Search Results

Search found 5044 results on 202 pages for 'logic'.

Page 60/202 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Interview with Java Champion Matjaz B. Juric on Cloud Computing, SOA, and Java EE 6

    - by [email protected]
    In a Java Champion interview Matjaz Juric of Slovenia, head of the Cloud Computing and SOA Competence Centre at the University of Maribor, and professor at the University of Ljubljana, shares insights about cloud computing, SOA and Java EE 6. Juric has worked on performance analysis and optimization of RMI-IIOP, as well as being a member of the BPEL Advisory Board, and a Java mentor and trainer.Regarding BPEL he remarks, "Probably the most important thing to understand is what should be programmed in Java and what should be programmed in BPEL. There is still some confusion. BPEL is for the process logic, while Java is for functionalities. Together, BPEL and Java form a strong alliance and enable faster development and maintenance of enterprise applications and their integrations. On the other hand, the integration between Java and BPEL could be improved. There have been different approaches, including Java snippets. I would like to see an XML data type in Java, without all the hassles with JAXB, mappings, or DOM." Read the rest of the article here.

    Read the article

  • CQRS &ndash; Questions and Concerns

    - by Dylan Smith
    I’ve been doing a lot of learning on CQRS and Event Sourcing over the last little while and I have a number of questions that I haven’t been able to answer. 1. What is the benefit of CQRS when compared to a typical DDD architecture that uses Event Sourcing and properly captures intent and behavior via verb-based commands? (other than Scalability) 2. When using CQRS what do you do with complex query-based logic? I’m going to elaborate on #1 in this blog post and I’ll do a follow-up post on #2. I watched through Greg Young’s video on the business benefits of CQRS + Event Sourcing and first let me say that I thought it was an excellent presentation that really drives home a lot of the benefits to this approach to architecture (I watched it twice in a row I enjoyed it so much!). But it didn’t answer some of my questions fully (I wish I had been there to ask these of Greg in person!). So let me pick apart some of the points he makes and how they relate to my first question above. I’m completely sold on the idea of event sourcing and have a clear understanding of the benefits that it brings to the table, so I’m not going to question that. But you can use event sourcing without going to a CQRS architecture, so my main question is around the benefits of CQRS + Event Sourcing vs Event Sourcing + Typical DDD architecture Architecture with Event Sourcing + Commands on Left, CQRS on Right Greg talks about how the stereotypical architecture doesn’t support DDD, but is that only because his diagram shows DTO’s coming up from the client. If we use the same diagram but allow the client to send commands doesn’t that remove a lot of the arguments that Greg makes against the stereotypical architecture? We can now introduce verbs into the system. We can capture intent now (storing it still requires event sourcing, but you can implement event sourcing without doing CQRS) We can create a rich domain model (as opposed to an anemic domain model) Scalability is obviously a benefit that CQRS brings to the table, but like Greg says, very few of the systems we create truly need significant scalability Greg talks about the ability to scale your development efforts. He says CQRS allows you to split the system into 3 parts (Client, Domain/Commands, Reads) and assign 3 teams of developers to work on them in parallel; letting you scale your development efforts by 3x with nearly linear gains. But in the stereotypical architecture don’t you already have 2 separate modules that you can split your dev efforts between: The client that sends commands/queries and receives DTO’s, and the Domain which accepts commands/queries, and generates events/DTO’s. If this is true it’s not really a 3x scaling you achieve with CQRS but merely a 1.5x scaling which while great doesn’t sound nearly as dramatic (“I can do it with 10 devs in 12 months – let me hire 5 more and we can have it done in 8 months”). Making the Query side “stupid simple” such that you can assign junior developers (or even outsource it) sounds like a valid benefit, but I have some concerns over what you do with complex query-based logic/behavior. I’m going to go into more detail on this in a follow-up blog post shortly. He also seemed to focus on how “stupid-simple” it is doing queries against the de-normalized data store, but I imagine there is still significant complexity in the event handlers that interpret the events and apply them to the de-normalized tables. It sounds like Greg suggests that because we’re doing CQRS that allows us to apply Event Sourcing when we otherwise wouldn’t be able to (~33:30 in the video). I don’t believe this is true. I don’t see why you wouldn’t be able to apply Event Sourcing without separating out the Commands and Queries. The queries would just operate against the domain model instead of the database. But you’d still get the benefits of Event Sourcing. Without CQRS the queries would only be able to operate against the current state rather than the event history, but even in CQRS the domain behaviors can only operate against the current state and I don’t see that being a big limiting factor. If some query needs to operate against something that is not captured by the current state you would just have to update the domain model to capture that information (no different than if that statement were made about a Command under CQRS). Some of the benefits I do see being applicable are that your domain model might end up being simpler/smaller since it only needs to represent the state needed to process commands and not worry about the reads (like the Deactivate Inventory Item and associated comment example that Greg provides). And also commands that can be handled in a Transaction Script style manner by the command handler simply generating events and not touching the domain model. It also makes it easier for your senior developers to focus on the command behavior and ignore the queries, which is usually going to be a better use of their time. And of course scalability. If anybody out there has any thoughts on this and can help educate me further, please either leave a comment or feel free to get in touch with me via email:

    Read the article

  • Windows Workflow Foundation in .NET4

    Windows Workflow Foundation (WF4) in .NET 4 is designed to make it easier for new developers to learn, addresses a wider range of customer scenarios, and is more efficient.  WF is a programming model for composing application logic and coordinating execution, allowing developers to abstract complicated code while leveraging a set of runtime services.  Activities are the building blocks that are composed together to build workflows.  The runtime provides the ability to save the state...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Windows Azure Use Case: Hybrid Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Organizations see the need for computing infrastructures that they can “rent” or pay for only when they need them. They also understand the benefits of distributed computing, but do not want to create this infrastructure themselves. However, they may have considerations that prevent them from moving all of their current IT investment to a distributed environment: Private data (do not want to send or store sensitive data off-site) High dollar investment in current infrastructure Applications currently running well, but may need additional periodic capacity Current applications not designed in a stateless fashion In these situations, a “hybrid” approach works best. In fact, with Windows Azure, a hybrid approach is an optimal way to implement distributed computing even when the stipulations above do not apply. Keeping a majority of the computing function in an organization local while exploring and expanding that footprint into Windows and SQL Azure is a good migration or expansion strategy. A “hybrid” architecture merely means that part of a computing cycle is shared between two architectures. For instance, some level of computing might be done in a Windows Azure web-based application, while the data is stored locally at the organization. Implementation: There are multiple methods for implementing a hybrid architecture, in a spectrum from very little interaction from the local infrastructure to Windows or SQL Azure. The patterns fall into two broad schemas, and even these can be mixed. 1. Client-Centric Hybrid Patterns In this pattern, programs are coded such that the client system sends queries or compute requests to multiple systems. The “client” in this case might be a web-based codeset actually stored on another system (which acts as a client, the user’s device serving as the presentation layer) or a compiled program. In either case, the code on the client requestor carries the burden of defining the layout of the requests. While this pattern is often the easiest to code, it’s the most brittle. Any change in the architecture must be reflected on each client, but this can be mitigated by using a centralized system as the client such as in the web scenario. 2. System-Centric Hybrid Patterns Another approach is to create a distributed architecture by turning on-site systems into “services” that can be called from Windows Azure using the service Bus or the Access Control Services (ACS) capabilities. Code calls from a series of in-process client application. In this pattern you move the “client” interface into the server application logic. If you do not wish to change the application itself, you can “layer” the results of the code return using a product (such as Microsoft BizTalk) that exposes a Web Services Definition Language (WSDL) endpoint to Windows Azure using the Application Fabric. In effect, this is similar to creating a Service Oriented Architecture (SOA) environment, and has the advantage of de-coupling your computing architecture. If each system offers a “service” of the results of some software processing, the operating system or platform becomes immaterial, assuming it adheres to a service contract. There are important considerations when you federate a system, whether to Windows or SQL Azure or any other distributed architecture. While these considerations are consistent with coding any application for distributed computing, they are especially important for a hybrid application. Connection resiliency - Applications on-premise normally have low-latency and good connection properties, something you’re not always guaranteed in a distributed and hybrid application. Whether a centralized client or a distributed one, the code should be able to handle extended retry logic. Authorization and Access - In a single authorization environment like a Active Directory domain, security is handled at a user-password level. In a distributed computing environment, you have more options. You can mitigate this with  using The Windows Azure Application Fabric feature of ACS to make the Azure application aware of the App Fabric as an ADFS provider. However, a claims-based authentication structure is often a superior choice.  Consistency and Concurrency - When you have a Relational Database Management System (RDBMS), Consistency and Concurrency are part of the design. In a Service Architecture, you need to plan for sequential message handling and lifecycle. Resources: How to Build a Hybrid On-Premise/In Cloud Application: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx  General Architecture guidance: http://blogs.msdn.com/b/buckwoody/archive/2010/12/21/windows-azure-learning-plan-architecture.aspx   

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • OpenGL ES 2.0: Using VBOs?

    - by Bunkai.Satori
    OpenGL VBOs (vertex buffer objects) have been developed to improve performance of OpenGL (OpenGL ES 2.0 in my case). The logic is that with the help of VBOs, the data does not need to be copied from client memory to graphics card on per frame basis. However, as I see it, the game scene changes continuously: position of objects change, their scaling and rotating change, they get animated, they explode, they get spawn or disappear. In such highly dynamic environment, such as computer game scene is, what is the point of using VBOs, if the VBOs would need to be constructed on per-frame basis anyway? Can you please help me to understand how to practically take beneif of VBOs in computer games? Can there be more vertex based VBOs (say one per one object) or there must be always exactly only one VBO present for each draw cycle?

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • Big Data – What is Big Data – 3 Vs of Big Data – Volume, Velocity and Variety – Day 2 of 21

    - by Pinal Dave
    Data is forever. Think about it – it is indeed true. Are you using any application as it is which was built 10 years ago? Are you using any piece of hardware which was built 10 years ago? The answer is most certainly No. However, if I ask you – are you using any data which were captured 50 years ago, the answer is most certainly Yes. For example, look at the history of our nation. I am from India and we have documented history which goes back as over 1000s of year. Well, just look at our birthday data – atleast we are using it till today. Data never gets old and it is going to stay there forever.  Application which interprets and analysis data got changed but the data remained in its purest format in most cases. As organizations have grown the data associated with them also grew exponentially and today there are lots of complexity to their data. Most of the big organizations have data in multiple applications and in different formats. The data is also spread out so much that it is hard to categorize with a single algorithm or logic. The mobile revolution which we are experimenting right now has completely changed how we capture the data and build intelligent systems.  Big organizations are indeed facing challenges to keep all the data on a platform which give them a  single consistent view of their data. This unique challenge to make sense of all the data coming in from different sources and deriving the useful actionable information out of is the revolution Big Data world is facing. Defining Big Data The 3Vs that define Big Data are Variety, Velocity and Volume. Volume We currently see the exponential growth in the data storage as the data is now more than text data. We can find data in the format of videos, musics and large images on our social media channels. It is very common to have Terabytes and Petabytes of the storage system for enterprises. As the database grows the applications and architecture built to support the data needs to be reevaluated quite often. Sometimes the same data is re-evaluated with multiple angles and even though the original data is the same the new found intelligence creates explosion of the data. The big volume indeed represents Big Data. Velocity The data growth and social media explosion have changed how we look at the data. There was a time when we used to believe that data of yesterday is recent. The matter of the fact newspapers is still following that logic. However, news channels and radios have changed how fast we receive the news. Today, people reply on social media to update them with the latest happening. On social media sometimes a few seconds old messages (a tweet, status updates etc.) is not something interests users. They often discard old messages and pay attention to recent updates. The data movement is now almost real time and the update window has reduced to fractions of the seconds. This high velocity data represent Big Data. Variety Data can be stored in multiple format. For example database, excel, csv, access or for the matter of the fact, it can be stored in a simple text file. Sometimes the data is not even in the traditional format as we assume, it may be in the form of video, SMS, pdf or something we might have not thought about it. It is the need of the organization to arrange it and make it meaningful. It will be easy to do so if we have data in the same format, however it is not the case most of the time. The real world have data in many different formats and that is the challenge we need to overcome with the Big Data. This variety of the data represent  represent Big Data. Big Data in Simple Words Big Data is not just about lots of data, it is actually a concept providing an opportunity to find new insight into your existing data as well guidelines to capture and analysis your future data. It makes any business more agile and robust so it can adapt and overcome business challenges. Tomorrow In tomorrow’s blog post we will try to answer discuss Evolution of Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • How to detect 2D line on line collision?

    - by Vish
    I'm a flash actionscript game developer who is a bit backward with mathematics, though I find physics both interesting and cool. For reference this is a similar game to the one I'm making: Untangled flash game I have made an untangled game almost to full completion of logic. But, when two lines intersect, I need those intersected or 'tangled' lines to show a different color; red. It would be really kind of you people if you could suggest an algorithm with/without math for detecting line segment collisions. I'm basically a person who likes to think 'visually' than 'arithmetically' :) P.S I'm trying to make a function as private function isIntersecting(A:Point, B:Point, C:Point, D:Point):Boolean Thanks in advance.

    Read the article

  • Pyglet vs. PyQt

    - by L. De Leo
    I need to implement a really simple card game. As the game logic is written in Python I chose to stick with some Python framework even if my goal is to develop a Windows only version. I also don't like to work with .NET so I ruled out Iron Python + WPF. I tried to write a simple prototype with Pyglet but soon discovered that I will have to do a lot of stuff by hand: things like detecting mouseover events and finding which card was clicked on and moving it, etc... very low level and unnecessary for my use-case. So I thought it might be easier to do things in PyQt. Do you reckon it would be feasible to use PyQt for implementing a simple card game? Will I have higher level events I can work with?

    Read the article

  • Oracle Service Bus duplicate message check using Coherence by Jan van Zoggel

    - by JuergenKress
    In a situation where you need some sort of duplicate message check for an Oracle Service Bus project you would need some custom code. Since the Oracle Service Bus is stateless, when it handles a proxy service call it will not know if this specific message was handled before. So there needs to be some sort of logic in your service for validating it’s a new unique message id. Read the full article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: OSB,SOA Community,Oracle SOA,Oracle BPM,BPM,Community,OPN,Jürgen Kress,Jan van Zoggel

    Read the article

  • Detect line line collision in an Untangled game

    - by Vish
    Pardon me if this is a repeat question,but I've been searching google for vain since the past few days, I'm a flash actionscript game developer who is a bit backward with mathematics, though I find physics both interesting and cool. Similiar game : Untangled flash game I have made an untangled game almost to full completion of logic. But, when two lines intersect , I need those intersected or 'tangled' lines to show a different color; red. It would be really kind of you people if you could suggest an algorithm with / without math for detecting line segment collisions. I'm basically a person who likes to think 'visually' than 'arithmetically' :) P.S I'm trying to make a function as private function isIntersecting(A:Point, B:Point, C:Point, D:Point):Boolean Thanks in advance. Vishnu Ajit

    Read the article

  • What to do if you're burnt out?

    - by rsteckly
    Hi, I'm starting to get really frustrated with ASP.NET. It seems as if much of my time is spent learning abstractions over problems, then having to kick into overdrive when those abstractions (surprise!) have unexpected behavior. It seems as if I spend so much time just fixing those issues because they usually are UI related and therefore require integration testing that I spend very little time programming any kind of meaningful logic. I don't know if it is ASP or if it is programming. I just feel as if I'm getting paid, doing the work but really wasting time. On the other hand, I have fantasies about console programs and actually using algorithms. What is wrong with me? Why can't I force myself to churn through this ASP stuff more?

    Read the article

  • Ted Kummert to make significant announcement related to SQL Server

    - by jamiet
    Microsoft have announced a conference call tomorrow with the head of all things SQL Server, Ted Kummert: Normally I wouldn’t take any notice of such things but the mysterious pre-conference-call-announcement (not something that the SQL Server team do regularly as I recall) has me intrigued. Logic says that it will have something to do with SQL Server R2, we shall see! @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • PeopleSoft and Fusion Middleware White Paper

    - by david.bain
    We all know that PeopleTools is a very productive Enterprise Application Platform. It provides business logic, ui, reporting, integration etc.. . . virtually the entire stack. The question many PeopleSoft users have is 'If I have PeopleSoft, what can Fusion Middleware do for me?'. An excellent question. A white paper has just been published that answers that question. It's available on the www.oracle.com/peoplesoft site under the 'White Paper' link. Select the link that says 'Read this White Paper to learn how your PeopleSoft Application can benefit from Oracle Fusion Middleware'. After you've read the paper and are interested in more details, be sure to visit the PeopleSoft - Fusion Middleware Best Practice Center here: http://www.oracle.com/technology/tech/fmw4apps/peoplesoft/index.html

    Read the article

  • Advanced donut caching: using dynamically loaded controls

    - by DigiMortal
    Yesterday I solved one caching problem with local community portal. I enabled output cache on SharePoint Server 2007 to make site faster. Although caching works fine I needed to do some additional work because there are some controls that show different content to different users. In this example I will show you how to use “donut caching” with user controls – powerful way to drive some content around cache. About donut caching Donut caching means that although you are caching your content you have some holes in it so you can still affect the output that goes to user. By example you can cache front page on your site and still show welcome message that contains correct user name. To get better idea about donut caching I suggest you to read ScottGu posting Tip/Trick: Implement "Donut Caching" with the ASP.NET 2.0 Output Cache Substitution Feature. Basically donut caching uses ASP.NET substitution control. In output this control is replaced by string you return from static method bound to substitution control. Again, take a look at ScottGu blog posting I referred above. Problem If you look at Scott’s example it is pretty plain and easy by its output. All it does is it writes out current user name as string. Here are examples of my login area for anonymous and authenticated users:    It is clear that outputting mark-up for these views as string is pretty lame to implement in code at string level. Every little change in design will end up with new version of controls library because some parts of design “live” there. Solution: using user controls I worked out easy solution to my problem. I used cache substitution and user controls together. I have three user controls: LogInControl – this is the proxy control that checks which “real” control to load. AnonymousLogInControl – template and logic for anonymous users login area. AuthenticatedLogInControl – template and logic for authenticated users login area. This is the control we render for each user separately because it contains user name and user profile fill percent. Anonymous control is not very interesting because it is only about keeping mark-up in separate file. Interesting parts are LogInControl and AuthenticatedLogInControl. Creating proxy control The first thing was to create control that has substitution area where “real” control is loaded. This proxy control should also be available to decide which control to load. The definition of control is very primitive. <%@ Control EnableViewState="false" Inherits="MyPortal.Profiles.LogInControl" %> <asp:Substitution runat="server" MethodName="ShowLogInBox" /> But code is a little bit tricky. Based on current user instance we decide which login control to load. Then we create page instance and load our control through it. When control is loaded we will call DataBind() method. In this method we evaluate all fields in loaded control (it was best choice as Load and other events will not be fired). Take a look at the code. public static string ShowLogInBox(HttpContext context) {     var user = SPContext.Current.Web.CurrentUser;     string controlName;       if (user != null)         controlName = "AuthenticatedLogInControl.ascx";     else         controlName = "AnonymousLogInControl.ascx";       var path = "~/_controltemplates/" + controlName;     var output = new StringBuilder(10000);       using(var page = new Page())     using(var ctl = page.LoadControl(path))     using(var writer = new StringWriter(output))     using(var htmlWriter = new HtmlTextWriter(writer))     {         ctl.DataBind();         ctl.RenderControl(htmlWriter);     }     return output.ToString(); } When control is bound to data we ask to render it its contents to StringBuilder. Now we have the output of control as string and we can return it from our method. Of course, notice how correct I am with resources disposing. :) The method that returns contents for substitution control is static method that has no connection with control instance because hen page is read from cache there are no instances of controls available. Conclusion As you saw it was not very hard to use donut caching with user controls. Instead of writing mark-up of controls to static method that is bound to substitution control we can still use our user controls.

    Read the article

  • ASP.NET WebAPI Security 2: Identity Architecture

    - by Your DisplayName here!
    Pedro has beaten me to the punch with a detailed post (and diagram) about the WebAPI hosting architecture. So go read his post first, then come back so we can have a closer look at what that means for security. The first important takeaway is that WebAPI is hosting independent-  currently it ships with two host integration implementations – one for ASP.NET (aka web host) and WCF (aka self host). Pedro nicely shows the integration into the web host. Self hosting is not done yet so we will mainly focus on the web hosting case and I will point out security related differences when they exist. The interesting part for security (amongst other things of course) is the HttpControllerHandler (see Pedro’s diagram) – this is where the host specific representation of an HTTP request gets converted to the WebAPI abstraction (called HttpRequestMessage). The ConvertRequest method does the following: Create a new HttpRequestMessage. Copy URI, method and headers from the HttpContext. Copies HttpContext.User to the Properties<string, object> dictionary on the HttpRequestMessage. The key used for that can be found on HttpPropertyKeys.UserPrincipalKey (which resolves to “MS_UserPrincipal”). So the consequence is that WebAPI receives whatever IPrincipal has been set by the ASP.NET pipeline (in the web hosting case). Common questions are: Are there situations where is property does not get set? Not in ASP.NET – the DefaultAuthenticationModule in the HTTP pipeline makes sure HttpContext.User (and Thread.CurrentPrincipal – more on that later) are always set. Either to some authenticated user – or to an anonymous principal. This may be different in other hosting environments (again more on that later). Why so generic? Keep in mind that WebAPI is hosting independent and may run on a host that materializes identity completely different compared to ASP.NET (or .NET in general). This gives them a way to evolve the system in the future. How does WebAPI code retrieve the current client identity? HttpRequestMessage has an extension method called GetUserPrincipal() which returns the property as an IPrincipal. A quick look at self hosting shows that the moral equivalent of HttpControllerHandler.ConvertRequest() is HttpSelfHostServer.ProcessRequestContext(). Here the principal property gets only set when the host is configured for Windows authentication (inconsisteny). Do I like that? Well – yes and no. Here are my thoughts: I like that it is very straightforward to let WebAPI inherit the client identity context of the host. This might not always be what you want – think of an ASP.NET app that consists of UI and APIs – the UI might use Forms authentication, the APIs token based authentication. So it would be good if the two parts would live in a separate security world. It makes total sense to have this generic hand off point for identity between the host and WebAPI. It also makes total sense for WebAPI plumbing code (especially handlers) to use the WebAPI specific identity abstraction. But – c’mon we are running on .NET. And the way .NET represents identity is via IPrincipal/IIdentity. That’s what every .NET developer on this planet is used to. So I would like to see a User property of type IPrincipal on ApiController. I don’t like the fact that Thread.CurrentPrincipal is not populated. T.CP is a well established pattern as a one stop shop to retrieve client identity on .NET.  That makes a lot of sense – even if the name is misleading at best. There might be existing library code you want to call from WebAPI that makes use of T.CP (e.g. PrincipalPermission, or a simple .Name or .IsInRole()). Having the client identity as an ambient property is useful for code that does not have access to the current HTTP request (for calling GetUserPrincipal()). I don’t like the fact that that the client identity conversion from host to WebAPI is inconsistent. This makes writing security plumbing code harder. I think the logic should always be: If the host has a client identity representation, copy it. If not, set an anonymous principal on the request message. Btw – please don’t annoy me with the “but T.CP is static, and static is bad for testing” chant. T.CP is a getter/setter and, in fact I find it beneficial to be able to set different security contexts in unit tests before calling in some logic. And, in case you have wondered – T.CP is indeed thread static (and the name comes from a time where a logical operation was bound to a thread – which is not true anymore). But all thread creation APIs in .NET actually copy T.CP to the new thread they create. This is the case since .NET 2.0 and is certainly an improvement compared to how Win32 does things. So to sum it up: The host plumbing copies the host client identity to WebAPI (this is not perfect yet, but will surely be improved). or in other words: The current WebAPI bits don’t ship with any authentication plumbing, but solely use whatever authentication (and thus client identity) is set up by the host. WebAPI developers can retrieve the client identity from the HttpRequestMessage. Hopefully my proposed changes around T.CP and the User property on ApiController will be added. In the next post, I will detail how to add WebAPI specific authentication support, e.g. for Basic Authentication and tokens. This includes integrating the notion of claims based identity. After that we will look at the built-in authorization bits and how to improve them as well. Stay tuned.

    Read the article

  • WIF

    - by kaleidoscope
    Windows Identity Foundation (WIF) enables .NET developers to externalize identity logic from their application, improving developer productivity, enhancing application security, and enabling interoperability. It is a framework for implementing claims-based identity in your applications. With WIF one can create more secure applications by reducing custom implementations and using a single simplified identity model based on claims. Windows Identity Foundation is part of Microsoft's identity and access management solution built on Active Directory that also includes: · Active Directory Federation Services 2.0 (formerly known as "Geneva" Server): a security token service for IT that issues and transforms claims and other tokens, manages user access and enables federation and access management for simplified single sign-on · Windows CardSpace 2.0 (formerly known as Windows CardSpace "Geneva"): for helping users navigate access decisions and developers to build customer authentication experiences for users. Reference : http://msdn.microsoft.com/en-us/security/aa570351.aspx Geeta

    Read the article

  • Using IP Restrictions with URL Rewrite-Week 25

    - by OWScott
    URL Rewrite offers tremendous flexibility for customizing rules to your environment. One area of functionality that is often desired for URL Rewrite is to allow a large list of approved or denied IP addresses and subnet ranges. IIS’s original IP Restrictions is helpful for fully blocking an IP address, but it doesn’t offer the flexibility that URL Rewrite does. An example where URL Rewrite is helpful is where you want to allow only authorized IPs to access staging.yoursite.com, but where staging.yoursite.com is part of the same site as www.yoursite.com. This requires conditional logic for the user’s IP. This lesson covers this unique situation while also introducing Rewrite Maps, server variables, and pairing rules to add more flexibility. This is week 25 of a 52 week series for the Web Pro. Past and future videos can be found here: http://dotnetslackers.com/projects/LearnIIS7/ You can find this week’s video here.

    Read the article

  • Allowing Access to HttpContext in WCF REST Services

    - by Rick Strahl
    If you’re building WCF REST Services you may find that WCF’s OperationContext, which provides some amount of access to Http headers on inbound and outbound messages, is pretty limited in that it doesn’t provide access to everything and sometimes in a not so convenient manner. For example accessing query string parameters explicitly is pretty painful: [OperationContract] [WebGet] public string HelloWorld() { var properties = OperationContext.Current.IncomingMessageProperties; var property = properties[HttpRequestMessageProperty.Name] as HttpRequestMessageProperty; string queryString = property.QueryString; var name = StringUtils.GetUrlEncodedKey(queryString,"Name"); return "Hello World " + name; } And that doesn’t account for the logic in GetUrlEncodedKey to retrieve the querystring value. It’s a heck of a lot easier to just do this: [OperationContract] [WebGet] public string HelloWorld() { var name = HttpContext.Current.Request.QueryString["Name"] ?? string.Empty; return "Hello World " + name; } Ok, so if you follow the REST guidelines for WCF REST you shouldn’t have to rely on reading query string parameters manually but instead rely on routing logic, but you know what: WCF REST is a PITA anyway and anything to make things a little easier is welcome. To enable the second scenario there are a couple of steps that you have to take on your service implementation and the configuration file. Add aspNetCompatibiltyEnabled in web.config Fist you need to configure the hosting environment to support ASP.NET when running WCF Service requests. This ensures that the ASP.NET pipeline is fired up and configured for every incoming request. <system.serviceModel>     <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> </system.serviceModel> Markup your Service Implementation with AspNetCompatibilityRequirements Attribute Next you have to mark up the Service Implementation – not the contract if you’re using a separate interface!!! – with the AspNetCompatibilityRequirements attribute: [ServiceContract(Namespace = "RateTestService")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class RestRateTestProxyService Typically you’ll want to use Allowed as the preferred option. The other options are NotAllowed and Required. Allowed will let the service run if the web.config attribute is not set. Required has to have it set. All these settings determine whether an ASP.NET host AppDomain is used for requests. Once Allowed or Required has been set on the implemented class you can make use of the ASP.NET HttpContext object. When I allow for ASP.NET compatibility in my WCF services I typically add a property that exposes the Context and Request objects a little more conveniently: public HttpContext Context { get { return HttpContext.Current; } } public HttpRequest Request { get { return HttpContext.Current.Request; } } While you can also access the Response object and write raw data to it and manipulate headers THAT is probably not such a good idea as both your code and WCF will end up writing into the output stream. However it might be useful in some situations where you need to take over output generation completely and return something completely custom. Remember though that WCF REST DOES actually support that as well with Stream responses that essentially allow you to return any kind of data to the client so using Response should really never be necessary. Should you or shouldn’t you? WCF purists will tell you never to muck with the platform specific features or the underlying protocol, and if you can avoid it you definitely should avoid it. Querystring management in particular can be handled largely with Url Routing, but there are exceptions of course. Try to use what WCF natively provides – if possible as it makes the code more portable. For example, if you do enable ASP.NET Compatibility you won’t be able to self host a WCF REST service. At the same time realize that especially in WCF REST there are number of big holes or access to some features are a royal pain and so it’s not unreasonable to access the HttpContext directly especially if it’s only for read-only access. Since everything in REST works of URLS and the HTTP protocol more control and easier access to HTTP features is a key requirement to building flexible services. It looks like vNext of the WCF REST stuff will feature many improvements along these lines with much deeper native HTTP support that is often so useful in REST applications along with much more extensibility that allows for customization of the inputs and outputs as data goes through the request pipeline. I’m looking forward to this stuff as WCF REST as it exists today still is a royal pain (in fact I’m struggling with a mysterious version conflict/crashing error on my machine that I have not been able to resolve – grrrr…).© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  WCF  

    Read the article

  • Frameskipping in Android gameloop causing choppy sprites (Open GL ES 2.0)

    - by user22241
    I have written a simple 2d platform game for Android and am wondering how one deals with frame-skipping? Are there any alternatives? Let me explain further. So, my game loop allows for the rendering to be skipped if game updates and rendering do not fit into my fixed time-slice (16.667ms). This allows my game to run at identically perceived speeds on different devices. And this works great, things do run at the same speed. However, when the gameloop skips a render call for even one frame, the sprite glitches. And thinking about it, why wouldn't it? You're seeing a sprite move say, an average of 10 pixels every 1.6 seconds, then suddenly, there is a pause of 3.2ms, and the sprite then appears to jump 20 pixels. When this happens 3 or 4 times in close succession, the result is very ugly and not something I want in my game. Therfore, my question is how does one deal with these 'pauses' and 'jumps' - I've read every article on game loops I can find (see below) and my loops are even based off of code from these articles. The articles specifically mention frame skipping but they don't make any reference to how to deal with visual glitches that result from it. I've attempted various game-loops. My loop must have a mechanism in-place to allow rendering to be skipped to keep game-speed constant across multiple devices (or alternative, if one exists) I've tried interpolation but this doesn't eliminate this specific problem (although it looks like it may mitigate the issue slightly as when it eventually draws the sprite it 'moves it back' between the old and current positions so the 'jump' isn't so big. I've also tried a form of extrapolation which does seem to keep things smooth considerably, but I find it to be next to completely useless because it plays havoc with my collision detection (even when drawing with a 'display only' coordinate - see extrapolation-breaks-collision-detection) I've tried a loop that uses Thread.sleep when drawing / updating completes with time left over, no frame skipping in this one, again fairly smooth, but runs differently on different devices so no good. And I've tried spawning my own, third thread for logic updates, but this, was extremely messy to deal with and the performance really wasn't good. (upon reading tons of forums, most people seem to agree a 2 thread loops ( so UI and GL threads) is safer / easier). Now if I remove frame skipping, then all seems to run nice and smooth, with or without inter/extrapolation. However, this isn't an option because the game then runs at different speeds on different devices as it falls behind from not being able to render fast enough. I'm running logic at 60 Ticks per second and rendering as fast as I can. I've read, as far as I can see every article out there, I've tried the loops from My Secret Garden and Fix your timestep. I've also read: Against the grain deWITTERS Game Loop Plus various other articles on Game-loops. A lot of the others are derived from the above articles or just copied word for word. These are all great, but they don't touch on the issues I'm experiencing. I really have tried everything I can think of over the course of a year to eliminate these glitches to no avail, so any and all help would be appreciated. A couple of examples of my game loops (Code follows): From My Secret Room public void onDrawFrame(GL10 gl) { //Rre-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip) { SceneManager.getInstance().getCurrentScene().updateLogic(); nextGameTick += skipTicks; timeCorrection += (1000d / ticksPerSecond) % 1; nextGameTick += timeCorrection; timeCorrection %= 1; loops++; } extrapolation = (float)(System.currentTimeMillis() + skipTicks - nextGameTick) / (float)skipTicks; render(extrapolation); } And from Fix your timestep double t = 0.0; double dt2 = 0.01; double currentTime = System.currentTimeMillis()*0.001; double accumulator = 0.0; double newTime; double frameTime; @Override public void onDrawFrame(GL10 gl) { newTime = System.currentTimeMillis()*0.001; frameTime = newTime - currentTime; if ( frameTime > (dt*5)) //Allow 5 'skips' frameTime = (dt*5); currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { SceneManager.getInstance().getCurrentScene().updateLogic(); previousState = currentState; accumulator -= dt; } interpolation = (float) (accumulator / dt); render(interpolation); }

    Read the article

  • What is a practical way to debug Rails?

    - by Joshua Fox
    I get the impression that in practice, debuggers are rarely used for Rails applications. (Likewise for other Ruby apps, as well as Python.) We can compare this to the usual practice for Java or VisualStudio programmers--they use an interactive debugger in a graphical IDE. How do people debug Rails applications in practice? I am aware of the variety of debuggers, so no need to mention those, but do serious Rails programmers work without them? If so, why do you choose to do it this way? It seems to me that console printing has its limits when debugging complex logic.

    Read the article

  • Matrix Pattern Recognition Algorithm

    - by Andres
    I am designing a logic analyzer and I would like to implement some Matrix Algorithm. I have several channels each one represented by a row in the matrix and every element in the column would be the state, for example: Channel 1 1 0 0 1 0 1 1 0 1 Channel 2 1 1 0 1 1 0 0 1 1 Channel 3 0 1 0 1 1 0 1 0 0 Channel 4 0 0 1 0 0 1 0 0 1 I would like to detect a pattern inside my matrix for example, detect if exist and where the sub-matrix or pattern: 1 0 1 1 I think it can be accomplished testing element by element but I think there should be a better way of doing it. Is there any Java API or any way to do it ? If there is a API ARM optimized for NEON instructions would be great also but not mandatory. Thank you very much in advance.

    Read the article

  • Patch an Existing NK.BIN

    - by Kate Moss' Open Space
    As you know, we can use MAKEIMG.EXE tool to create OS Image file, NK.BIN, or ROMIMAGE.EXE with a BIB for more accurate. But what if the image file is already created but need to be patched or you want to extract a file from NK.BIN? The Platform Builder provide many useful command line utilities, and today I am going to introduce one, BINMOD.EXE. http://msdn.microsoft.com/en-us/library/ee504622.aspx is the official page for BINMOD tool. As the page says, The BinMod Tool (binmod.exe) extracts files from a run-time image, and replaces files in a run-time image and its usage binmod [-i imagename] [-r replacement_filename.ext | -e extraction_filename.ext] This is a simple tool and is easy to use, if we want to extract a file from nk.bin, just type binmod –i nk.bin –e filename.ext And that's it! Or use can try -r command to replace a file inside NK.BIN. The small tool is good but there is a limitation; due to the files in MODULES section are fixed up during ROMIMAGE so the original file format is not preserved, therefore extract or replace file in MODULE section will be impossible. So just like this small tool, this post supposed to be end here, right? Nah... It is not that easy. Just try the above example, and you will find, the tool is not work! Double check the file is in FILES section and the NK.BIN is good, but it just quits. Before you throw away this useless toy, we can try to fix it! Yes, the source of this tool is available in your CE6, private\winceos\COREOS\nk\tools\romimage\binmod. As it is a tool run in your Windows so you need to Windows SDK or Visual Studio to build the code. (I am going to save you some time by skipping the detail as building a desktop console mode program is fairly trivial) The cbinmod.cpp is the core logic for this program and follow up the error message we got, it looks like the following code is suspected.   //   // Extra sanity check...   //   if((DWORD)(HIWORD(pTOCLoc->dllfirst) << 16) <= pTOCLoc->dlllast &&       (DWORD)(LOWORD(pTOCLoc->dllfirst) << 16) <= pTOCLoc->dlllast)   {     dprintf("Found pTOC  = 0x%08x\n", (DWORD)dwpTOC);     fFoundIt = true;     break;   }    else    {     dprintf("NOTICE! Record %d looked like a TOC except DLL first = 0x%08X, and DLL last = 0x%08X\r\n", i, pTOCLoc->dllfirst, pTOCLoc->dlllast);   } The logic checks if dllfirst <= dlllast but look closer, the code only separated the high/low WORD from dllfirst but does not apply the same to dlllast, is that on purpose or a bug? While the TOC is created by ROMIMAGE.EXE, so let's move to ROMIMAGE. In private\winceos\coreos\nk\tools\romimage\romimage\bin.cpp    Module::s_romhdr.dllfirst  = (HIWORD(xip_mem->dll_data_bottom) << 16) | HIWORD(xip_mem->kernel_dll_bottom);   Module::s_romhdr.dlllast   = (HIWORD(xip_mem->dll_data_top) << 16)    | HIWORD(xip_mem->kernel_dll_top); It is clear now, the high word of dll first is the upper 16 bits of XIP DLL bottom and the low word is the upper 16 bits of kernel dll bottom; also, the high word of dll last is the upper 16 bits of XIP DLL top and the low word is the upper 16 bits of kernel dll top. Obviously, the correct statement should be if((DWORD)(HIWORD(pTOCLoc->dllfirst) << 16) <= (DWORD)(HIWORD(pTOCLoc->dlllast) << 16) &&    (DWORD)(LOWORD(pTOCLoc->dllfirst) << 16) <= (DWORD)(LOWORD(pTOCLoc->dlllast) << 16)) So update the code like this should fix this issue or just like the comment, it is an extra sanity check, you can just get rid of it, either way can make the code moving forward and everything worked as advertised.  "Extracting out copies of files from the nk.bin... replacing files... etc." Since the NK.BIN can be compressed, so the BinMod needs the compress.dll to decompress the data, the DLL can be found in C:\program files\microsoft platform builder\6.00\cepb\idevs\imgutils.

    Read the article

  • Amazon SOA: database as a Service

    - by Martin Lee
    There is an interesting interview with Werner Vogels which is partly about how Amazon does Service Oriented Architecture: For us service orientation means encapsulating the data with the business logic that operates on the data, with the only access through a published service interface. No direct database access is allowed from outside the service, and there’s no data sharing among the services. I do not understand that. Why do they need to 'wrap' a database into some layer if it already can be consumed as a service by other service through database adaptors? Does Amazon do that just because they need to expose the database to third parties or because of anything else? Why "no direct database access is allowed"? What are the advantages of such an architectural decision?

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >