Winner Leave a comment with your favorite article from the “additional hints” section and you may be eligible for surprise gift. There is no country restriction for this Bonus Contest. Do mention why you liked it any particular blog post and I will announce the winner of the same along with the main contest. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Joes 2 Pros, PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Finding Local IP via Socket Creation / getsockname

    - by BSchlinker
    I need to get the IP address of a system within C++. I followed the logic and advice of another comment on here and created a socket and then utilized getsockname to determine the IP address which the socket is bound to. However, this doesn't appear to work (code below). I'm receiving an invalid IP address (58.etc) when I should be receiving a 128.etc Any ideas? string Routes::systemIP(){ // basic setup int sockfd; char str[INET_ADDRSTRLEN]; sockaddr* sa; socklen_t* sl; struct addrinfo hints, *servinfo, *p; int rv; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_DGRAM; if ((rv = getaddrinfo("4.2.2.1", "80", &hints, &servinfo)) != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv)); return "1"; } // loop through all the results and make a socket for(p = servinfo; p != NULL; p = p->ai_next) { if ((sockfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol)) == -1) { perror("talker: socket"); continue; } break; } if (p == NULL) { fprintf(stderr, "talker: failed to bind socket\n"); return "2"; } // get information on the local IP from the socket we created getsockname(sockfd, sa, sl); // convert the sockaddr to a sockaddr_in via casting struct sockaddr_in *sa_ipv4 = (struct sockaddr_in *)sa; // get the IP from the sockaddr_in and print it inet_ntop(AF_INET, &(sa_ipv4->sin_addr.s_addr), str, INET_ADDRSTRLEN); printf("%s\n", str); // return the IP return str; }

    Read the article

  • How can I obtain the IP address of my server program?

    - by Dr Dork
    Hello! This question is related to another question I just posted. I'm prepping for a simple work project and am trying to familiarize myself with the basics of socket programming in a Unix dev environment. At this point, I have some basic server side code and client side code setup to communicate. Currently, my client code successfully connects to the server code and the server code sends it a test message, then both quit out. Perfect! That's exactly what I wanted to accomplish. Now I'm playing around with the functions used to obtain info about the two environments (server and client). I'd like to obtain my server program's IP address. Here's the code I currently have to do this, but it's not working... int sockfd; unsigned int len; socklen_t sin_size; char msg[]="test message"; char buf[MAXLEN]; int st, rv; struct addrinfo hints, *serverinfo, *p; struct sockaddr_storage client; char s[INET6_ADDRSTRLEN]; char ip[INET6_ADDRSTRLEN]; //zero struct memset(&hints,0,sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE; //get the server info if((rv = getaddrinfo(NULL, SERVERPORT, &hints, &serverinfo ) != 0)){ perror("getaddrinfo"); exit(-1); } // loop through all the results and bind to the first we can for( p = serverinfo; p != NULL; p = p->ai_next) { //Setup the socket if( (sockfd = socket( p->ai_family, p->ai_socktype, p->ai_protocol )) == -1 ) { perror("socket"); continue; } //Associate a socket id with an address to which other processes can connect if(bind(sockfd, p->ai_addr, p->ai_addrlen) == -1){ close(sockfd); perror("bind"); continue; } break; } if( p == NULL ){ perror("Fail to bind"); } inet_ntop(p->ai_family, get_in_addr((struct sockaddr *)p->ai_addr), s, sizeof(s)); printf("Server has TCP Port %s and IP Address %s\n", SERVERPORT, s); and the output for the IP is always empty... server has TCP Port 21412 and IP Address :: any ideas for what I'm missing? thanks in advance for your help! this stuff is really complicated at first.

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 25 (sys.dm_db_missing_index_details)

    - by Tamarick Hill
    The sys.dm_db_missing_index_details Dynamic Management View is used to return information about missing indexes on your SQL Server instances. These indexes are ones that the optimizer has identified as indexes it would like to use but did not have. You may also see these same indexes indicated in other tools such as query execution plans or the Database tuning advisor. Let’s execute this DMV so we can review the information it provides us. I do not have any missing index information for my AdventureWorks2012 database, but for the purposes of illustrating the result set of this DMV, I will present the results from my msdb database. SELECT * FROM sys.dm_db_missing_index_details The first column presented is the index_handle which uniquely identifies a particular missing index. The next two columns represent the database_id and the object_id for the particular table in question. Next is the ‘equality_columns’ column which gives you a list of columns (comma separated) that would be beneficial to the optimizer for equality operations. By equality operation I mean for any queries that would use a filter or join condition such as WHERE A = B. The next column, ‘inequality_columns’, gives you a comma separated list of columns that would be beneficial to the optimizer for inequality operations. An inequality operation is anything other than A = B. For example, “WHERE A != B”, “WHERE A > B”, “WHERE A < B”, and “WHERE A <> B” would all qualify as inequality. Next is the ‘included_columns’ column which list all columns that would be beneficial to the optimizer for purposes of providing a covering index and preventing key/bookmark lookups. Lastly is the ‘statement’ column which lists the name of the table where the index is missing. This DMV can help you identify potential indexes that could be added to improve the performance of your system. However, I will advise you not to just take the output of this DMV and create an index for everything you see. Everything listed here should be analyzed and then tested on a Development or Test system before implementing into a Production environment. For more information on this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms345434.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • Showplan Operator of the Week - Lazy Spool

    Continuing to illuminate the depths of SQL Server's Query Optimizer, Fabiano shines a light on the sixth major Showplan Operator on his list: the Lazy Spool. What does the Lazy Spool do that's so special, how does the Query Optimizer use it, and why is it so Lazy? Fabiano explains all...

    Read the article

  • Showplan Operator of the Week - Merge Interval

    When Fabiano agreed to undertake the epic task of describing each showplan operator, none of us quite predicted the interesting ways that the series helps to understand how the query optimizer works. With the Merge Interval, Fabiano comes up with some insights about the way that the Query optimizer handles overlapping ranges efficiently. Free trial of SQL Backup™“SQL Backup was able to cut down my backup time significantly AND achieved a 90% compression at the same time!” Joe Cheng. Download a free trial now.

    Read the article

  • OWB 11gR2 &ndash; Parallel DML and Query

    - by David Allan
    A quick post illustrating conventional (non direct path) parallel inserts and query using OWB following on from some recent posts from Jean-Pierre and Randolf on this topic. The mapping configuration properties is where you can define these hints in OWB, taking JP’s simplistic illustration, the parallel query hints in OWB are defined on the ‘Extraction hint’ property for the source, and the parallel DML hints are defined on the ‘Loading hint’ property on the target table operator. If we then generate the code you can see the intermediate code generated below… Finally…remember the parallel enabled session for this all to fly… Anyway, hope this helps join a few dots….

    Read the article

  • Class member functions instantiated by traits

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched Stack Overflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate non-virtual member functions? The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state information was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (VC++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice? UPDATE: Here's another try at explaining it. I want the user to be able to fill out an order (manifest) for a custom optimizer, something like ordering off of a Chinese menu - one from column A, one from column B, etc.. Waiter, from column A (updaters), I'll have the BFGS update with Cholesky-decompositon sauce. From column B (line-searchers), I'll have the cubic interpolation line-search with an eta of 0.4 and a rho of 1e-4, please. Etc... UPDATE: Okay, okay. Here's the playing-around that I've done. I offer it reluctantly, because I suspect it's a completely wrong-headed approach. It runs okay under vc++ 2008. #include <boost/utility.hpp> #include <boost/type_traits/integral_constant.hpp> namespace dj { struct CBFGS { void bar() {printf("CBFGS::bar %d\n", data);} CBFGS(): data(1234){} int data; }; template<class T> struct is_CBFGS: boost::false_type{}; template<> struct is_CBFGS<CBFGS>: boost::true_type{}; struct LMQN {LMQN(): data(54.321){} void bar() {printf("LMQN::bar %lf\n", data);} double data; }; template<class T> struct is_LMQN: boost::false_type{}; template<> struct is_LMQN<LMQN> : boost::true_type{}; struct default_optimizer_traits { typedef CBFGS update_type; }; template<class traits> class Optimizer; template<class traits> void foo(typename boost::enable_if<is_LMQN<typename traits::update_type>, Optimizer<traits> >::type& self) { printf(" LMQN %lf\n", self.data); } template<class traits> void foo(typename boost::enable_if<is_CBFGS<typename traits::update_type>, Optimizer<traits> >::type& self) { printf("CBFGS %d\n", self.data); } template<class traits = default_optimizer_traits> class Optimizer{ friend typename traits::update_type; //friend void dj::foo<traits>(typename Optimizer<traits> & self); // How? public: //void foo(void); // How??? void foo() { dj::foo<traits>(*this); } void bar() { data.bar(); } //protected: // How? typedef typename traits::update_type update_type; update_type data; }; } // namespace dj int main_() { dj::Optimizer<> opt; opt.foo(); opt.bar(); std::getchar(); return 0; }

    Read the article

  • Animation effect on C#

    - by Optimizer
    Can someone point me to a C# open source implementaion with a simple image animations. e.g. I feed the input image to animator, and the animation code produces a few dozen of images which if displayed sequentially looks like animation. I am not something extremely fancy - a simple DirectX filter like animations would do. Thank you.

    Read the article

  • How to set _optimizer_search_limit and _optimizer_max_permutations in Oracle10g.

    - by user52856
    I am working on a product that must support both MSSQL and Oracle (10g and 11g). I have some very complex queries that seem to run without issue on MSSQL 2005/2008, but very, very slow with Oracle. The CPU on the oracle server skyrockets for long periods of time, and it seems like the optimizer may be trying to find the best execution plan for the very complex query. I did some Googling to figure out how to limit the amount of time the optimizer spends on this, and came up with _optimizer_search_limit and _optimizer_max_permutations. Both of these parameters are hidden in Oracle 10g, and setting them in init.ora doesn't seem to make any difference. How do I set these parameters in Oracle. Or am I just totally barking up the wrong tree with the assumption that the optimizer is spending several minutes finding an execution plan? Thanks.

    Read the article

  • Heaps of Trouble?

    - by Paul White NZ
    If you’re not already a regular reader of Brad Schulz’s blog, you’re missing out on some great material.  In his latest entry, he is tasked with optimizing a query run against tables that have no indexes at all.  The problem is, predictably, that performance is not very good.  The catch is that we are not allowed to create any indexes (or even new statistics) as part of our optimization efforts. In this post, I’m going to look at the problem from a slightly different angle, and present an alternative solution to the one Brad found.  Inevitably, there’s going to be some overlap between our entries, and while you don’t necessarily need to read Brad’s post before this one, I do strongly recommend that you read it at some stage; he covers some important points that I won’t cover again here. The Example We’ll use data from the AdventureWorks database, copied to temporary unindexed tables.  A script to create these structures is shown below: CREATE TABLE #Custs ( CustomerID INTEGER NOT NULL, TerritoryID INTEGER NULL, CustomerType NCHAR(1) COLLATE SQL_Latin1_General_CP1_CI_AI NOT NULL, ); GO CREATE TABLE #Prods ( ProductMainID INTEGER NOT NULL, ProductSubID INTEGER NOT NULL, ProductSubSubID INTEGER NOT NULL, Name NVARCHAR(50) COLLATE SQL_Latin1_General_CP1_CI_AI NOT NULL, ); GO CREATE TABLE #OrdHeader ( SalesOrderID INTEGER NOT NULL, OrderDate DATETIME NOT NULL, SalesOrderNumber NVARCHAR(25) COLLATE SQL_Latin1_General_CP1_CI_AI NOT NULL, CustomerID INTEGER NOT NULL, ); GO CREATE TABLE #OrdDetail ( SalesOrderID INTEGER NOT NULL, OrderQty SMALLINT NOT NULL, LineTotal NUMERIC(38,6) NOT NULL, ProductMainID INTEGER NOT NULL, ProductSubID INTEGER NOT NULL, ProductSubSubID INTEGER NOT NULL, ); GO INSERT #Custs ( CustomerID, TerritoryID, CustomerType ) SELECT C.CustomerID, C.TerritoryID, C.CustomerType FROM AdventureWorks.Sales.Customer C WITH (TABLOCK); GO INSERT #Prods ( ProductMainID, ProductSubID, ProductSubSubID, Name ) SELECT P.ProductID, P.ProductID, P.ProductID, P.Name FROM AdventureWorks.Production.Product P WITH (TABLOCK); GO INSERT #OrdHeader ( SalesOrderID, OrderDate, SalesOrderNumber, CustomerID ) SELECT H.SalesOrderID, H.OrderDate, H.SalesOrderNumber, H.CustomerID FROM AdventureWorks.Sales.SalesOrderHeader H WITH (TABLOCK); GO INSERT #OrdDetail ( SalesOrderID, OrderQty, LineTotal, ProductMainID, ProductSubID, ProductSubSubID ) SELECT D.SalesOrderID, D.OrderQty, D.LineTotal, D.ProductID, D.ProductID, D.ProductID FROM AdventureWorks.Sales.SalesOrderDetail D WITH (TABLOCK); The query itself is a simple join of the four tables: SELECT P.ProductMainID AS PID, P.Name, D.OrderQty, H.SalesOrderNumber, H.OrderDate, C.TerritoryID FROM #Prods P JOIN #OrdDetail D ON P.ProductMainID = D.ProductMainID AND P.ProductSubID = D.ProductSubID AND P.ProductSubSubID = D.ProductSubSubID JOIN #OrdHeader H ON D.SalesOrderID = H.SalesOrderID JOIN #Custs C ON H.CustomerID = C.CustomerID ORDER BY P.ProductMainID ASC OPTION (RECOMPILE, MAXDOP 1); Remember that these tables have no indexes at all, and only the single-column sampled statistics SQL Server automatically creates (assuming default settings).  The estimated query plan produced for the test query looks like this (click to enlarge): The Problem The problem here is one of cardinality estimation – the number of rows SQL Server expects to find at each step of the plan.  The lack of indexes and useful statistical information means that SQL Server does not have the information it needs to make a good estimate.  Every join in the plan shown above estimates that it will produce just a single row as output.  Brad covers the factors that lead to the low estimates in his post. In reality, the join between the #Prods and #OrdDetail tables will produce 121,317 rows.  It should not surprise you that this has rather dire consequences for the remainder of the query plan.  In particular, it makes a nonsense of the optimizer’s decision to use Nested Loops to join to the two remaining tables.  Instead of scanning the #OrdHeader and #Custs tables once (as it expected), it has to perform 121,317 full scans of each.  The query takes somewhere in the region of twenty minutes to run to completion on my development machine. A Solution At this point, you may be thinking the same thing I was: if we really are stuck with no indexes, the best we can do is to use hash joins everywhere. We can force the exclusive use of hash joins in several ways, the two most common being join and query hints.  A join hint means writing the query using the INNER HASH JOIN syntax; using a query hint involves adding OPTION (HASH JOIN) at the bottom of the query.  The difference is that using join hints also forces the order of the join, whereas the query hint gives the optimizer freedom to reorder the joins at its discretion. Adding the OPTION (HASH JOIN) hint results in this estimated plan: That produces the correct output in around seven seconds, which is quite an improvement!  As a purely practical matter, and given the rigid rules of the environment we find ourselves in, we might leave things there.  (We can improve the hashing solution a bit – I’ll come back to that later on). Faster Nested Loops It might surprise you to hear that we can beat the performance of the hash join solution shown above using nested loops joins exclusively, and without breaking the rules we have been set. The key to this part is to realize that a condition like (A = B) can be expressed as (A <= B) AND (A >= B).  Armed with this tremendous new insight, we can rewrite the join predicates like so: SELECT P.ProductMainID AS PID, P.Name, D.OrderQty, H.SalesOrderNumber, H.OrderDate, C.TerritoryID FROM #OrdDetail D JOIN #OrdHeader H ON D.SalesOrderID >= H.SalesOrderID AND D.SalesOrderID <= H.SalesOrderID JOIN #Custs C ON H.CustomerID >= C.CustomerID AND H.CustomerID <= C.CustomerID JOIN #Prods P ON P.ProductMainID >= D.ProductMainID AND P.ProductMainID <= D.ProductMainID AND P.ProductSubID = D.ProductSubID AND P.ProductSubSubID = D.ProductSubSubID ORDER BY D.ProductMainID OPTION (RECOMPILE, LOOP JOIN, MAXDOP 1, FORCE ORDER); I’ve also added LOOP JOIN and FORCE ORDER query hints to ensure that only nested loops joins are used, and that the tables are joined in the order they appear.  The new estimated execution plan is: This new query runs in under 2 seconds. Why Is It Faster? The main reason for the improvement is the appearance of the eager Index Spools, which are also known as index-on-the-fly spools.  If you read my Inside The Optimiser series you might be interested to know that the rule responsible is called JoinToIndexOnTheFly. An eager index spool consumes all rows from the table it sits above, and builds a index suitable for the join to seek on.  Taking the index spool above the #Custs table as an example, it reads all the CustomerID and TerritoryID values with a single scan of the table, and builds an index keyed on CustomerID.  The term ‘eager’ means that the spool consumes all of its input rows when it starts up.  The index is built in a work table in tempdb, has no associated statistics, and only exists until the query finishes executing. The result is that each unindexed table is only scanned once, and just for the columns necessary to build the temporary index.  From that point on, every execution of the inner side of the join is answered by a seek on the temporary index – not the base table. A second optimization is that the sort on ProductMainID (required by the ORDER BY clause) is performed early, on just the rows coming from the #OrdDetail table.  The optimizer has a good estimate for the number of rows it needs to sort at that stage – it is just the cardinality of the table itself.  The accuracy of the estimate there is important because it helps determine the memory grant given to the sort operation.  Nested loops join preserves the order of rows on its outer input, so sorting early is safe.  (Hash joins do not preserve order in this way, of course). The extra lazy spool on the #Prods branch is a further optimization that avoids executing the seek on the temporary index if the value being joined (the ‘outer reference’) hasn’t changed from the last row received on the outer input.  It takes advantage of the fact that rows are still sorted on ProductMainID, so if duplicates exist, they will arrive at the join operator one after the other. The optimizer is quite conservative about introducing index spools into a plan, because creating and dropping a temporary index is a relatively expensive operation.  It’s presence in a plan is often an indication that a useful index is missing. I want to stress that I rewrote the query in this way primarily as an educational exercise – I can’t imagine having to do something so horrible to a production system. Improving the Hash Join I promised I would return to the solution that uses hash joins.  You might be puzzled that SQL Server can create three new indexes (and perform all those nested loops iterations) faster than it can perform three hash joins.  The answer, again, is down to the poor information available to the optimizer.  Let’s look at the hash join plan again: Two of the hash joins have single-row estimates on their build inputs.  SQL Server fixes the amount of memory available for the hash table based on this cardinality estimate, so at run time the hash join very quickly runs out of memory. This results in the join spilling hash buckets to disk, and any rows from the probe input that hash to the spilled buckets also get written to disk.  The join process then continues, and may again run out of memory.  This is a recursive process, which may eventually result in SQL Server resorting to a bailout join algorithm, which is guaranteed to complete eventually, but may be very slow.  The data sizes in the example tables are not large enough to force a hash bailout, but it does result in multiple levels of hash recursion.  You can see this for yourself by tracing the Hash Warning event using the Profiler tool. The final sort in the plan also suffers from a similar problem: it receives very little memory and has to perform multiple sort passes, saving intermediate runs to disk (the Sort Warnings Profiler event can be used to confirm this).  Notice also that because hash joins don’t preserve sort order, the sort cannot be pushed down the plan toward the #OrdDetail table, as in the nested loops plan. Ok, so now we understand the problems, what can we do to fix it?  We can address the hash spilling by forcing a different order for the joins: SELECT P.ProductMainID AS PID, P.Name, D.OrderQty, H.SalesOrderNumber, H.OrderDate, C.TerritoryID FROM #Prods P JOIN #Custs C JOIN #OrdHeader H ON H.CustomerID = C.CustomerID JOIN #OrdDetail D ON D.SalesOrderID = H.SalesOrderID ON P.ProductMainID = D.ProductMainID AND P.ProductSubID = D.ProductSubID AND P.ProductSubSubID = D.ProductSubSubID ORDER BY D.ProductMainID OPTION (MAXDOP 1, HASH JOIN, FORCE ORDER); With this plan, each of the inputs to the hash joins has a good estimate, and no hash recursion occurs.  The final sort still suffers from the one-row estimate problem, and we get a single-pass sort warning as it writes rows to disk.  Even so, the query runs to completion in three or four seconds.  That’s around half the time of the previous hashing solution, but still not as fast as the nested loops trickery. Final Thoughts SQL Server’s optimizer makes cost-based decisions, so it is vital to provide it with accurate information.  We can’t really blame the performance problems highlighted here on anything other than the decision to use completely unindexed tables, and not to allow the creation of additional statistics. I should probably stress that the nested loops solution shown above is not one I would normally contemplate in the real world.  It’s there primarily for its educational and entertainment value.  I might perhaps use it to demonstrate to the sceptical that SQL Server itself is crying out for an index. Be sure to read Brad’s original post for more details.  My grateful thanks to him for granting permission to reuse some of his material. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • New Whitepaper: Best Practices for Gathering EBS Database Statistics

    - by Elke Phelps (Oracle Development)
    Most Oracle Applications DBAs and E-Business Suite users understand the importance of accurate database statistics.  Missing, stale or skewed statistics can adversely affect performance.  Oracle E-Business Suite statistics should only be gathered using FND_STATS or the Gather Statistics concurrent request. Gathering statistics with DBMS_STATS or the desupported ANALYZE command may result in suboptimal executions plans for E-Business Suite. Our E-Business Suite Performance Team has been busy implementing and testing new features for gathering statistics using FND_STATS in Oracle E-Business Suite databases.  The new features and guidelines for when and how to gather statistics are published in the following whitepaper: Best Practices for Gathering Statistics with Oracle E-Business Suite (Note 1586374.1) The new white paper details the following options for gathering statistics using FND_STATS and the Gather Statistics concurrent request:: History Mode - backup existing statistics prior to gather new statistics GATHER_AUTO Option - gather statistics for tables based upon % change Histograms - collect statistics for histograms AUTO Sampling - use the new FND_STATS feature that supports the AUTO option for using AUTO sample size Extended Statistics - use the new FND_STATS feature that supports the creation of column groups and automatic statistics collection on the column groups when table statistics are gathered Incremental Statistics - gather incremental statistics for partitioned tables The new white paper also includes examples and performance test cases for the following: Extended Optimizer Statistics Incremental Statistics Gathering Concurrent Statistics Gathering This white paper includes details about the standalone Oracle E-Business Suite Release 11i and 12 patches that are required to take advantage of this new functionality. Your feedback is welcome We would be very interested in hearing about your experiences with these new options for gathering statistics.  Please feel free to post your comments here or drop us a line privately.Related Oracle OpenWorld 2013 Session Getting Optimal Performance from Oracle E-Business Suite (CON8485) Related My Oracle Support Notes Collecting Statistics with Oracle EBS 11i and R12 (Note 368252.1) Non-EBS Related Blogs, White Papers and My Oracle Support Notes  Oracle Optimizer Blog Understanding Optimizer Statistic (white paper) Fixed Objects Statistics(GATHER_FIXED_OBJECTS_STATS) Considerations (Note 798257.1)

    Read the article

  • Move to php in windows? Concern, hints, "please don't do!"?

    - by Daniel
    I am considering to move frome Microsoft languages to PHP (just for web dev) which has quite an interesting syntax, a perlish look (but a wider programmer base) and it allows me to reuse the web without reinventing it. I have some concerns too. I would be more than happy to gather some wisdom from stackoverflow community, (challenge to my opinions warmly welcome). Here are my doubts. Efficiency. Cgi are slow, what I am supposed to use? Fastcgi? Or what else? Efficiency + stability. Is PHP on windows really stable and a good choice in terms of performances? Database. I use very often MSSQL (I regret, i like it). Could I widely and efficiently interface PHP with MSSQL (using smartly stored pro, for example). XSLT + XML performance. I work quite a lot with XML and XSLT and I really find the MS xml parser a great software component. Are parser used in PHP fast, reliable and efficient (I am interested mainly in DOM, not SAX)? Objects. Is the PHP object programming model valid end efficient? 6 Regex. How efficient is PHP processing regexp? Many thanks for your advices.

    Read the article

  • SQL SERVER – Query Hint – Contest Win Joes 2 Pros Combo (USD 198) – Day 1 of 5

    - by pinaldave
    August 2011 we ran a contest where every day we give away one book for an entire month. The contest had extreme success. Lots of people participated and lots of give away. I have received lots of questions if we are doing something similar this month. Absolutely, instead of running a contest a month long we are doing something more interesting. We are giving away USD 198 worth gift every day for this week. We are giving away Joes 2 Pros 5 Volumes (BOOK) SQL 2008 Development Certification Training Kit every day. One copy in India and One in USA. Total 2 of the giveaway (worth USD 198). All the gifts are sponsored from the Koenig Training Solution and Joes 2 Pros. The books are available here Amazon | Flipkart | Indiaplaza How to Win: Read the Question Read the Hints Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India residents only) 2 Winners will be randomly selected announced on August 20th. Question of the Day: Which of the following queries will return dirty data? a) SELECT * FROM Table1 (READUNCOMMITED) b) SELECT * FROM Table1 (NOLOCK) c) SELECT * FROM Table1 (DIRTYREAD) d) SELECT * FROM Table1 (MYLOCK) Query Hints: BIG HINT POST Most SQL people know what a “Dirty Record” is. You might also call that an “Intermediate record”. In case this is new to you here is a very quick explanation. The simplest way to describe the steps of a transaction is to use an example of updating an existing record into a table. When the insert runs, SQL Server gets the data from storage, such as a hard drive, and loads it into memory and your CPU. The data in memory is changed and then saved to the storage device. Finally, a message is sent confirming the rows that were affected. For a very short period of time the update takes the data and puts it into memory (an intermediate state), not a permanent state. For every data change to a table there is a brief moment where the change is made in the intermediate state, but is not committed. During this time, any other DML statement needing that data waits until the lock is released. This is a safety feature so that SQL Server evaluates only official data. For every data change to a table there is a brief moment where the change is made in this intermediate state, but is not committed. During this time, any other DML statement (SELECT, INSERT, DELETE, UPDATE) needing that data must wait until the lock is released. This is a safety feature put in place so that SQL Server evaluates only official data. Additional Hints: I have previously discussed various concepts from SQL Server Joes 2 Pros Volume 1. SQL Joes 2 Pros Development Series – Dirty Records and Table Hints SQL Joes 2 Pros Development Series – Row Constructors SQL Joes 2 Pros Development Series – Finding un-matching Records SQL Joes 2 Pros Development Series – Efficient Query Writing Strategy SQL Joes 2 Pros Development Series – Finding Apostrophes in String and Text SQL Joes 2 Pros Development Series – Wildcard – Querying Special Characters SQL Joes 2 Pros Development Series – Wildcard Basics Recap Next Step: Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India) Bonus Winner Leave a comment with your favorite article from the “additional hints” section and you may be eligible for surprise gift. There is no country restriction for this Bonus Contest. Do mention why you liked it any particular blog post and I will announce the winner of the same along with the main contest. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Joes 2 Pros, PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • multiple valgrind errors: Conditional jump or move depends on uninitialised value(s)

    - by Hristo
    I'm running valgrind and I'm getting the following error (this is not the only one): ==21743== Conditional jump or move depends on uninitialised value(s) ==21743== at 0x4A06509: index (mc_replace_strmem.c:164) ==21743== by 0x33B7CBB3CD: gaih_inet (in /lib64/libc-2.5.so) ==21743== by 0x33B7CBD629: getaddrinfo (in /lib64/libc-2.5.so) ==21743== by 0x401A5F: tunnelURL (proxy.c:336) ==21743== by 0x40142A: client_thread (proxy.c:194) ==21743== by 0x33B8806616: start_thread (in /lib64/libpthread-2.5.so) ==21743== by 0x33B7CD3C2C: clone (in /lib64/libc-2.5.so) My tunnelURL() function looks like this: char * tunnelURL(char *url) { char * a = strstr(url, "//"); a += 2; char * path = strstr(a, "/"); char host[256]; strncpy (host, a, strlen(a)-strlen(path)); /* * The following is courtesy of Beej's Guide */ int status; int proxySocketFD; struct addrinfo hints; struct addrinfo *servinfo; // will point to the results memset(&hints, 0, sizeof(hints)); // make sure the struct is empty hints.ai_family = AF_INET; // don't care IPv4 or IPv6 hints.ai_socktype = SOCK_STREAM; // TCP stream sockets hints.ai_flags = AI_PASSIVE; // fill in my IP for me if ((status = getaddrinfo(host, "80", &hints, &servinfo)) != 0) { perror("getaddrinfo() fail"); exit(1); } // create socket if ((proxySocketFD = socket(servinfo->ai_family, servinfo->ai_socktype, servinfo->ai_protocol)) == -1) { perror("proxy socket() fail"); exit(1); } // connect if (connect(proxySocketFD, servinfo->ai_addr, servinfo->ai_addrlen) != 0) { printf("connect() fail"); exit(1); } // construct request char request[strlen(path) + strlen(host) + 26]; sprintf(request, "GET %s HTTP/1.1\r\nHost: %s\r\n\r\n", path, host); printf("%s", request); // send request send(proxySocketFD, request, strlen(request), 0); // receive response int i = 0; int amntRecvd = 0; char *pageContentBuffer = (char*) malloc(4096 * sizeof(char)); while ((amntRecvd = recv(proxySocketFD, pageContentBuffer + i, 4096, 0)) > 0) { i += amntRecvd; realloc(pageContentBuffer, i * 4096 * sizeof(char)); } // close proxy socket close(proxySocketFD); // deallocate memory freeaddrinfo(servinfo); return pageContentBuffer; } Line 336 corresponds to the if statement with the getaddrinfo() function call. I'm not really sure what I haven't initialized. The string I'm passing in "should" be already set... I'm printing it out just fine. I also get another error corresponding to the same line of code: ==21743== Use of uninitialised value of size 8 ==21743== at 0x33B7D05816: __nscd_cache_search (in /lib64/libc-2.5.so) ==21743== by 0x33B7D0438B: nscd_gethst_r (in /lib64/libc-2.5.so) ==21743== by 0x33B7D04B26: __nscd_gethostbyname2_r (in /lib64/libc-2.5.so) ==21743== by 0x33B7CE9F5E: gethostbyname2_r@@GLIBC_2.2.5 (in /lib64/libc-2.5.so) ==21743== by 0x33B7CBC522: gaih_inet (in /lib64/libc-2.5.so) ==21743== by 0x33B7CBD629: getaddrinfo (in /lib64/libc-2.5.so) ==21743== by 0x401A5F: tunnelURL (proxy.c:336) ==21743== by 0x40142A: client_thread (proxy.c:194) ==21743== by 0x33B8806616: start_thread (in /lib64/libpthread-2.5.so) ==21743== by 0x33B7CD3C2C: clone (in /lib64/libc-2.5.so) Any ideas as to what might becausing this? This is written in C btw... Thanks, Hristo

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >