Search Results

Search found 132 results on 6 pages for 'parity'.

Page 6/6 | < Previous Page | 2 3 4 5 6 

  • The future for Microsoft

    - by Scott Dorman
    Originally posted on: http://geekswithblogs.net/sdorman/archive/2013/10/16/the-future-for-microsoft.aspxMicrosoft is in the process of reinventing itself. While some may argue that it’s “too little, too late” or that their growing consumer-focused strategy is wrong, the truth of the situation is that Microsoft is reinventing itself into a new company. While Microsoft is now calling themselves a “devices and services” company, that’s not entirely accurate. Let’s look at some facts: Microsoft will always (for the long-term foreseeable future) be financially split into the following divisions: Windows/Operating Systems, which for FY13 made up approximately 24% of overall revenue. Server and Tools, which for FY13 made up approximately 26% of overall revenue. Enterprise/Business Products, which for FY13 made up approximately 32% of overall revenue. Entertainment and Devices, which for FY13 made up approximately 13% of overall revenue. Online Services, which for FY13 made up approximately 4% of overall revenue. It is important to realize that hardware products like the Surface fall under the Windows/Operating Systems division while products like the Xbox 360 fall under the Entertainment and Devices division. (Presumably other hardware, such as mice, keyboards, and cameras, also fall under the Entertainment and Devices division.) It’s also unclear where Microsoft’s recent acquisition of Nokia’s handset division will fall, but let’s assume that it will be under Entertainment and Devices as well. Now, for the sake of argument, let’s assume a slightly different structure that I think is more in line with how Microsoft presents itself and how the general public sees it: Consumer Products and Devices, which would probably make up approximately 9% of overall revenue. Developer Tools, which would probably make up approximately 13% of overall revenue. Enterprise Products and Devices, which would probably make up approximately 47% of overall revenue. Entertainment, which would probably make up approximately 13% of overall revenue. Online Services, which would probably make up approximately 17% of overall revenue. (Just so we’re clear, in this structure hardware products like the Surface, a portion of Windows sales, and other hardware fall under the Consumer Products and Devices division. I’m assuming that more of the income for the Windows division is coming from enterprise/volume licenses so 15% of that income went to the Enterprise Products and Devices division. Most of the enterprise services, like Azure, fall under the Online Services division so half of the Server and Tools income went there as well.) No matter how you look at it, the bulk of Microsoft’s income still comes from not just the enterprise but also software sales, and this really shouldn’t surprise anyone. So, now that the stage is set…what’s the future for Microsoft? The future I see for Microsoft (again, this is just my prediction based on my own instinct, gut-feel and publicly available information) is this: Microsoft is becoming a consumer-focused enterprise company. Let’s look at it a different way. Microsoft is an enterprise-focused company trying to create a larger consumer presence.  To a large extent, this is the exact opposite of Apple, who is really a consumer-focused company trying to create a larger enterprise presence. The major reason consumer-focused companies (like Apple) have started making in-roads into the enterprise is the “bring your own device” phenomenon. Yes, Apple has created some “game-changing” products but their enterprise influence is still relatively small. Unfortunately (for this blog post at least), Apple provides revenue in terms of hardware products rather than business divisions, so it’s not possible to do a direct comparison. However, in the interest of transparency, from Apple’s Quarterly Report (filed 24 July 2013), their revenue breakdown is: iPhone, which for the 3 months ending 29 June 2013 made up approximately 51% of revenue. iPad, which for the 3 months ending 29 June 2013 made up approximately 18% of revenue. Mac, which for the 3 months ending 29 June 2013 made up approximately 14% of revenue. iPod, which for the 3 months ending 29 June 2013 made up approximately 2% of revenue. iTunes, Software, and Services, which for the 3 months ending 29 June 2013 made up approximately 11% of revenue. Accessories, which for the 3 months ending 29 July 2013 made up approximately 3% of revenue. From this, it’s pretty clear that Apple is a consumer-and-hardware-focused company. At this point, you may be asking yourself “Where is all of this going?” The answer to that lies in Microsoft’s shift in company focus. They are becoming more consumer focused, but what exactly does that mean? The biggest change (at least that’s been in the news lately) is the pending purchase of Nokia’s handset division. This, in combination with their Surface line of tablets and the Xbox, will put Microsoft squarely in the realm of a hardware-focused company in addition to being a software-focused company. That can (and most likely will) shift the revenue split to looking at revenue based on software sales (both consumer and enterprise) and also hardware sales (mostly on the consumer side). If we look at things strictly from a Windows perspective, Microsoft clearly has a lot of irons in the fire at the moment. Discounting the various product SKUs available and painting the picture with broader strokes, there are currently 5 different Windows-based operating systems: Windows Phone Windows Phone 7.x, which runs on top of the Windows CE kernel Windows Phone 8.x+, which runs on top of the Windows 8 kernel Windows RT The ARM-based version of Windows 8, which runs on top of the Windows 8 kernel Windows (Pro) The Intel-based version of Windows 8, which runs on top of the Windows 8 kernel Xbox The Xbox 360, which runs it’s own proprietary OS. The Xbox One, which runs it’s own proprietary OS, a version of Windows running on top of the Windows 8 kernel and a proprietary “manager” OS which manages the other two. Over time, Windows Phone 7.x devices will fade so that really leaves 4 different versions. Looking at Windows RT and Windows Phone 8.x paints an interesting story. Right now, all mobile phone devices run on some sort of ARM chip and that doesn’t look like it will change any time soon. That means Microsoft has two different Windows based operating systems for the ARM platform. Long term, it doesn’t make sense for Microsoft to continue supporting that arrangement. I have long suspected (since the Surface was first announced) that Microsoft will unify these two variants of Windows and recent speculation from some of the leading Microsoft watchers lends credence to this suspicion. It is rumored that upcoming Windows Phone releases will include support for larger screen sizes, relax the requirement to have a hardware-based back button and will continue to improve API parity between Windows Phone and Windows RT. At the same time, Windows RT will include support for smaller screen sizes. Since both of these operating systems are based on the same core Windows kernel, it makes sense (both from a financial and development resource perspective) for Microsoft to unify them. The user interfaces are already very similar. So similar in fact, that visually it’s difficult to tell them apart. To illustrate this, here are two screen captures: Other than a few variations (the Bing News app, the picture shown in the Pictures tile and the spacing between the tiles) these are identical. The one on the left is from my Windows 8.1 laptop (which looks the same as on my Surface RT) and the one on the right is from my Windows Phone 8 Lumia 925. This pretty clearly shows that from a consumer perspective, there really is no practical difference between how these two operating systems look and how you interact with them. For the consumer, your entertainment device (Xbox One), phone (Windows Phone) and mobile computing device (Surface [or some other vendors tablet], laptop, netbook or ultrabook) and your desktop computing device (desktop) will all look and feel the same. While many people will denounce this consistency of user experience, I think this will be a good thing in the long term, especially for the upcoming generations. For example, my 5-year old son knows how to use my tablet, phone and Xbox because they all feature nearly identical user experiences. When Windows 8 was released, Microsoft allowed a Windows Store app to be purchased once and installed on as many as 5 devices. With Windows 8.1, this limit has been increased to over 50. Why is that important? If you consider that your phone, computing devices, and entertainment device will be running the same operating system (with minor differences related to physical hardware chipset), that means that I could potentially purchase my sons favorite Angry Birds game once and be able to install it on all of the devices I own. (And for those of you wondering, it’s only 7 [at the moment].) From an app developer perspective, the story becomes even more compelling. Right now there are differences between the different operating systems, but those differences are shrinking. The user interface technology for both is XAML but there are different controls available and different user experience concepts. Some of the APIs available are the same while some are not. You can’t develop a Windows Phone app that can also run on Windows (either Windows Pro or RT). With each release of Windows Phone and Windows RT, those difference become smaller and smaller. Add to this mix the Xbox One, which will also feature a Windows-based operating system and the same “modern” (tile-based) user interface and the visible distinctions between the operating systems will become even smaller. Unifying the operating systems means one set of APIs and one code base to maintain for an app that can run on multiple devices. One code base means it’s easier to add features and fix bugs and that those changes become available on all devices at the same time. It also means a single app store, which will increase the discoverability and reach of your app and consolidate revenue and app profile management. Now, the choice of what devices an app is available on becomes a simple checkbox decision rather than a technical limitation. Ultimately, this means more apps available to consumers, which is always good for the app ecosystem. Is all of this just rumor, speculation and conjecture? Of course, but it’s not unfounded. As I mentioned earlier, some of the prominent Microsoft watchers are also reporting similar rumors. However, Microsoft itself has even hinted at this future with their recent organizational changes and by telling developers “if you want to develop for Xbox One, start developing for Windows 8 now.” I think this pretty clearly paints the following picture: Microsoft is committed to the “modern” user interface paradigm. Microsoft is changing their release cadence (for all products, not just operating systems) to be faster and more modular. Microsoft is going to continue to unify their OS platforms both from a consumer perspective and a developer perspective. While this direction will certainly concern some people it will excite many others. Microsoft’s biggest failing has always been following through with a strong and sustained marketing strategy that presents a consistent view point and highlights what this unified and connected experience looks like and how it benefits consumers and enterprises. We’ve started to see some of this over the last few years, but it needs to continue and become more aggressive and consistent. In the long run, I think Microsoft will be able to pull all of these technologies and devices together into one seamless ecosystem. It isn’t going to happen overnight, but my prediction is that we will be there by the end of 2016. As both a consumer and a developer, I, for one, am excited about the future of Microsoft.

    Read the article

  • Problem receving in RXTX

    - by drhorrible
    I've been using RXTX for about a year now, without too many problems. I just started a new program to interact with a new piece of hardware, so I reused the connect() method I've used on my other projects, but I have a weird problem I've never seen before. The Problem The device works fine, because when I connect with hyperterminal, I send things and receive what I expect, and Serial Port Monitor(SPM) reflects this. However, when I run the simple hyperterminal-clone I wrote to diagnose the problem I'm having with my main app, bytes are sent, according to SPM, but nothing is received, and my SerialPortEventListener never fires. Even when I check for available data in the main loop, reader.ready() returns false. If I ignore this check, then I get an exception, details below. Relevant section of connect() method // Configure and open port port = (SerialPort) CommPortIdentifier.getPortIdentifier(name) .open(owner,1000) port.setSerialPortParams(baud, databits, stopbits, parity); port.setFlowControlMode(fc_mode); final BufferedReader br = new BufferedReader( new InputStreamReader( port.getInputStream(), "US-ASCII")); // Add listener to print received characters to screen port.addEventListener(new SerialPortEventListener(){ public void serialEvent(SerialPortEvent ev) { try { System.out.println("Received: "+br.readLine()); } catch (IOException e) { e.printStackTrace(); } } }); port.notifyOnDataAvailable(); Exception java.io.IOException: Underlying input stream returned zero bytes at sun.nio.cs.StreamDecoder.readBytes(StreamDecoder.java:268) at sun.nio.cs.StreamDecoder.implRead(StreamDecoder.java:306) at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:158) at java.io.InputStreamReader.read(InputStreamReader.java:167) at java.io.BufferedReader.fill(BufferedReader.java:136) at java.io.BufferedReader.read(BufferedReader.java:157) at <my code> The big question (again) I think I've eliminated all possible hardware problems, so what could be wrong with my code, or the RXTX library? Edit: something interesting When I open hyperterminal after sending a bunch of commands from java that should have gotten responses, all of the responses appear immediately, as if they had been put in the buffer somewhere, but unavailable. Edit 2: Tried something new, same results I ran the code example found here, with the same results. No data came in, but when I switched to a new program, it came all at once. Edit 3 The hardware is fine, and even a different computer has the same problem. I am not using any sort of USB adapter. I've started using PortMon, too, and it's giving me some interesting results. Hyperterminal and RXTX are not using the same settings, and RXTX always polls the port, unlike HyperTerminal, but I still can't see what settings would affect this. As soon as I can isolate the configuration from the constant polling, I'll post my PortMon logs. Edit 4 Is it possible that some sort of Windows update in the last 3 months could have caused this? It has screwed up one of my MATLAB mex-based programs once. Edit 5 I've also noticed some things that are different between HyperTerminal, RXTX, and a separate program I found that communicates with the device (but doesn't do what I want, which is why I'm rolling my own program) HyperTerminal - set to no flow control, but Serial Port Monitor's RTS and DTR indicators are green Other program - not sure what settings it thinks it's using, but only SPM's RTS indicator is green RXTX - no matter what flow control I set, only SPM's CTS and DTR indicators are on. From Serial Port Monitor's help files (paraphrased): the indicators display the state of the serial control lines RTS - Request To Send CTS - Clear To Send DTR - Data Terminal Ready

    Read the article

  • Serial port : Read data problem, not reading complete data

    - by Anuj Mehta
    Hi I have an application where I am sending data via serial port from PC1 (Java App) and reading that data in PC2 (C++ App). The problem that I am facing is that my PC2 (C++ App) is not able to read complete data sent by PC1 i.e. from my PC1 I am sending 190 bytes but PC2 is able to read close to 140 bytes though I am trying to read in a loop. Below is code snippet of my C++ App Open the connection to serial port serialfd = open( serialPortName.c_str(), O_RDWR | O_NOCTTY | O_NDELAY); if (serialfd == -1) { /* * Could not open the port. */ TRACE << "Unable to open port: " << serialPortName << endl; } else { TRACE << "Connected to serial port: " << serialPortName << endl; fcntl(serialfd, F_SETFL, 0); } Configure the Serial Port parameters struct termios options; /* * Get the current options for the port... */ tcgetattr(serialfd, &options); /* * Set the baud rates to 9600... */ cfsetispeed(&options, B38400); cfsetospeed(&options, B38400); /* * 8N1 * Data bits - 8 * Parity - None * Stop bits - 1 */ options.c_cflag &= ~PARENB; options.c_cflag &= ~CSTOPB; options.c_cflag &= ~CSIZE; options.c_cflag |= CS8; /* * Enable hardware flow control */ options.c_cflag |= CRTSCTS; /* * Enable the receiver and set local mode... */ options.c_cflag |= (CLOCAL | CREAD); // Flush the earlier data tcflush(serialfd, TCIFLUSH); /* * Set the new options for the port... */ tcsetattr(serialfd, TCSANOW, &options); Now I am reading data const int MAXDATASIZE = 512; std::vector<char> m_vRequestBuf; char buffer[MAXDATASIZE]; int totalBytes = 0; fcntl(serialfd, F_SETFL, FNDELAY); while(1) { bytesRead = read(serialfd, &buffer, MAXDATASIZE); if(bytesRead == -1) { //Sleep for some time and read again usleep(900000); } else { totalBytes += bytesRead; //Add data read to vector for(int i =0; i < bytesRead; i++) { m_vRequestBuf.push_back(buffer[i]); } int newBytesRead = 0; //Now keep trying to read more data while(newBytesRead != -1) { //clear contents of buffer memset((void*)&buffer, 0, sizeof(char) * MAXDATASIZE); newBytesRead = read(serialfd, &buffer, MAXDATASIZE); totalBytes += newBytesRead; for(int j = 0; j < newBytesRead; j++) { m_vRequestBuf.push_back(buffer[j]); } }//inner while break; } //while

    Read the article

  • threaded serial port IOException when writing

    - by John McDonald
    Hi, I'm trying to write a small application that simply reads data from a socket, extracts some information (two integers) from the data and sends the extracted information off on a serial port. The idea is that it should start and just keep going. In short, it works, but not for long. After a consistently short period I start to receive IOExceptions and socket receive buffer is swamped. The thread framework has been taken from the MSDN serial port example. The delay in send(), readThread.Join(), is an effort to delay read() in order to allow serial port interrupt processing a chance to occur, but I think I've misinterpreted the join function. I either need to sync the processes more effectively or throw some data away as it comes in off the socket, which would be fine. The integer data is controlling a pan tilt unit and I'm sure four times a second would be acceptable, but not sure on how to best acheive either, any ideas would be greatly appreciated, cheers. using System; using System.Collections.Generic; using System.Text; using System.IO.Ports; using System.Threading; using System.Net; using System.Net.Sockets; using System.IO; namespace ConsoleApplication1 { class Program { static bool _continue; static SerialPort _serialPort; static Thread readThread; static Thread sendThread; static String sendString; static Socket s; static int byteCount; static Byte[] bytesReceived; // synchronise send and receive threads static bool dataReceived; const int FIONREAD = 0x4004667F; static void Main(string[] args) { dataReceived = false; readThread = new Thread(Read); sendThread = new Thread(Send); bytesReceived = new Byte[16384]; // Create a new SerialPort object with default settings. _serialPort = new SerialPort("COM4", 38400, Parity.None, 8, StopBits.One); // Set the read/write timeouts _serialPort.WriteTimeout = 500; _serialPort.Open(); string moveMode = "CV "; _serialPort.WriteLine(moveMode); s = null; IPHostEntry hostEntry = Dns.GetHostEntry("localhost"); foreach (IPAddress address in hostEntry.AddressList) { IPEndPoint ipe = new IPEndPoint(address, 10001); Socket tempSocket = new Socket(ipe.AddressFamily, SocketType.Stream, ProtocolType.Tcp); tempSocket.Connect(ipe); if (tempSocket.Connected) { s = tempSocket; s.ReceiveBufferSize = 16384; break; } else { continue; } } readThread.Start(); sendThread.Start(); while (_continue) { Thread.Sleep(10); ;// Console.WriteLine("main..."); } readThread.Join(); _serialPort.Close(); s.Close(); } public static void Read() { while (_continue) { try { //Console.WriteLine("Read"); if (!dataReceived) { byte[] outValue = BitConverter.GetBytes(0); // Check how many bytes have been received. s.IOControl(FIONREAD, null, outValue); uint bytesAvailable = BitConverter.ToUInt32(outValue, 0); if (bytesAvailable > 0) { Console.WriteLine("Read thread..." + bytesAvailable); byteCount = s.Receive(bytesReceived); string str = Encoding.ASCII.GetString(bytesReceived); //str = Encoding::UTF8->GetString( bytesReceived ); string[] split = str.Split(new Char[] { '\t', '\r', '\n' }); string filteredX = (split.GetValue(7)).ToString(); string filteredY = (split.GetValue(8)).ToString(); string[] AzSplit = filteredX.Split(new Char[] { '.' }); filteredX = (AzSplit.GetValue(0)).ToString(); string[] ElSplit = filteredY.Split(new Char[] { '.' }); filteredY = (ElSplit.GetValue(0)).ToString(); // scale values int x = (int)(Convert.ToInt32(filteredX) * 1.9); string scaledAz = x.ToString(); int y = (int)(Convert.ToInt32(filteredY) * 1.9); string scaledEl = y.ToString(); String moveAz = "PS" + scaledAz + " "; String moveEl = "TS" + scaledEl + " "; sendString = moveAz + moveEl; dataReceived = true; } } } catch (TimeoutException) {Console.WriteLine("timeout exception");} catch (NullReferenceException) {Console.WriteLine("Read NULL reference exception");} } } public static void Send() { while (_continue) { try { if (dataReceived) { // sleep Read() thread to allow serial port interrupt processing readThread.Join(100); // send command to PTU dataReceived = false; Console.WriteLine(sendString); _serialPort.WriteLine(sendString); } } catch (TimeoutException) { Console.WriteLine("Timeout exception"); } catch (IOException) { Console.WriteLine("IOException exception"); } catch (NullReferenceException) { Console.WriteLine("Send NULL reference exception"); } } } } }

    Read the article

  • .NET SerialPort.Read skipps bytes

    - by Lukas Rieger
    Solution Reading the data byte wise via "port.ReadByte" is too slow, the problem is inside the SerialPort class. i changed it to reading bigger chunks via "port.Read" and there are now no buffer overruns. although i found the solution myself, writing it down helped me and maybe someone else has the same problem and finds this via google... (how can i mark it as answered?) EDIT 2 by setting port.ReadBufferSize = 2000000; i can delay the problem for ~30 seconds. so it seems, .Net really is too slow... since my application is not that critical, i just set the buffer to 20MB, but i am still interested in the cause. EDIT i just tested something i had not thought of before (shame on me): port.ErrorReceived += (object self, SerialErrorReceivedEventArgs se_arg) => { Console.Write("| Error: {0} | ", System.Enum.GetName(se_arg.EventType.GetType(), se_arg.EventType)); }; and it seems that i have an overrun. Is the .Net implementation too slow for 500k or is there an error on my side? Original Question i built a very primitive oszilloscope (avr, which sends adc data over uart to an ftdi chip). On the pc side i have a WPF Programm that displays this data. The Protokoll is: two sync bytes (0xaffe) - 14 data bytes - two sync bytes - 14 data bytes - ... i use 16bit values, so inside the 14 data bytes are 7 channels (lsb first). I verified the uC Firmware with hTerm, and it does send and receive everything correct. But, if i try to read the data with C#, sometimes some bytes are lost. The oszilloscop programm is a mess, but i created a small sample application, which has the same symptoms. I added two extension methods to a) read one byte from the COM Port and ignore -1 (EOF) and b) wait for the sync pattern. The sample programm first syncs onto the data stream by waiting for (0xaffe) and then compares the received bytes with the expected values. the loop runs a few times until an assert failed message pops up. I could not find anything about lost bytes via google, any help would be appreciated. Code using System; using System.Collections.Generic; using System.Diagnostics; using System.IO.Ports; using System.Linq; using System.Text; using System.Threading.Tasks; namespace SerialTest { public static class SerialPortExtensions { public static byte ReadByteSerial(this SerialPort port) { int i = 0; do { i = port.ReadByte(); } while (i < 0 || i > 0xff); return (byte)i; } public static void WaitForPattern_Ushort(this SerialPort port, ushort pattern) { byte hi = 0; byte lo = 0; do { lo = hi; hi = port.ReadByteSerial(); } while (!(hi == (pattern >> 8) && lo == (pattern & 0x00ff))); } } class Program { static void Main(string[] args) { //500000 8n1 SerialPort port = new SerialPort("COM3", 500000, Parity.None, 8, StopBits.One); port.Open(); port.DiscardInBuffer(); port.DiscardOutBuffer(); //Sync port.WaitForPattern_Ushort(0xaffe); byte hi = 0; byte lo = 0; int val; int n = 0; // Start Loop, the stream is already synced while (true) { //Read 7 16-bit values (=14 Bytes) for (int i = 0; i < 7; i++) { lo = port.ReadByteSerial(); hi = port.ReadByteSerial(); val = ((hi << 8) | lo); Debug.Assert(val != 0xaffe); } //Read two sync bytes lo = port.ReadByteSerial(); hi = port.ReadByteSerial(); val = ((hi << 8) | lo); Debug.Assert(val == 0xaffe); n++; } } } }

    Read the article

  • GridBagConstraints problem-moved to left and size isn't the same

    - by Damir
    I have in Java two panels which need to have same layout, there is my functions for initializations panels. private void InitializePanelCom(){ pnlCom=new JPanel(); pnlCom.setSize(300,160); pnlCom.setLocation(10, 60); add(pnlCom); GridBagLayout gb=new GridBagLayout(); GridBagConstraints gc=new GridBagConstraints(); pnlCom.setLayout(gb); jLabelcommPort = setJLabel("Com Port : "); jLabelbaudRate = setJLabel("Baud Rate : "); jLabelplcAddress = setJLabel("Plc Address : "); jLabelsendTime = setJLabel("Send Time : "); jLabelx50 = setJLabel(" x 50 ms (2 - 99)"); jComboBoxcommPort = setJComboBox(commPortList); jComboBoxbaudRate = setJComboBox(bitRateList); jTextAreaPlcAddress = setJTextField(""); jTextAreaSendTime = setJTextField(""); gc.insets = new Insets(10,0,0,0); gc.ipadx = 120; gc.weightx = 1; gc.gridx = 0; gc.gridy = 0; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelcommPort,gc); gc.insets = new Insets(10,0,0,0); gc.ipadx = 120; gc.weightx = 1; gc.gridx = 1; gc.gridy = 0; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jComboBoxcommPort,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=0; gc.gridy=1; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelbaudRate,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=1; gc.gridy=1; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jComboBoxbaudRate,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=0; gc.gridy=2; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelplcAddress,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=1; gc.gridy=2; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jTextAreaPlcAddress,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=0; gc.gridy=3; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelsendTime,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=1; gc.gridy=3; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jTextAreaSendTime,gc); gc.insets=new Insets(10,0,0,0); gc.ipadx=120; gc.weightx=1; gc.gridx=2; gc.gridy=3; gc.anchor=GridBagConstraints.EAST; pnlCom.add(jLabelx50,gc); } ![alt text][1] private void InitializePanelTcp(){ pnlTcp=new JPanel(); pnlTcp.setSize(300,160); pnlTcp.setLocation(10, 60); add(pnlTcp); GridBagLayout gb=new GridBagLayout(); GridBagConstraints gc=new GridBagConstraints(); pnlTcp.setLayout(gb); lblIPAddress=setJLabel("IP Address : "); txtIPAddress=setJTextField(""); lblPort=setJLabel("Port : "); txtPort=setJTextField(""); cmbBaudRateTCP = setJComboBox(bitRateList); lblBaudRateTCP = setJLabel("Baud Rate : "); lblParityCheck=setJLabel("Parity check : "); txtParityCheck=setJTextField(""); gc.insets = new Insets(10,0,0,0); //gc.ipadx = 20; gc.weightx = 0.3; gc.gridx = 0; gc.gridy = 0; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblIPAddress,gc); gc.insets = new Insets(10,0,0,0); //gc.ipadx = 80; gc.weightx = 0.7; gc.gridx = 1; gc.gridy = 0; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(txtIPAddress,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=120; gc.weightx=0.3; gc.gridx=0; gc.gridy=1; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblPort,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=80; gc.weightx=0.7; gc.gridx=1; gc.gridy=1; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(txtPort,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=120; gc.weightx=0.3; gc.gridx=0; gc.gridy=2; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblBaudRateTCP,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=0; gc.weightx=0.7; gc.gridx=1; gc.gridy=2; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(cmbBaudRateTCP,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=120; gc.weightx=0.3; gc.gridx=0; gc.gridy=3; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(lblParityCheck,gc); gc.insets=new Insets(10,0,0,0); //gc.ipadx=0; gc.weightx=1.7; gc.gridx=1; gc.gridy=3; gc.anchor=GridBagConstraints.WEST; pnlTcp.add(txtParityCheck,gc); } Problem is that second panel (initializetcp, second picture doesn't look the same, labels are moved at left , it is different ). Can anybody help, I am new with GridBagContsraints at all ?

    Read the article

  • questions regarding the use of A* with the 15-square puzzle

    - by Cheeso
    I'm trying to build an A* solver for a 15-square puzzle. The goal is to re-arrange the tiles so that they appear in their natural positions. You can only slide one tile at a time. Each possible state of the puzzle is a node in the search graph. For the h(x) function, I am using an aggregate sum, across all tiles, of the tile's dislocation from the goal state. In the above image, the 5 is at location 0,0, and it belongs at location 1,0, therefore it contributes 1 to the h(x) function. The next tile is the 11, located at 0,1, and belongs at 2,2, therefore it contributes 3 to h(x). And so on. EDIT: I now understand this is what they call "Manhattan distance", or "taxicab distance". I have been using a step count for g(x). In my implementation, for any node in the state graph, g is just +1 from the prior node's g. To find successive nodes, I just examine where I can possibly move the "hole" in the puzzle. There are 3 neighbors for the puzzle state (aka node) that is displayed: the hole can move north, west, or east. My A* search sometimes converges to a solution in 20s, sometimes 180s, and sometimes doesn't converge at all (waited 10 mins or more). I think h is reasonable. I'm wondering if I've modeled g properly. In other words, is it possible that my A* function is reaching a node in the graph via a path that is not the shortest path? Maybe have I not waited long enough? Maybe 10 minutes is not long enough? For a fully random arrangement, (assuming no parity problems), What is the average number of permutations an A* solution will examine? (please show the math) I'm going to look for logic errors in my code, but in the meantime, Any tips? (ps: it's done in Javascript). Also, no, this isn't CompSci homework. It's just a personal exploration thing. I'm just trying to learn Javascript. EDIT: I've found that the run-time is highly depend upon the heuristic. I saw the 10x factor applied to the heuristic from the article someone mentioned, and it made me wonder - why 10x? Why linear? Because this is done in javascript, I could modify the code to dynamically update an html table with the node currently being considered. This allowd me to peek at the algorithm as it was progressing. With a regular taxicab distance heuristic, I watched as it failed to converge. There were 5's and 12's in the top row, and they kept hanging around. I'd see 1,2,3,4 creep into the top row, but then they'd drop out, and other numbers would move up there. What I was hoping to see was 1,2,3,4 sort of creeping up to the top, and then staying there. I thought to myself - this is not the way I solve this personally. Doing this manually, I solve the top row, then the 2ne row, then the 3rd and 4th rows sort of concurrently. So I tweaked the h(x) function to more heavily weight the higher rows and the "lefter" columns. The result was that the A* converged much more quickly. It now runs in 3 minutes instead of "indefinitely". With the "peek" I talked about, I can see the smaller numbers creep up to the higher rows and stay there. Not only does this seem like the right thing, it runs much faster. I'm in the process of trying a bunch of variations. It seems pretty clear that A* runtime is very sensitive to the heuristic. Currently the best heuristic I've found uses the summation of dislocation * ((4-i) + (4-j)) where i and j are the row and column, and dislocation is the taxicab distance. One interesting part of the result I got: with a particular heuristic I find a path very quickly, but it is obviously not the shortest path. I think this is because I am weighting the heuristic. In one case I got a path of 178 steps in 10s. My own manual effort produce a solution in 87 moves. (much more than 10s). More investigation warranted. So the result is I am seeing it converge must faster, and the path is definitely not the shortest. I have to think about this more. Code: var stop = false; function Astar(start, goal, callback) { // start and goal are nodes in the graph, represented by // an array of 16 ints. The goal is: [1,2,3,...14,15,0] // Zero represents the hole. // callback is a method to call when finished. This runs a long time, // therefore we need to use setTimeout() to break it up, to avoid // the browser warning like "Stop running this script?" // g is the actual distance traveled from initial node to current node. // h is the heuristic estimate of distance from current to goal. stop = false; start.g = start.dontgo = 0; // calcHeuristic inserts an .h member into the array calcHeuristicDistance(start); // start the stack with one element var closed = []; // set of nodes already evaluated. var open = [ start ]; // set of nodes to evaluate (start with initial node) var iteration = function() { if (open.length==0) { // no more nodes. Fail. callback(null); return; } var current = open.shift(); // get highest priority node // update the browser with a table representation of the // node being evaluated $("#solution").html(stateToString(current)); // check solution returns true if current == goal if (checkSolution(current,goal)) { // reconstructPath just records the position of the hole // through each node var path= reconstructPath(start,current); callback(path); return; } closed.push(current); // get the set of neighbors. This is 3 or fewer nodes. // (nextStates is optimized to NOT turn directly back on itself) var neighbors = nextStates(current, goal); for (var i=0; i<neighbors.length; i++) { var n = neighbors[i]; // skip this one if we've already visited it if (closed.containsNode(n)) continue; // .g, .h, and .previous get assigned implicitly when // calculating neighbors. n.g is nothing more than // current.g+1 ; // add to the open list if (!open.containsNode(n)) { // slot into the list, in priority order (minimum f first) open.priorityPush(n); n.previous = current; } } if (stop) { callback(null); return; } setTimeout(iteration, 1); }; // kick off the first iteration iteration(); return null; }

    Read the article

< Previous Page | 2 3 4 5 6