Search Results

Search found 444 results on 18 pages for 'shaders'.

Page 6/18 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • XNA 4.0 - Normal mapping shader - strange texture artifacts

    - by Taylor
    I recently started using custom shader. Shader can do diffuse and specular lighting and normal mapping. But normal mapping is causing really ugly artifacts (some sort of pixeling noise) for textures in greater distance. It looks like this: Image link This is HLSL code: // Matrix float4x4 World : World; float4x4 View : View; float4x4 Projection : Projection; //Textury texture2D ColorMap; sampler2D ColorMapSampler = sampler_state { Texture = <ColorMap>; MinFilter = Anisotropic; MagFilter = Linear; MipFilter = Linear; MaxAnisotropy = 16; }; texture2D NormalMap; sampler2D NormalMapSampler = sampler_state { Texture = <NormalMap>; MinFilter = Anisotropic; MagFilter = Linear; MipFilter = Linear; MaxAnisotropy = 16; }; // Light float4 AmbientColor : Color; float AmbientIntensity; float3 DiffuseDirection : LightPosition; float4 DiffuseColor : Color; float DiffuseIntensity; float4 SpecularColor : Color; float3 CameraPosition : CameraPosition; float Shininess; // The input for the VertexShader struct VertexShaderInput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 Normal : NORMAL0; float3 Binormal : BINORMAL0; float3 Tangent : TANGENT0; }; // The output from the vertex shader, used for later processing struct VertexShaderOutput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 View : TEXCOORD1; float3x3 WorldToTangentSpace : TEXCOORD2; }; // The VertexShader. VertexShaderOutput VertexShaderFunction(VertexShaderInput input, float3 Normal : NORMAL) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); output.TexCoord = input.TexCoord; output.WorldToTangentSpace[0] = mul(normalize(input.Tangent), World); output.WorldToTangentSpace[1] = mul(normalize(input.Binormal), World); output.WorldToTangentSpace[2] = mul(normalize(input.Normal), World); output.View = normalize(float4(CameraPosition,1.0) - worldPosition); return output; } // The Pixel Shader float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float4 color = tex2D(ColorMapSampler, input.TexCoord); float3 normalMap = 2.0 *(tex2D(NormalMapSampler, input.TexCoord)) - 1.0; normalMap = normalize(mul(normalMap, input.WorldToTangentSpace)); float4 normal = float4(normalMap,1.0); float4 diffuse = saturate(dot(-DiffuseDirection,normal)); float4 reflect = normalize(2*diffuse*normal-float4(DiffuseDirection,1.0)); float4 specular = pow(saturate(dot(reflect,input.View)), Shininess); return color * AmbientColor * AmbientIntensity + color * DiffuseIntensity * DiffuseColor * diffuse + color * SpecularColor * specular; } // Techniques technique Lighting { pass Pass1 { VertexShader = compile vs_2_0 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } Any advice? Thanks!

    Read the article

  • Geometry shader for multiple primitives

    - by Byte56
    How can I create a geometry shader that can handle multiple primitives? For example when creating a geometry shader for triangles, I define a layout like so: layout(triangles) in; layout(triangle_strip, max_vertices=3) out; But if I use this shader then lines or points won't show up. So adding: layout(triangles) in; layout(triangle_strip, max_vertices=3) out; layout(lines) in; layout(line_strip, max_vertices=2) out; The shader will compile and run, but will only render lines (or whatever the last primitive defined is). So how do I define a single geometry shader that will handle multiple types of primitives? Or is that not possible and I need to create multiple shader programs and change shader programs before drawing each type?

    Read the article

  • Combine Two Shader Program

    - by Siddharth
    For my android application, I want to apply brightness and contrast shader on same image. At present I am using gpuimage plugin. In that I found two separate program for brightness and contrast as per the following. Contrast shader: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform lowp float contrast; void main() { lowp vec4 textureColor = texture2D(inputImageTexture, textureCoordinate); gl_FragColor = vec4(((textureColor.rgb - vec3(0.5)) * contrast + vec3(0.5)), textureColor.w); } Brightness shader: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform lowp float brightness; void main() { lowp vec4 textureColor = texture2D(inputImageTexture, textureCoordinate); gl_FragColor = vec4((textureColor.rgb + vec3(brightness)), textureColor.w); } Now applying both of the effects I write following code varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; varying highp vec2 textureCoordinate2; uniform sampler2D inputImageTexture2; uniform lowp float contrast; uniform lowp float brightness; void main() { lowp vec4 textureColorForContrast = texture2D(inputImageTexture, textureCoordinate); lowp vec4 contastVec4 = vec4(((textureColorForContrast.rgb - vec3(0.5)) * contrast + vec3(0.5)), textureColorForContrast.w); lowp vec4 textureColorForBrightness = texture2D(inputImageTexture2, textureCoordinate2); lowp vec4 brightnessVec4 = vec4((textureColorForBrightness.rgb + vec3(brightness)), textureColorForBrightness.w); gl_FragColor = contastVec4 + brightnessVec4; } Doesn't able to get desire result. I can't able to figure out what I have to do next? So please friends help me in this. What program I have to write?

    Read the article

  • Low-level GPU code and Shader Compilation

    - by ktodisco
    Bear with me, because I will raise several questions at once. I still feel, though, that overall this can be treated as one question that may be answered succinctly. I recently dove into solidifying my understanding of the assembly language, low-level memory operations, CPU structure, and program optimizations. This also sparked my interest in how higher-level shading languages, GLSL and HLSL in particular, are compiled and optimized, as well as what formats they are reduced to before machine code is generated (assuming they are not converted directly into machine code). After a bit of research into this, the best resource I've found is this presentation from ATI about the compilation of and optimizations for HLSL. I also found sample ARB assembly code. This sort of addressed my original curiosity, but it raised several other questions. The assembler code in the ATI presentation seems like it contains instructions specifically targeted for the GPU, but is this merely a hypothetical example created for the purpose of conceptual understanding, or is this code really generated during shader compilation? If so, is it possible to inspect it, or even write it in place of the higher-level syntax? My initial searches for an answer to the last question tell me that this may be disallowed, but I have not dug too deep yet. Also, along the same lines, are GLSL shader programs compiled into ARB assembly code before machine code is generated, and is it possible to write direct ARB assembly? Lastly, and perhaps what I am most interested in finding out: are there comprehensive resources on shader compilation and low-level GPU code? I have been unable to find any thus far. I ask simply because I am curious :)

    Read the article

  • How can I find a position between 4 vertices in a fragment shader?

    - by c4sh
    I'm creating a shader with SharpDX (DirectX11 in C#) that takes a segment (2 points) from the output of a Vertex Shader and then passes them to a Geometry Shader, which converts this line into a rectangle (4 points) and assigns the four corners a texture coordinate. After that I want a Fragment Shader (which recieves the interpolated position and the interpolated texture coordinates) that checks the depth at the "spine of the rectangle" (that is, in the line that passes through the middle of the rectangle. The problem is I don't know how to extract the position of the corresponding fragment at the spine of the rectangle. This happens because I have the texture coordinates interpolated, but I don't know how to use them to get the fragment I want, because the coordinate system of a) the texture and b) the position of my fragment in screen space are not the same. Thanks a lot for any help.

    Read the article

  • Fog shader camera problem

    - by MaT
    I have some difficulties with my vertex-fragment fog shader in Unity. I have a good visual result but the problem is that the gradient is based on the camera's position, it moves as the camera moves. I don't know how to fix it. Here is the shader code. struct v2f { float4 pos : SV_POSITION; float4 grabUV : TEXCOORD0; float2 uv_depth : TEXCOORD1; float4 interpolatedRay : TEXCOORD2; float4 screenPos : TEXCOORD3; }; v2f vert(appdata_base v) { v2f o; o.pos = mul(UNITY_MATRIX_MVP, v.vertex); o.uv_depth = v.texcoord.xy; o.grabUV = ComputeGrabScreenPos(o.pos); half index = v.vertex.z; o.screenPos = ComputeScreenPos(o.pos); o.interpolatedRay = mul(UNITY_MATRIX_MV, v.vertex); return o; } sampler2D _GrabTexture; float4 frag(v2f IN) : COLOR { float3 uv = UNITY_PROJ_COORD(IN.grabUV); float dpth = UNITY_SAMPLE_DEPTH(tex2Dproj(_CameraDepthTexture, uv)); dpth = LinearEyeDepth(dpth); float4 wsPos = (IN.screenPos + dpth * IN.interpolatedRay); // Here is the problem but how to fix it float fogVert = max(0.0, (wsPos.y - _Depth) * (_DepthScale * 0.1f)); fogVert *= fogVert; fogVert = (exp (-fogVert)); return fogVert; } Thanks a lot !

    Read the article

  • Multiple render targets and gamma correctness in Direct3D9

    - by Mario
    Let's say in a deferred renderer when building your G-Buffer you're going to render texture color, normals, depth and whatever else to your multiple render targets at once. Now if you want to have a gamma-correct rendering pipeline and you use regular sRGB textures as well as rendertargets, you'll need to apply some conversions along the way, because your filtering, sampling and calculations should happen in linear space, not sRGB space. Of course, you could store linear color in your textures and rendertargets, but this might very well introduce bad precision and banding issues. Reading from sRGB textures is easy: just set SRGBTexture = true; in your texture sampler in your HLSL effect code and the hardware does the conversion sRGB-linear for you. Writing to an sRGB rendertarget is theoretically easy, too: just set SRGBWriteEnable = true; in your effect pass in HLSL and your linear colors will be converted to sRGB space automatically. But how does this work with multiple rendertargets? I only want to do these corrections to the color textures and rendertarget, not to the normals, depth, specularity or whatever else I'll be rendering to my G-Buffer. Ok, so I just don't apply SRGBTexture = true; to my non-color textures, but when using SRGBWriteEnable = true; I'll do a gamma correction to all the values I write out to my rendertargets, no matter what I actually store there. I found some info on gamma over at Microsoft: http://msdn.microsoft.com/en-us/library/windows/desktop/bb173460%28v=vs.85%29.aspx For hardware that supports Multiple Render Targets (Direct3D 9) or Multiple-element Textures (Direct3D 9), only the first render target or element is written. If I understand correctly, SRGBWriteEnable should only be applied to the first rendertarget, but according to my tests it doesn't and is used for all rendertargets instead. Now the only alternative seems to be to handle these corrections manually in my shader and only correct the actual color output, but I'm not totally sure, that this'll not have any negative impact on color correctness. E.g. if the GPU does any blending or filtering or multisampling after the Linear-sRGB conversion... Do I even need gamma correction in this case, if I'm just writing texture color without lighting to my rendertarget? As far as I know, I DO need it because of the texture filtering and mip sampling happening in sRGB space instead, if I don't correct for it. Anyway, it'd be interesting to hear other people's solutions or thoughts about this.

    Read the article

  • Suitability of ground fog using layered alpha quads?

    - by Nick Wiggill
    A layered approach would use a series of massive alpha-textured quads arranged parallel to the ground, intersecting all intervening terrain geometry, to provide the illusion of ground fog quite effectively from high up, looking down, and somewhat less effectively when inside the fog and looking toward the horizon (see image below). Alternatively, a shader-heavy approach would instead calculate density as function of view distance into the ground fog substrate, and output the fragment value based on that. Without having to performance-test each approach myself, I would like first to hear others' experiences (not speculation!) on what sort of performance impact the layered alpha texture approach is likely to have. I ask specifically due to the oft-cited impacts of overdraw (not sure how fill-rate bound your average desktop system is). A list of games using this approach, particularly older games, would be immensely useful: if this was viable on pre DX9/OpenGL2 hardware, it is likely to work fine for me. One big question is in regards to this sort of effect: (Image credit goes to Lume of lume.com) Notice how the vertical fog gradation is continuous / smooth. OTOH, using textured quad layers, I can only assume that layers would be mighty obvious when walking through them -- the more sparse they were, the more obvious this would be. This is in contrast to where fog planes are aligned to face the player every frame, where this coarseness would be much less obvious.

    Read the article

  • OpenGL ES Basic Fragment Shader help with transparency

    - by Chris
    I have just spent my first half hour playing with the shader language. I have modified the basic program I have which renders the texture, to allow me to colour the texture. varying vec2 texCoord; uniform sampler2D texSampler; /* Given the texture coordinates, our pixel shader grabs the corresponding * color from the texture. */ void main() { //gl_FragColor = texture2D(texSampler, texCoord); gl_FragColor = vec4(0,1,0,1)*vec4(texture2D(texSampler,texCoord).xyz,1); } I have noticed how this affects my transparent textures, and I believe I am loosing the alpha channel which would explain why previously transparent area's appear totally black. If I use the following line instead, I am shown the transparent area's gl_FragColor = vec4(0,1,0,1)*vec4(texture2D(texSampler,texCoord).aaa,1); How can I retain the transparency after this modification to the colour? I have seen various things about a .w property, and also luminous, but my tweaks with those and the .aaa property are not working XD

    Read the article

  • Shader optimization - cg/hlsl pseudo and via multiplication

    - by teodron
    Since HLSL/Cg do not allow texture fetching inside conditional blocks, I am first checking a variable and performing some computations, afterwards setting a float flag to 0.0 or 1.0, depending on the computations. I'd like to trigger a texture fetch only if the flag is 1.0 or not null, for that matter of fact. I kind of hoped this would do the trick: float4 TU0_atlas_colour = pseudoBool * tex2Dlod(TU0_texture, float4(tileCoord, 0, mipLevel)); That is, if pseudoBool is 0, will the texture fetch function still be called and produce overhead? I was hoping to prevent it from getting executed via this trick that usually works in plain C/C++.

    Read the article

  • What could cause a pixel shader to paint outside the lines of the vertex shader output?

    - by Rei Miyasaka
    From what I understand, the pixels that a pixel shader operates on are specified implicitly by the SV_POSITION output (in DirectX) of the vertex shader. What then could cause a pixel shader to render in the middle of nowhere? I used the new Visual Studio 2012 graphics debugger to visualize my vertex and pixel shader output. This is the output from a DrawIndexed() call that draws a cube: The pink part is the rendered output of the pixel shader, which takes the cube on its left as its input. The vertex shader code: cbuffer Buf { float4x4 final; }; struct In { float4 pos:POSITION; float3 norm:NORMAL; float2 texuv:TEXCOORD; }; struct Out { float4 col:COLOR; float2 tex:TEXCOORD; float4 pos:SV_POSITION; }; Out main(In input) { Out output; output.pos = mul(input.pos, final); output.col = float4(1.0f, 0.5f, 0.5f, 1.0f); output.tex = input.texuv; return output; } And the pixel shader: struct In { float4 col:COLOR; float2 tex:TEXCOORD; float4 pos:SV_POSITION; }; float4 main(In input) : SV_TARGET { return input.col; } The raster stage is the only thing between the vertex shader and the pixel shader, so my suspicion is that it's some raster stage settings. But the raster stage shouldn't change the shape of the vertex shader output so drastically, should it?

    Read the article

  • Cool examples of procedural pixel shader effects?

    - by Robert Fraser
    What are some good examples of procedural/screen-space pixel shader effects? No code necessary; just looking for inspiration. In particular, I'm looking for effects that are not dependent on geometry or the rest of the scene (would look okay rendered alone on a quad) and are not image processing (don't require a "base image", though they can incorporate textures). Multi-pass or single-pass is fine. Screenshots or videos would be ideal, but ideas work too. Here are a few examples of what I'm looking for (all from the RenderMonkey samples): PS - I'm aware of this question; I'm not asking for a source of actual shader implementations but instead for some inspirational ideas -- and the ones at the NVIDIA Shader Library mostly require a scene or are image processing effects. EDIT: this is an open-ended question and I wish there was a good way to split the bounty. I'll award the rep to the best answer on the last day.

    Read the article

  • Pixel Shader Giving Black output

    - by Yashwinder
    I am coding in C# using Windows Forms and the SlimDX API to show the effect of a pixel shader. When I am setting the pixel shader, I am getting a black output screen but if I am not using the pixel shader then I am getting my image rendered on the screen. I have the following C# code using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using System.Runtime.InteropServices; using SlimDX.Direct3D9; using SlimDX; using SlimDX.Windows; using System.Drawing; using System.Threading; namespace WindowsFormsApplication1 { // Vertex structure. [StructLayout(LayoutKind.Sequential)] struct Vertex { public Vector3 Position; public float Tu; public float Tv; public static int SizeBytes { get { return Marshal.SizeOf(typeof(Vertex)); } } public static VertexFormat Format { get { return VertexFormat.Position | VertexFormat.Texture1; } } } static class Program { public static Device D3DDevice; // Direct3D device. public static VertexBuffer Vertices; // Vertex buffer object used to hold vertices. public static Texture Image; // Texture object to hold the image loaded from a file. public static int time; // Used for rotation caculations. public static float angle; // Angle of rottaion. public static Form1 Window =new Form1(); public static string filepath; static VertexShader vertexShader = null; static ConstantTable constantTable = null; static ImageInformation info; [STAThread] static void Main() { filepath = "C:\\Users\\Public\\Pictures\\Sample Pictures\\Garden.jpg"; info = new ImageInformation(); info = ImageInformation.FromFile(filepath); PresentParameters presentParams = new PresentParameters(); // Below are the required bare mininum, needed to initialize the D3D device. presentParams.BackBufferHeight = info.Height; // BackBufferHeight, set to the Window's height. presentParams.BackBufferWidth = info.Width+200; // BackBufferWidth, set to the Window's width. presentParams.Windowed =true; presentParams.DeviceWindowHandle = Window.panel2 .Handle; // DeviceWindowHandle, set to the Window's handle. // Create the device. D3DDevice = new Device(new Direct3D (), 0, DeviceType.Hardware, Window.Handle, CreateFlags.HardwareVertexProcessing, presentParams); // Create the vertex buffer and fill with the triangle vertices. (Non-indexed) // Remember 3 vetices for a triangle, 2 tris per quad = 6. Vertices = new VertexBuffer(D3DDevice, 6 * Vertex.SizeBytes, Usage.WriteOnly, VertexFormat.None, Pool.Managed); DataStream stream = Vertices.Lock(0, 0, LockFlags.None); stream.WriteRange(BuildVertexData()); Vertices.Unlock(); // Create the texture. Image = Texture.FromFile(D3DDevice,filepath ); // Turn off culling, so we see the front and back of the triangle D3DDevice.SetRenderState(RenderState.CullMode, Cull.None); // Turn off lighting D3DDevice.SetRenderState(RenderState.Lighting, false); ShaderBytecode sbcv = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\vertexShader.vs", "vs_main", "vs_1_1", ShaderFlags.None); constantTable = sbcv.ConstantTable; vertexShader = new VertexShader(D3DDevice, sbcv); ShaderBytecode sbc = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\pixelShader.txt", "ps_main", "ps_3_0", ShaderFlags.None); PixelShader ps = new PixelShader(D3DDevice, sbc); VertexDeclaration vertexDecl = new VertexDeclaration(D3DDevice, new[] { new VertexElement(0, 0, DeclarationType.Float3, DeclarationMethod.Default, DeclarationUsage.PositionTransformed, 0), new VertexElement(0, 12, DeclarationType.Float2 , DeclarationMethod.Default, DeclarationUsage.TextureCoordinate , 0), VertexElement.VertexDeclarationEnd }); Application.EnableVisualStyles(); MessagePump.Run(Window, () => { // Clear the backbuffer to a black color. D3DDevice.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Black, 1.0f, 0); // Begin the scene. D3DDevice.BeginScene(); // Setup the world, view and projection matrices. //D3DDevice.VertexShader = vertexShader; //D3DDevice.PixelShader = ps; // Render the vertex buffer. D3DDevice.SetStreamSource(0, Vertices, 0, Vertex.SizeBytes); D3DDevice.VertexFormat = Vertex.Format; // Setup our texture. Using Textures introduces the texture stage states, // which govern how Textures get blended together (in the case of multiple // Textures) and lighting information. D3DDevice.SetTexture(0, Image); // Now drawing 2 triangles, for a quad. D3DDevice.DrawPrimitives(PrimitiveType.TriangleList , 0, 2); // End the scene. D3DDevice.EndScene(); // Present the backbuffer contents to the screen. D3DDevice.Present(); }); if (Image != null) Image.Dispose(); if (Vertices != null) Vertices.Dispose(); if (D3DDevice != null) D3DDevice.Dispose(); } private static Vertex[] BuildVertexData() { Vertex[] vertexData = new Vertex[6]; vertexData[0].Position = new Vector3(-1.0f, 1.0f, 0.0f); vertexData[0].Tu = 0.0f; vertexData[0].Tv = 0.0f; vertexData[1].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[1].Tu = 0.0f; vertexData[1].Tv = 1.0f; vertexData[2].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[2].Tu = 1.0f; vertexData[2].Tv = 0.0f; vertexData[3].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[3].Tu = 0.0f; vertexData[3].Tv = 1.0f; vertexData[4].Position = new Vector3(1.0f, -1.0f, 0.0f); vertexData[4].Tu = 1.0f; vertexData[4].Tv = 1.0f; vertexData[5].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[5].Tu = 1.0f; vertexData[5].Tv = 0.0f; return vertexData; } } } And my pixel shader and vertex shader code are as following // Pixel shader input structure struct PS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Pixel shader output structure struct PS_OUTPUT { float4 Color : COLOR0; }; // Global variables sampler2D Tex0; // Name: Simple Pixel Shader // Type: Pixel shader // Desc: Fetch texture and blend with constant color // PS_OUTPUT ps_main( in PS_INPUT In ) { PS_OUTPUT Out; //create an output pixel Out.Color = tex2D(Tex0, In.Texture); //do a texture lookup Out.Color *= float4(0.9f, 0.8f, 0.0f, 1); //do a simple effect return Out; //return output pixel } // Vertex shader input structure struct VS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Vertex shader output structure struct VS_OUTPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Global variables float4x4 WorldViewProj; // Name: Simple Vertex Shader // Type: Vertex shader // Desc: Vertex transformation and texture coord pass-through // VS_OUTPUT vs_main( in VS_INPUT In ) { VS_OUTPUT Out; //create an output vertex Out.Position = mul(In.Position, WorldViewProj); //apply vertex transformation Out.Texture = In.Texture; //copy original texcoords return Out; //return output vertex }

    Read the article

  • HLSL Pixel Shader that does palette swap

    - by derrace
    I have implemented a simple pixel shader which can replace a particular colour in a sprite with another colour. It looks something like this: sampler input : register(s0); float4 PixelShaderFunction(float2 coords: TEXCOORD0) : COLOR0 { float4 colour = tex2D(input, coords); if(colour.r == sourceColours[0].r && colour.g == sourceColours[0].g && colour.b == sourceColours[0].b) return targetColours[0]; return colour; } What I would like to do is have the function take in 2 textures, a default table, and a lookup table (both same dimensions). Grab the current pixel, and find the location XY (coords) of the matching RGB in the default table, and then substitute it with the colour found in the lookup table at XY. I have figured how to pass the Textures from C# into the function, but I am not sure how to find the coords in the default table by matching the colour. Could someone kindly assist? Thanks in advance.

    Read the article

  • Unity 3d (Using Blender) - anime/manga/cel-shaded style characters

    - by David Archer
    Making a game using Blender for 3D models and Unity for the game engine. Just wondering if anyone knows any links to pages that give a tutorial on Japanese anime style 3D modelling, texturing and shading through blender. I'm actually looking to create a cel-shaded look eventually (read: Okami/Jet Set Radio style) and I'm kind of stuck with the design stuff. I'm not a Blender expert by any means, and still kind of new to the design side of things (I'm a programmer by trade), so please don't vote me down too hard. I've tried googling, but there doesn't seem to be much in the way of what I'm after. The only thing I've found really is a plugin for blender called freestyle, or using the ToonShader shading tool. If there are any good tutorials or anything, I'm really happy to sit through them - just want to learn :) Thanks for any help :)

    Read the article

  • Early Z culling - Ogre

    - by teodron
    This question is concerned with how one can enable this "pixel filter" to work within an Ogre based app. Simply put, one can write two passes, the first without writing any colour values to the frame buffer lighting off colour_write off shading flat The second pass is the one that employs heavy pixel shader computations, hence it would be really nice to get rid of those hidden surface patches and not process them pixel-wise. This approach works, except for one thing: objects with alpha, such as billboard trees suffer in a peculiar way - from one side, they seem to capture the sky/background within their alpha region and ignore other trees/houses behind them, while viewed from the other side, they exhibit the desired behavior. To tackle the issue, I thought I could write a custom vertex shader in the first pass and offset the projected Z component of the vertex a little further away from its actual position, so that in the second pass there is a need to recompute correctly the pixels of the objects closest to the camera. This doesn't work at all, all surfaces are processed in the pixel shader and there is no performance gain. So, if anyone has done a similar trick with Ogre and alpha objects, kindly please help.

    Read the article

  • Using Shader causes triangle to disappear

    - by invisal
    The following is my rendering code. Private Sub GameRender() GL.Clear(ClearBufferMask.ColorBufferBit + ClearBufferMask.DepthBufferBit) GL.ClearColor(Color.SkyBlue) GL.UseProgram(theProgram) GL.EnableClientState(ArrayCap.VertexArray) GL.EnableClientState(ArrayCap.ColorArray) GL.BindBuffer(BufferTarget.ArrayBuffer, vertexPositionID) GL.DrawArrays(BeginMode.Triangles, 0, 3) GL.DisableClientState(ArrayCap.ColorArray) GL.DisableClientState(ArrayCap.VertexArray) GlControl1.SwapBuffers() End Sub This is screenshot without GL.UseProgram(theProgram) This is screenshot with GL.UseProgram(theProgram) Here are my shader code that I picked from online tutorial. Vertex Shader #version 330 layout(location = 0) in vec4 position; void main() { gl_Position = position; } Fragment Shader #version 330 out vec4 outputColor; void main() { outputColor = vec4(1.0f, 1.0f, 1.0f, 1.0f); } These are my shader creation code. '' Initialize Shader Dim shaderList(1) As Integer shaderList(0) = CreateShader(ShaderType.VertexShader, strVertexShader) shaderList(1) = CreateShader(ShaderType.FragmentShader, strFragShader) theProgram = CreateProgram(shaderList) GL.DeleteShader(shaderList(0)) GL.DeleteShader(shaderList(1)) Here are my helper functions Private Function CreateShader(ByVal shaderType As ShaderType, ByVal code As String) Dim shader As Integer = GL.CreateShader(shaderType) GL.ShaderSource(shader, code) GL.CompileShader(shader) Dim status As Integer GL.GetShader(shader, ShaderParameter.CompileStatus, status) If status = False Then MsgBox(GL.GetShaderInfoLog(shader)) End If Return shader End Function Private Function CreateProgram(ByVal shaderList() As Integer) As Integer Dim program As Integer = GL.CreateProgram() For i As Integer = 0 To shaderList.Length - 1 GL.AttachShader(program, shaderList(i)) Next GL.LinkProgram(program) Dim status As Integer GL.GetProgram(program, ProgramParameter.LinkStatus, status) If status = False Then MsgBox(GL.GetProgramInfoLog(program)) End If For i As Integer = 0 To shaderList.Length - 1 GL.DetachShader(program, shaderList(i)) Next Return program End Function

    Read the article

  • How can I pass an array of floats to the fragment shader using textures?

    - by James
    I want to map out a 2D array of depth elements for the fragment shader to use to check depth against to create shadows. I want to be able to copy a float array into the GPU, but using large uniform arrays causes segfaults in openGL so that is not an option. I tried texturing but the best i got was to use GL_DEPTH_COMPONENT glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 512, 512, 0, GL_DEPTH_COMPONENT, GL_FLOAT, smap); Which doesn't work because that stores depth components (0.0 - 1.0) which I don't want because I have no idea how to calculate them using the depth value produced by the light sources MVP matrix multiplied by the coordinate of each vertex. Is there any way to store and access large 2D arrays of floats in openGL?

    Read the article

  • Blur gets displaced compared to original image

    - by user1294203
    I have implemented a SSAO and I'm using a blur step to smooth it out. The problem is that the blurred texture is slightly displaced compared to the original. I'm blurring using a 4x4 kernel since that was my noise kernel in SSAO. The following is the blurring shader: float result = 0.0; for(int i = 0; i < 4; i++){ for(int j = 0; j < 4; j++){ vec2 offset = vec2(TEXEL_SIZE.x * i, TEXEL_SIZE.y * j); result += texture(aoSampler, TexCoord + offset).r; } } out_AO = vec4(vec3(0.0), result * 0.0625); Where TEXEL_SIZE is one over my window resolution. I was thinking that this is was an error based on how OpenGL counts the Texel center, so I tried displacing the texture coordinate I was using by 0.5 * TEXEL_SIZE, but there was still a slight displacement. The texture input to my blur shader, has wrap parameters: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); When I tell the blur shader to just output the the value of the pixel, the result is not displaced, so it must have something to do with how neighboring pixels are sampled. Any thoughts?

    Read the article

  • Drawing simple geometric figures with DrawUserPrimitives?

    - by Navy Seal
    I'm trying to draw a simple triangle based on an array of vertex. I've been searching for a tutorial and I found a simple example on riemers but I couldn't get it to work. I think it was made for XNA 3 and it seems there were some changes to XNA 4? Using this example: http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series1/The_first_triangle.php I get this error: Additional information: The current vertex declaration does not include all the elements required by the current vertex shader. TextureCoordinate0 is missing. I'm not english so I'm having some trouble to understand everything. For what I understand error is confusing because I'm trying to draw a triangle color based and not texture based and it shouldn't need a texture. Also I saw some articles about dynamic shadows and lights and I would like to know if this is the kind of code used to do it with some tweaks like culling because I'm wondering if its heavy code for performance in real time.

    Read the article

  • How can I implement 2D cel shading in XNA?

    - by Artii
    So I was just wondering on how to give a scene I am rendering a hand drawn look (like say Crayon Physics). I don't really want to preprocess the sprites and was thinking of using a shader. Cel shading supplies the effect I want to achieve, but I am only aware of the 3D instances for it. So I wanted to ask if anyone knew a way to get this effect in 2D, or if cel shading would work just as fine on 2D scenes?

    Read the article

  • PCF shadow shader math causing artifacts

    - by user2971069
    For a while now I used PCSS for my shadow technique of choice until I discovered a type of percentage closer filtering. This method creates really smooth shadows and with hopes of improving performance, with only a fraction of texture samples, I tried to implement PCF into my shader. This is the relevant code: float c0, c1, c2, c3; float f = blurFactor; float2 coord = ProjectedTexCoords; if (receiverDistance - tex2D(lightSampler, coord + float2(0, 0)).x > 0.0007) c0 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, 0)).x > 0.0007) c1 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(0, f)).x > 0.0007) c2 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, f)).x > 0.0007) c3 = 1; coord = (coord % f) / f; return 1 - (c0 * (1 - coord.x) * (1 - coord.y) + c1 * coord.x * (1 - coord.y) + c2 * (1 - coord.x) * coord.y + c3 * coord.x * coord.y); This is a very basic implementation. blurFactor is initialized with 1 / LightTextureSize. So the if statements fetch the occlusion values for the four adjacent texels. I now want to weight each value based on the actual position of the texture coordinate. If it's near the bottom-right pixel, that occlusion value should be preferred. The weighting itself is done with a simple bilinear interpolation function, however this function takes a 2d vector in the range [0..1] so I have to convert my texture coordinate to get the distance from my first pixel to the second one in range [0..1]. For that I used the mod operator to get it into [0..f] range and then divided by f. This code makes sense to me, and for specific blurFactors it works, producing really smooth one pixel wide shadows, but not for all blurFactors. Initially blurFactor is (1 / LightTextureSize) to sample the 4 adjacent texels. I now want to increase the blurFactor by factor x to get a smooth interpolation across maybe 4 or so pixels. But that is when weird artifacts show up. Here is an image: Using a 1x on blurFactor produces a good result, 0.5 is as expected not so smooth. 2x however doesn't work at all. I found that only a factor of 1/2^n produces an good result, every other factor produces artifacts. I'm pretty sure the error lies here: coord = (coord % f) / f; Maybe the modulo is not calculated correctly? I have no idea how to fix that. Is it even possible for pixel that are further than 1 pixel away?

    Read the article

  • Component-wise GLSL vector branching

    - by Gustavo Maciel
    I'm aware that it usually is a BAD idea to operate separately on GLSL vec's components separately. For example: //use instrinsic functions, they do the calculation on 4 components at a time. float dot = v1.x*v2.x + v1.y * v2.y + v1.z * v2.z; //NEVER float dot = dot(v1, v2); //YES //Multiply one by one is not good too, since the ALU can do the 4 components at a time too. vec3 mul = vec3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); //NEVER vec3 mul = v1 * v2; I've been struggling thinking, are there equivalent operations for branching? For example: vec4 Overlay(vec4 v1, vec4 v2, vec4 opacity) { bvec4 less = lessThan(v1, vec4(0.5)); vec4 blend; for(int i = 0; i < 4; ++i) { if(less[i]) blend[i] = 2.0 * v1[i]*v2[i]; else blend[i] = 1.0 - 2.0 * (1.0 - v1[i])*(1.0 - v2[i]); } return v1 + (blend-v1)*opacity; } This is a Overlay operator that works component wise. I'm not sure if this is the best way to do it, since I'm afraid these for and if can be a bottleneck later. Tl;dr, Can I branch component wise? If yes, how can I optimize that Overlay function with it?

    Read the article

  • What is wrong with my specular phong shading

    - by Thijser
    I'm sorry if this should be placed on stackoverflow instead however seeing as this is graphics related I was hoping you guys could help me: I'm attempting to write a phong shader and currently working on the specular. I came acros the following formula: base*pow(dot(V,R),shininess) and attempted to implement it (V is the posion of the viewer and R the reflective vector). This gave the following result and code: Vec3Df phongSpecular(const Vec3Df & vertexPos, Vec3Df & normal, const Vec3Df & lightPos, const Vec3Df & cameraPos, unsigned int index) { Vec3Df relativeLightPos=(lightPos-vertexPos); relativeLightPos.normalize(); Vec3Df relativeCameraPos= (cameraPos-vertexPos); relativeCameraPos.normalize(); int DotOfNormalAndLight = Vec3Df::dotProduct(normal,relativeLightPos); Vec3Df reflective =(relativeLightPos-(2*DotOfNormalAndLight*normal))*-1; reflective.normalize(); float phongyness= Vec3Df::dotProduct(reflective,relativeCameraPos); if (phongyness<0){ phongyness=0; } float shininess= Shininess[index]; float speculair = powf(phongyness,shininess); return Ks[index]*speculair; } I'm looking for something more like this:

    Read the article

  • Toon/cel shading with variable line width?

    - by Nick Wiggill
    I see a few broad approaches out there to doing cel shading: Duplication & enlargement of model with flipped normals (not an option for me) Sobel filter / fragment shader approaches to edge detection Stencil buffer approaches to edge detection Geometry (or vertex) shader approaches that calculate face and edge normals Am I correct in assuming the geometry-centric approach gives the greatest amount of control over lighting and line thickness, as well eg. for terrain where you might see the silhouette line of a hill merging gradually into a plain? What if I didn't need pixel lighting on my terrain surfaces? (And I probably won't as I plan to use cell-based vertex- or texturemap-based lighting/shadowing.) Would I then be better off sticking with the geometry-type approach, or go for a screen space / fragment approach instead to keep things simpler? If so, how would I get the "inking" of hills within the mesh silhouette, rather than only the outline of the entire mesh (with no "ink" details inside that outline? Lastly, is it possible to cheaply emulate the flipped-normals approach, using a geometry shader? Is that exactly what the GS approaches do? What I want - varying line thickness with intrusive lines inside the silhouette... What I don't want...

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >