Search Results

Search found 367 results on 15 pages for 'synchronous'.

Page 6/15 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Using BizTalk to bridge SQL Job and Human Intervention (Requesting Permission)

    - by Kevin Shyr
    I start off the process with either a BizTalk Scheduler (http://biztalkscheduledtask.codeplex.com/releases/view/50363) or a manual file drop of the XML message.  The manual file drop is to allow the SQL  Job to call a "File Copy" SSIS step to copy the trigger file for the next process and allows SQL  Job to be linked back into BizTalk processing. The Process Trigger XML looks like the following.  It is basically the configuration hub of the business process <ns0:MsgSchedulerTriggerSQLJobReceive xmlns:ns0="urn:com:something something">   <ns0:IsProcessAsync>YES</ns0:IsProcessAsync>   <ns0:IsPermissionRequired>YES</ns0:IsPermissionRequired>   <ns0:BusinessProcessName>Data Push</ns0:BusinessProcessName>   <ns0:EmailFrom>[email protected]</ns0:EmailFrom>   <ns0:EmailRecipientToList>[email protected]</ns0:EmailRecipientToList>   <ns0:EmailRecipientCCList>[email protected]</ns0:EmailRecipientCCList>   <ns0:EmailMessageBodyForPermissionRequest>This message was sent to request permission to start the Data Push process.  The SQL Job to be run is WeeklyProcessing_DataPush</ns0:EmailMessageBodyForPermissionRequest>   <ns0:SQLJobName>WeeklyProcessing_DataPush</ns0:SQLJobName>   <ns0:SQLJobStepName>Push_To_Production</ns0:SQLJobStepName>   <ns0:SQLJobMinToWait>1</ns0:SQLJobMinToWait>   <ns0:PermissionRequestTriggerPath>\\server\ETL-BizTalk\Automation\TriggerCreatedByBizTalk\</ns0:PermissionRequestTriggerPath>   <ns0:PermissionRequestApprovedPath>\\server\ETL-BizTalk\Automation\Approved\</ns0:PermissionRequestApprovedPath>   <ns0:PermissionRequestNotApprovedPath>\\server\ETL-BizTalk\Automation\NotApproved\</ns0:PermissionRequestNotApprovedPath> </ns0:MsgSchedulerTriggerSQLJobReceive>   Every node of this schema was promoted to a distinguished field so that the values can be used for decision making in the orchestration.  The first decision made is on the "IsPermissionRequired" field.     If permission is required (IsPermissionRequired=="YES"), BizTalk will use the configuration info in the XML trigger to format the email message.  Here is the snippet of how the email message is constructed. SQLJobEmailMessage.EmailBody     = new Eai.OrchestrationHelpers.XlangCustomFormatters.RawString(         MsgSchedulerTriggerSQLJobReceive.EmailMessageBodyForPermissionRequest +         "<br><br>" +         "By moving the file, you are either giving permission to the process, or disapprove of the process." +         "<br>" +         "This is the file to move: \"" + PermissionTriggerToBeGenereatedHere +         "\"<br>" +         "(You may find it easier to open the destination folder first, then navigate to the sibling folder to get to this file)" +         "<br><br>" +         "To approve, move(NOT copy) the file here: " + MsgSchedulerTriggerSQLJobReceive.PermissionRequestApprovedPath +         "<br><br>" +         "To disapprove, move(NOT copy) the file here: " + MsgSchedulerTriggerSQLJobReceive.PermissionRequestNotApprovedPath +         "<br><br>" +         "The file will be IMMEDIATELY picked up by the automated process.  This is normal.  You should receive a message soon that the file is processed." +         "<br>" +         "Thank you!"     ); SQLJobSendNotification(Microsoft.XLANGs.BaseTypes.Address) = "mailto:" + MsgSchedulerTriggerSQLJobReceive.EmailRecipientToList; SQLJobEmailMessage.EmailBody(Microsoft.XLANGs.BaseTypes.ContentType) = "text/html"; SQLJobEmailMessage(SMTP.Subject) = "Requesting Permission to Start the " + MsgSchedulerTriggerSQLJobReceive.BusinessProcessName; SQLJobEmailMessage(SMTP.From) = MsgSchedulerTriggerSQLJobReceive.EmailFrom; SQLJobEmailMessage(SMTP.CC) = MsgSchedulerTriggerSQLJobReceive.EmailRecipientCCList; SQLJobEmailMessage(SMTP.EmailBodyFileCharset) = "UTF-8"; SQLJobEmailMessage(SMTP.SMTPHost) = "localhost"; SQLJobEmailMessage(SMTP.MessagePartsAttachments) = 2;   After the Permission request email is sent, the next step is to generate the actual Permission Trigger file.  A correlation set is used here on SQLJobName and a newly generated GUID field. <?xml version="1.0" encoding="utf-8"?><ns0:SQLJobAuthorizationTrigger xmlns:ns0="somethingsomething"><SQLJobName>Data Push</SQLJobName><CorrelationGuid>9f7c6b46-0e62-46a7-b3a0-b5327ab03753</CorrelationGuid></ns0:SQLJobAuthorizationTrigger> The end user (the human intervention piece) will either grant permission for this process, or deny it, by moving the Permission Trigger file to either the "Approved" folder or the "NotApproved" folder.  A parallel Listen shape is waiting for either response.   The next set of steps decide how the SQL Job is to be called, or whether it is called at all.  If permission denied, it simply sends out a notification.  If permission is granted, then the flag (IsProcessAsync) in the original Process Trigger is used.  The synchonous part is not really synchronous, but a loop timer to check the status within the calling stored procedure (for more information, check out my previous post:  http://geekswithblogs.net/LifeLongTechie/archive/2010/11/01/execute-sql-job-synchronously-for-biztalk-via-a-stored-procedure.aspx)  If it's async, then the sp starts the job and BizTalk sends out an email.   And of course, some error notification:   Footnote: The next version of this orchestration will have an additional parallel line near the Listen shape with a Delay built in and a Loop to send out a daily reminder if no response has been received from the end user.  The synchronous part is used to gather results and execute a data clean up process so that the SQL Job can be re-tried.  There are manu possibilities here.

    Read the article

  • How should I synchronize configurations and data across computers?

    - by lfaraone
    Imagine I have three Ubuntu computers home, laptop, beach-house. They all have the same version of Ubuntu, 10.04 installed, and are kept up to date from the repositories. I use f-spot, thunderbird, and google-chrome on all of the computers. Is there a way to keep the data and configuration in sync across them, without requiring constant connectivity for normal (non-synchronous) usage? For example, they should be usable without network connectivity, so something like NFS won't work. An ideal solution would not require manual action to start the syncing process.

    Read the article

  • How to write loosely coupled classes in node.js

    - by lortabac
    I am trying to understand how to design node.js applications, but it seems there is something I can't grasp about asynchronous programming. Let's say my application needs to access a database. In a synchronous environment I would implement a data access class with a read() method, returning an associative array. In node.js, because code is executed asynchronously, this method can't return a value, so, after execution, it will have to "do" something as a side effect. It will then contain at least 1 line of extraneous code which has nothing to do with data access. Multiply this for all methods and all classes and you will very soon have an unmanageable "code soup". What is the proper way to handle this problem? Am I approaching it the wrong way?

    Read the article

  • Backgroundworker abort

    - by MazarD
    Hi, I recently tried to use backgroundworker instead of "classic" threads and I'm realizing that it's causing, at least for me, more problems than solutions. I have a backgroundworker running a synchronous read (in this case from serialPort) and getting blocked around 30 seconds in 1 code line, then cancellationpending isn't the solution. I'm seeing that if the application gets closed at this point (either with the cross button and Application.Exit()) the process keeps zombie forever. I need a way to force abort or to kill the backgroundworker thread.

    Read the article

  • Windows forms application blocks after station lock

    - by Silviu
    We're having a serious issue at work. We've discovered that after the station where the client was running is locked/unlocked the client is blocked. No repaint. So the UI thread is blocked with something. Looking at the callstack of the UI thread (thread 0) using windbg we see that a UserPreferenceChanged event gets raised. It is marshalled through a WindowsFormsSynchronizationContext using it's controlToSend field to the UI. It gets blocked by a call to the marshalling control. The method called is MarshaledInvoke it builds a ThreadMethodEntry entry = new ThreadMethodEntry(caller, method, args, synchronous, executionContext); This entry is supposed to do the magic. The call is a synchronous call and because of that (still in the MarshaledInvoke of the Control class) the wait call is reached: if (!entry.IsCompleted) { this.WaitForWaitHandle(entry.AsyncWaitHandle); } The last thing that i can see on the stack is the WaitOne called on the previously mentioned AsyncWaitHandle. This is very annoying because having just the callstack of the runtime and not one of our methods being invoked we cannot really point to a bug in our code. I might be wrong, but I'm guessing that the marshaling control is not "marshaling" to the ui thread. But another one...i don't really know which one because the other threads are being used by us and are blocked...maybe this is the issue. But none of the other threads are running a message loop. This is very annoying. We had some issues in the past with marshaling controls to the right ui thread. That is because the first form that is constructed is a splash form. Which is not the main form. We used to use the main form to marshal call to the ui thread. But from time to time some calls would go to a non ui thread and some grids would broke with a big red X on them. I fixed this by creating a specific class: public class WindowsFormsSynchronizer { private static readonly WindowsFormsSynchronizationContext = new WindowsFormsSynchronizationContext(); //Methods are following that would build the same interface of the synchronization context. } This class gets build as one of the first objects in the first form being constructed. We've noticed some other strange thing. Looking at the heap there are 7 WindowsFormsSynchronizationContext objects. 6 of these have the same instance of controlToSend, and the other one has some different instance of controlToSend. This last one is the one that should marshal the calls to the UI. I don't have any other idea...maybe some of you guys had this same issue?

    Read the article

  • Quantum PSO and Charged PSO (PSO = Particle Swarm Optimizer)

    - by The Elite Gentleman
    Hi Guys I need to implement PSO's (namely charged and quantum PSO's). My questions are these: What Velocity Update strategy do each PSO's use (Synchronous or Asynchronous particle update) What social networking topology does each of the PSO's use (Von Neumann, Ring, Star, Wheel, Pyramid, Four Clusters) For now, these are my issues. All your help will be appreciated. Thanks.

    Read the article

  • What is the best method to call an arbitrary JSON server from .NET (Specifically Windows Phone 7)

    - by davidhayes
    Hi, I have a server that I have no control over, it's JSON based and I've put together a simple proof of concept that calls the server using HTTPWebRequest etc and it works fine (if a little wordy since MS have removed all Synchronous I/O calls). Is there a better way of doing this? I've been looking at WCF as an option but any stable and reasonably performant library should do the job. This is a new area for me so I'm a little unsure what the best practice is (or where to find it out) Thanks in advance Dave

    Read the article

  • multithreading with database

    - by Darsin
    I am looking out for a strategy to utilize multithreading (probably asynchronous delegates) to do a synchronous operation. I am new to multithreading so i will outline my scenario first. This synchronous operation right now is done for one set of data (portfolio) based on the the parameters provided. The (psudeo-code) implementation is given below: public DataSet DoTests(int fundId, DateTime portfolioDate) { // Get test results for the portfolio // Call the database adapter method, which in turn is a stored procedure, // which in turns runs a series of "rule" stored procs and fills a local temp table and returns it back. DataSet resultsDataSet = GetTestResults(fundId, portfolioDate); try { // Do some local processing on the results DoSomeProcessing(resultsDataSet); // Save the results in Test, TestResults and TestAllocations tables in a transaction. // Sets a global transaction which is provided to all the adapter methods called below // It is defined in the Base class StartTransaction("TestTransaction"); // Save Test and get a testId int testId = UpdateTest(resultsDataSet); // Adapter method, uses the same transaction // Update testId in the other tables in the dataset UpdateTestId(resultsDataSet, testId); // Update TestResults UpdateTestResults(resultsDataSet); // Adapter method, uses the same transaction // Update TestAllocations UpdateTestAllocations(resultsDataSet); // Adapter method, uses the same transaction // It is defined in the base class CommitTransaction("TestTransaction"); } catch { RollbackTransaction("TestTransaction"); } return resultsDataSet; } Now the requirement is to do it for multiple set of data. One way would be to call the above DoTests() method in a loop and get the data. I would prefer doing it in parallel. But there are certain catches: StartTransaction() method creates a connection (and transaction) every time it is called. All the underlying database tables, procedures are the same for each call of DoTests(). (obviously). Thus my question are: Will using multithreading anyway improve performance? What are the chances of deadlock especially when new TestId's are being created and the Tests, TestResults and TestAllocations are being saved? How can these deadlocked be handled? Is there any other more efficient way of doing the above operation apart from looping over the DoTests() method repeatedly?

    Read the article

  • Using msmq and wcf

    - by ltech
    I had posted this question earlier past ? Started reading up on wcf and msmq. My first question would be - say ii have a 100 messages in the Q , how would i tell my service to start working on each message asynchronously so that it is working on multiple messages at the same time. is this even possible or is it always a synchronous operation?

    Read the article

  • Hiding UITableViewCell

    - by live2dream95
    Is there a way to hide a UITableView cell? I'm looking for some property or method I can invoke on the UITableViewCell returned by a synchronous cellForRowAtIndexPath() to hide it and make it unselectable by the user.

    Read the article

  • JMS Acknowledge Asynchronous Message

    - by x1a0
    Hi, How do I acknowledge a message when I am using a message listener? I get the following error when I try to do an acknowledge in my message listener. A synchronous method call is not permitted when a session is being used asynchronously: 'acknowledge'

    Read the article

  • How to handle null return from custom HttpHandler in asp.net?

    - by Campos
    I'm using a custom ashx HttpHandler to retrieve gif images from a database and show it on a website - when the image exists, it works great. However, there are cases when the image will not exist, and I'd like to have the html table holding the image to become invisible so the "image not found" icon is not shown. But since the HttpHandler is not synchronous, all my attempts checking for image size at Page_Load were frustrated. Any ideas on how this can be accomplished?

    Read the article

  • synchronously load html content in UIWebView

    - by mbg1987
    im using a UIWebView to show html content in my app, the app contains two arrows to navigate between topics just like a RSS reader app, but when the user hits up or down arrow, the next topic doesn't show up until the data come back and the user still able to interact with the UI which is a bit confusing, My question: how to block the UI when user moves to the next/back topic ? in other words how to make loadHTMLString:baseURL: works as a synchronous calling ? thanks !

    Read the article

  • is this class thread safe?

    - by flash
    consider this class,with no instance variables and only methods which are non-synchronous can we infer from this info that this class in Thread-safe? public class test{ public void test1{ // do something } public void test2{ // do something } public void test3{ // do something } }

    Read the article

  • Retrieve file size from web server

    - by user326943
    Looking for a way to retrieve a file size from a web server using cocoa/foundation. I know one can use NSURLconnection which will return NSURLResponse that contains the file size. Is there any other way to get the size. I'm looking for a synchronous way of doing it so when i do [myClass getsize] the size is returned. Thanks

    Read the article

  • Displaying an image on a LED matrix with a Netduino

    - by Bertrand Le Roy
    In the previous post, we’ve been flipping bits manually on three ports of the Netduino to simulate the data, clock and latch pins that a shift register expected. We did all that in order to control one line of a LED matrix and create a simple Knight Rider effect. It was rightly pointed out in the comments that the Netduino has built-in knowledge of the sort of serial protocol that this shift register understands through a feature called SPI. That will of course make our code a whole lot simpler, but it will also make it a whole lot faster: writing to the Netduino ports is actually not that fast, whereas SPI is very, very fast. Unfortunately, the Netduino documentation for SPI is severely lacking. Instead, we’ve been reliably using the documentation for the Fez, another .NET microcontroller. To send data through SPI, we’ll just need  to move a few wires around and update the code. SPI uses pin D11 for writing, pin D12 for reading (which we won’t do) and pin D13 for the clock. The latch pin is a parameter that can be set by the user. This is very close to the wiring we had before (data on D11, clock on D12 and latch on D13). We just have to move the latch from D13 to D10, and the clock from D12 to D13. The code that controls the shift register has slimmed down considerably with that change. Here is the new version, which I invite you to compare with what we had before: public class ShiftRegister74HC595 { protected SPI Spi; public ShiftRegister74HC595(Cpu.Pin latchPin) : this(latchPin, SPI.SPI_module.SPI1) { } public ShiftRegister74HC595(Cpu.Pin latchPin, SPI.SPI_module spiModule) { var spiConfig = new SPI.Configuration( SPI_mod: spiModule, ChipSelect_Port: latchPin, ChipSelect_ActiveState: false, ChipSelect_SetupTime: 0, ChipSelect_HoldTime: 0, Clock_IdleState: false, Clock_Edge: true, Clock_RateKHz: 1000 ); Spi = new SPI(spiConfig); } public void Write(byte buffer) { Spi.Write(new[] {buffer}); } } All we have to do here is configure SPI. The write method couldn’t be any simpler. Everything is now handled in hardware by the Netduino. We set the frequency to 1MHz, which is largely sufficient for what we’ll be doing, but it could potentially go much higher. The shift register addresses the columns of the matrix. The rows are directly wired to ports D0 to D7 of the Netduino. The code writes to only one of those eight lines at a time, which will make it fast enough. The way an image is displayed is that we light the lines one after the other so fast that persistence of vision will give the illusion of a stable image: foreach (var bitmap in matrix.MatrixBitmap) { matrix.OnRow(row, bitmap, true); matrix.OnRow(row, bitmap, false); row++; } Now there is a twist here: we need to run this code as fast as possible in order to display the image with as little flicker as possible, but we’ll eventually have other things to do. In other words, we need the code driving the display to run in the background, except when we want to change what’s being displayed. Fortunately, the .NET Micro Framework supports multithreading. In our implementation, we’ve added an Initialize method that spins a new thread that is tied to the specific instance of the matrix it’s being called on. public LedMatrix Initialize() { DisplayThread = new Thread(() => DoDisplay(this)); DisplayThread.Start(); return this; } I quite like this way to spin a thread. As you may know, there is another, built-in way to contextualize a thread by passing an object into the Start method. For the method to work, the thread must have been constructed with a ParameterizedThreadStart delegate, which takes one parameter of type object. I like to use object as little as possible, so instead I’m constructing a closure with a Lambda, currying it with the current instance. This way, everything remains strongly-typed and there’s no casting to do. Note that this method would extend perfectly to several parameters. Of note as well is the return value of Initialize, a common technique to add some fluency to the API and enabling the matrix to be instantiated and initialized in a single line: using (var matrix = new LedMS88SR74HC595().Initialize()) The “using” in the previous line is because we have implemented IDisposable so that the matrix kills the thread and clears the display when the user code is done with it: public void Dispose() { Clear(); DisplayThread.Abort(); } Thanks to the multi-threaded version of the matrix driver class, we can treat the display as a simple bitmap with a very synchronous programming model: matrix.Set(someimage); while (button.Read()) { Thread.Sleep(10); } Here, the call into Set returns immediately and from the moment the bitmap is set, the background display thread will constantly continue refreshing no matter what happens in the main thread. That enables us to wait or read a button’s port on the main thread knowing that the current image will continue displaying unperturbed and without requiring manual refreshing. We’ve effectively hidden the implementation of the display behind a convenient, synchronous-looking API. Pretty neat, eh? Before I wrap up this post, I want to talk about one small caveat of using SPI rather than driving the shift register directly: when we got to the point where we could actually display images, we noticed that they were a mirror image of what we were sending in. Oh noes! Well, the reason for it is that SPI is sending the bits in a big-endian fashion, in other words backwards. Now sure you could fix that in software by writing some bit-level code to reverse the bits we’re sending in, but there is a far more efficient solution than that. We are doing hardware here, so we can simply reverse the order in which the outputs of the shift register are connected to the columns of the matrix. That’s switching 8 wires around once, as compared to doing bit operations every time we send a line to display. All right, so bringing it all together, here is the code we need to write to display two images in succession, separated by a press on the board’s button: var button = new InputPort(Pins.ONBOARD_SW1, false, Port.ResistorMode.Disabled); using (var matrix = new LedMS88SR74HC595().Initialize()) { // Oh, prototype is so sad! var sad = new byte[] { 0x66, 0x24, 0x00, 0x18, 0x00, 0x3C, 0x42, 0x81 }; DisplayAndWait(sad, matrix, button); // Let's make it smile! var smile = new byte[] { 0x42, 0x18, 0x18, 0x81, 0x7E, 0x3C, 0x18, 0x00 }; DisplayAndWait(smile, matrix, button); } And here is a video of the prototype running: The prototype in action I’ve added an artificial delay between the display of each row of the matrix to clearly show what’s otherwise happening very fast. This way, you can clearly see each of the two images being displayed line by line. Next time, we’ll do no hardware changes, focusing instead on building a nice programming model for the matrix, with sprites, text and hardware scrolling. Fun stuff. By the way, can any of my reader guess where we’re going with all that? The code for this prototype can be downloaded here: http://weblogs.asp.net/blogs/bleroy/Samples/NetduinoLedMatrixDriver.zip

    Read the article

  • Cost Comparison Hard Disk Drive to Solid State Drive on Price per Gigabyte - dispelling a myth!

    - by tonyrogerson
    It is often said that Hard Disk Drive storage is significantly cheaper per GiByte than Solid State Devices – this is wholly inaccurate within the database space. People need to look at the cost of the complete solution and not just a single component part in isolation to what is really required to meet the business requirement. Buying a single Hitachi Ultrastar 600GB 3.5” SAS 15Krpm hard disk drive will cost approximately £239.60 (http://scan.co.uk, 22nd March 2012) compared to an OCZ 600GB Z-Drive R4 CM84 PCIe costing £2,316.54 (http://scan.co.uk, 22nd March 2012); I’ve not included FusionIO ioDrive because there is no public pricing available for it – something I never understand and personally when companies do this I immediately think what are they hiding, luckily in FusionIO’s case the product is proven though is expensive compared to OCZ enterprise offerings. On the face of it the single 15Krpm hard disk has a price per GB of £0.39, the SSD £3.86; this is what you will see in the press and this is what sales people will use in comparing the two technologies – do not be fooled by this bullshit people! What is the requirement? The requirement is the database will have a static size of 400GB kept static through archiving so growth and trim will balance the database size, the client requires resilience, there will be several hundred call centre staff querying the database where queries will read a small amount of data but there will be no hot spot in the data so the randomness will come across the entire 400GB of the database, estimates predict that the IOps required will be approximately 4,000IOps at peak times, because it’s a call centre system the IO latency is important and must remain below 5ms per IO. The balance between read and write is 70% read, 30% write. The requirement is now defined and we have three of the most important pieces of the puzzle – space required, estimated IOps and maximum latency per IO. Something to consider with regard SQL Server; write activity requires synchronous IO to the storage media specifically the transaction log; that means the write thread will wait until the IO is completed and hardened off until the thread can continue execution, the requirement has stated that 30% of the system activity will be write so we can expect a high amount of synchronous activity. The hardware solution needs to be defined; two possible solutions: hard disk or solid state based; the real question now is how many hard disks are required to achieve the IO throughput, the latency and resilience, ditto for the solid state. Hard Drive solution On a test on an HP DL380, P410i controller using IOMeter against a single 15Krpm 146GB SAS drive, the throughput given on a transfer size of 8KiB against a 40GiB file on a freshly formatted disk where the partition is the only partition on the disk thus the 40GiB file is on the outer edge of the drive so more sectors can be read before head movement is required: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 3,733 IOps at an average latency of 34.06ms (34 MiB/s). The same test was done on the same disk but the test file was 130GiB: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 528 IOps at an average latency of 217.49ms (4 MiB/s). From the result it is clear random performance gets worse as the disk fills up – I’m currently writing an article on short stroking which will cover this in detail. Given the work load is random in nature looking at the random performance of the single drive when only 40 GiB of the 146 GB is used gives near the IOps required but the latency is way out. Luckily I have tested 6 x 15Krpm 146GB SAS 15Krpm drives in a RAID 0 using the same test methodology, for the same test above on a 130 GiB for each drive added the performance boost is near linear, for each drive added throughput goes up by 5 MiB/sec, IOps by 700 IOps and latency reducing nearly 50% per drive added (172 ms, 94 ms, 65 ms, 47 ms, 37 ms, 30 ms). This is because the same 130GiB is spread out more as you add drives 130 / 1, 130 / 2, 130 / 3 etc. so implicit short stroking is occurring because there is less file on each drive so less head movement required. The best latency is still 30 ms but we have the IOps required now, but that’s on a 130GiB file and not the 400GiB we need. Some reality check here: a) the drive randomness is more likely to be 50/50 and not a full 100% but the above has highlighted the effect randomness has on the drive and the more a drive fills with data the worse the effect. For argument sake let us assume that for the given workload we need 8 disks to do the job, for resilience reasons we will need 16 because we need to RAID 1+0 them in order to get the throughput and the resilience, RAID 5 would degrade performance. Cost for hard drives: 16 x £239.60 = £3,833.60 For the hard drives we will need disk controllers and a separate external disk array because the likelihood is that the server itself won’t take the drives, a quick spec off DELL for a PowerVault MD1220 which gives the dual pathing with 16 disks 146GB 15Krpm 2.5” disks is priced at £7,438.00, note its probably more once we had two controller cards to sit in the server in, racking etc. Minimum cost taking the DELL quote as an example is therefore: {Cost of Hardware} / {Storage Required} £7,438.60 / 400 = £18.595 per GB £18.59 per GiB is a far cry from the £0.39 we had been told by the salesman and the myth. Yes, the storage array is composed of 16 x 146 disks in RAID 10 (therefore 8 usable) giving an effective usable storage availability of 1168GB but the actual storage requirement is only 400 and the extra disks have had to be purchased to get the  IOps up. Solid State Drive solution A single card significantly exceeds the IOps and latency required, for resilience two will be required. ( £2,316.54 * 2 ) / 400 = £11.58 per GB With the SSD solution only two PCIe sockets are required, no external disk units, no additional controllers, no redundant controllers etc. Conclusion I hope by showing you an example that the myth that hard disk drives are cheaper per GiB than Solid State has now been dispelled - £11.58 per GB for SSD compared to £18.59 for Hard Disk. I’ve not even touched on the running costs, compare the costs of running 18 hard disks, that’s a lot of heat and power compared to two PCIe cards!Just a quick note: I've left a fair amount of information out due to this being a blog! If in doubt, email me :)I'll also deal with the myth that SSD's wear out at a later date as well - that's just way over done still, yes, 5 years ago, but now - no.

    Read the article

  • Disk Drive not working

    - by user287681
    The CD/DVD drive on my sisters' (I'm helping her shift from Win. XP (now officially deprecated by Microsoft) to Ubuntu) system. Now, it may end up being a failed attempt, all together (Almost the whole last year (when she's been on XP) the disk drive hasn't (not even powering on) been working.), I just want to make sure I've explored every remote possibility. Because I figure, "Huh, now that I've got Ubuntu running, instead of XP, that (just) might make a difference.". I have tried using the sudo lshw command in the terminal, to (seemingly) no avil, but, who knows, you might be able to make something out of it. Here's the output: kyra@kyra-Satellite-P105:~$ sudo lshw [sudo] password for kyra: kyra-satellite-p105 description: Notebook product: Satellite P105 () vendor: TOSHIBA version: PSPA0U-0TN01M serial: 96084354W width: 64 bits capabilities: smbios-2.4 dmi-2.4 vsyscall32 configuration: administrator_password=disabled boot=oem-specific chassis=notebook frontpanel_password=unknown keyboard_password=unknown power-on_password=disabled uuid=00900559-F88E-D811-82E0-00163680E992 *-core description: Motherboard product: Satellite P105 vendor: TOSHIBA physical id: 0 version: Not Applicable serial: 1234567890 *-firmware description: BIOS vendor: TOSHIBA physical id: 0 version: V4.70 date: 01/19/20092 size: 92KiB capabilities: isa pci pcmcia pnp upgrade shadowing escd cdboot acpi usb biosbootspecification *-cpu description: CPU product: Intel(R) Core(TM)2 CPU T5500 @ 1.66GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Core(TM)2 CPU T5 slot: U2E1 size: 1667MHz capacity: 1667MHz width: 64 bits clock: 166MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx x86-64 constant_tsc arch_perfmon pebs bts rep_good nopl aperfmperf pni dtes64 monitor ds_cpl est tm2 ssse3 cx16 xtpr pdcm lahf_lm dtherm cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1 Cache size: 16KiB capacity: 16KiB capabilities: asynchronous internal write-back *-cache:1 description: L2 cache physical id: 6 slot: L2 Cache size: 2MiB capabilities: burst external write-back *-memory description: System Memory physical id: c slot: System board or motherboard size: 2GiB capacity: 3GiB *-bank:0 description: SODIMM DDR2 Synchronous physical id: 0 slot: M1 size: 1GiB width: 64 bits *-bank:1 description: SODIMM DDR2 Synchronous physical id: 1 slot: M2 size: 1GiB width: 64 bits *-pci description: Host bridge product: Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 03 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display:0 description: VGA compatible controller product: Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 03 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:16 memory:d0200000-d027ffff ioport:1800(size=8) memory:c0000000-cfffffff memory:d0300000-d033ffff *-display:1 UNCLAIMED description: Display controller product: Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2.1 bus info: pci@0000:00:02.1 version: 03 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: latency=0 resources: memory:d0280000-d02fffff *-multimedia description: Audio device product: NM10/ICH7 Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 02 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:44 memory:d0340000-d0343fff *-pci:0 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:84000000-841fffff ioport:84200000(size=2097152) *-pci:1 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:4000(size=4096) memory:84400000-846fffff ioport:84700000(size=2097152) *-network description: Wireless interface product: PRO/Wireless 3945ABG [Golan] Network Connection vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 02 serial: 00:13:02:d6:d2:35 width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwl3945 driverversion=3.13.0-29-generic firmware=15.32.2.9 ip=10.110.20.157 latency=0 link=yes multicast=yes wireless=IEEE 802.11abg resources: irq:43 memory:84400000-84400fff *-pci:2 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 3 vendor: Intel Corporation physical id: 1c.2 bus info: pci@0000:00:1c.2 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:5000(size=4096) memory:84900000-84afffff ioport:84b00000(size=2097152) *-usb:0 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:23 ioport:1820(size=32) *-usb:1 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #2 vendor: Intel Corporation physical id: 1d.1 bus info: pci@0000:00:1d.1 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:19 ioport:1840(size=32) *-usb:2 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #3 vendor: Intel Corporation physical id: 1d.2 bus info: pci@0000:00:1d.2 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:18 ioport:1860(size=32) *-usb:3 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #4 vendor: Intel Corporation physical id: 1d.3 bus info: pci@0000:00:1d.3 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:16 ioport:1880(size=32) *-usb:4 description: USB controller product: NM10/ICH7 Family USB2 EHCI Controller vendor: Intel Corporation physical id: 1d.7 bus info: pci@0000:00:1d.7 version: 02 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:d0544000-d05443ff *-pci:3 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: e2 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list resources: ioport:2000(size=4096) memory:d0000000-d00fffff ioport:80000000(size=67108864) *-pcmcia description: CardBus bridge product: PCIxx12 Cardbus Controller vendor: Texas Instruments physical id: 4 bus info: pci@0000:0a:04.0 version: 00 width: 32 bits clock: 33MHz capabilities: pcmcia bus_master cap_list configuration: driver=yenta_cardbus latency=176 maxlatency=5 mingnt=192 resources: irq:17 memory:d0004000-d0004fff ioport:2400(size=256) ioport:2800(size=256) memory:80000000-83ffffff memory:88000000-8bffffff *-firewire description: FireWire (IEEE 1394) product: PCIxx12 OHCI Compliant IEEE 1394 Host Controller vendor: Texas Instruments physical id: 4.1 bus info: pci@0000:0a:04.1 version: 00 width: 32 bits clock: 33MHz capabilities: pm ohci bus_master cap_list configuration: driver=firewire_ohci latency=64 maxlatency=4 mingnt=3 resources: irq:17 memory:d0007000-d00077ff memory:d0000000-d0003fff *-storage description: Mass storage controller product: 5-in-1 Multimedia Card Reader (SD/MMC/MS/MS PRO/xD) vendor: Texas Instruments physical id: 4.2 bus info: pci@0000:0a:04.2 version: 00 width: 32 bits clock: 33MHz capabilities: storage pm bus_master cap_list configuration: driver=tifm_7xx1 latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0005000-d0005fff *-generic description: SD Host controller product: PCIxx12 SDA Standard Compliant SD Host Controller vendor: Texas Instruments physical id: 4.3 bus info: pci@0000:0a:04.3 version: 00 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=sdhci-pci latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0007800-d00078ff *-network description: Ethernet interface product: PRO/100 VE Network Connection vendor: Intel Corporation physical id: 8 bus info: pci@0000:0a:08.0 logical name: eth0 version: 02 serial: 00:16:36:80:e9:92 size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e100 driverversion=3.5.24-k2-NAPI duplex=half latency=64 link=no maxlatency=56 mingnt=8 multicast=yes port=MII speed=10Mbit/s resources: irq:20 memory:d0006000-d0006fff ioport:2000(size=64) *-isa description: ISA bridge product: 82801GBM (ICH7-M) LPC Interface Bridge vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 02 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide description: IDE interface product: 82801GBM/GHM (ICH7-M Family) SATA Controller [IDE mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 02 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:18b0(size=16) *-serial UNCLAIMED description: SMBus product: NM10/ICH7 Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 02 width: 32 bits clock: 33MHz configuration: latency=0 resources: ioport:18c0(size=32) *-scsi physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: ST9250421AS vendor: Seagate physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: SD13 serial: 5TH0B2HB size: 232GiB (250GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=000d7fd5 *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: 13bb4bdd-8cc9-40e2-a490-dbe436c2a02d size: 230GiB capacity: 230GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2014-06-01 17:37:01 filesystem=ext4 lastmountpoint=/ modified=2014-06-01 21:15:21 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered mounted=2014-06-01 21:15:21 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 2037MiB capacity: 2037MiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 2037MiB capabilities: nofs *-remoteaccess UNCLAIMED vendor: Intel physical id: 1 capabilities: inbound kyra@kyra-Satellite-P105:~$

    Read the article

  • How do I resolve the message "Validating WSFC quorum vote configuration - Action Required."

    - by Rob Boek
    I have a 3 node AlwaysOn Availability Group on a 3 node WSFC using node majority. 2 nodes are setup as synchronous with automatic fail-over, the 3rd is setup as asynchronous with manual fail-over. When I try to fail-over using the GUI, I get a warning as shown in the screenshot. There is no warning or error if I fail-over with T-SQL. Adding a file share to the quorum doesn't help. The only way I can resolve the warning is to remove the asynchronous sql instance from the 3rd node (it remains part of the WSFC). Either way, the AlwaysOn dashboard says quorum is OK. Am I missing something? Is this a bug in the GUI that I should just ignore? Clicking "Action Required" gives the following error:

    Read the article

  • Implementing a Linux-HA based clustering setup on Windows

    - by Alex
    I have a (tried and tested) setup involving: 2x Load balancing nodes on a floating IP via Heartbeat, load balancing 2 tomcat servers. 2x Tomcat servers 2x Galera Cluster MySQL servers synchronously replicating (+1 arbitrator node) All are evenly spread across 2 physical nodes. Now, I have to somehow get the same functionality on Windows Server (2008? I think) nodes .... running under Xen virtualization. There is no possibility to use Linux for any of the nodes. I count two main problems: No Linux-HA hearbeat daemon for the load balancing No Galera synchronous replication for MySQL I freely admit to having nearly no Windows knowledge when it comes to clustering. Is there a way to closely mimic the setup I have described or is it a total write-off?

    Read the article

  • SQL 2008 Mirroring, how to failover from the mirror database?

    - by Luis
    I have configured a database mirroring setup in SQL 2008 using the High-safety, Synchronous mode, without automatic failover. I don't have a Witness instance. Regarding high availability, I understand Mirroring is a better strategy than Log Shipping (faster and smoother failover), and cheaper than Clustering (because of license and hardware costs). According to the MS docs, to do the failover you need to access to the Principal database and in the "Mirror" options click the "Failover" button. But I want to do this from the Mirror database, because what would be the benefit as all this setup is being done in case the Principal server knocks down? Evidently I am missing something. If Mirroring is not a solution for server downtime (as would be Clustering, if I understand correctly), then which practical (i.e. real world examples) cases would benefit from Mirroring for high-availability purposes? Thank you very much for your response! I really need some enlightment.

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >