Search Results

Search found 5789 results on 232 pages for 'smart pointer'.

Page 60/232 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Reallocating memory via "new" in C++

    - by BSchlinker
    Quick question regarding memory management in C++ If I do the following operation: pointer = new char [strlen(someinput_input)+1]; And then perform it again, with perhaps a different result being returned from strlen(someinput_input). Does this result in memory being left allocated from the previous "new" statement? IE, is each new statement receiving another block of HEAP memory from the OS, or is it simply reallocating? Assuming I do a final delete pointer[]; will that deallocate any and all memory that I ever allocated via new to that pointer? Thanks

    Read the article

  • Array of strings and char ** environ variable.

    - by Naruto Uzumaki
    Hello! I want to know how an array of strings is declared? What I do is I declare an array of pointers of pointers to strings. Eg. char *array[]= {"string1","string2","string3"}; I was reading about modifying environment variables in Linux and stumbled upon the pointer char **environ ( http://www.cs.bham.ac.uk/resources/courses/2005/17423/doc/libc/Environment-Access.html#Environment-Access ). char **environ is declared as an array of strings. I think it should be a pointer to a pointer. For eg. char *array[]= {"string1","string2","string3"}; environ = array; Am I doing something wrong? I also read somewhere that char *argv[] = char **argv. How is it possible?

    Read the article

  • Adding animation to my images with JQuery

    - by slandau
    Here is my home page: <%@ Page Language="C#" MasterPageFile="~/Views/Home/Home.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content2" ContentPlaceHolderID="IndicationContentPlaceHolder" runat="server"> <table id="home" style="margin-left: auto; margin-right:auto;"> <td id="homeLinks"> <div style="padding-left:35px;" id="homeListing" class="containerMid"> <div id="homeView"> <table style="margin-left: auto; margin-right:auto;"> <tr> <tr> <td id="btnIcOld" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Load.png")%>" /> </td> <td id="btnIc" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Bar_Chart.png")%>" /> </td> <td id="btnPricing" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Pie_Chart_disabled.png")%>" /> </td> <td id="btnSheets" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Line_Chart_disabled.png")%>" /> </td> <td id="btnPort" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Modify_disabled.png")%>" /> </td> <td id="btnAdmin" style="text-align:center;cursor:pointer;"> <img src="<%= VirtualPathUtility.ToAbsolute("~/img/chic/Profile_disabled.png")%>" /> </td> </tr> <tr> <td id="Td1"> <b>Indications Calculator | </b> </td> <td id="lblIc"> <b>Indications Calculator - Beta | </b> </td> <td id="lblPricing"> <b>Managing Pricing Triggers | </b> </td> <td id="lblSheets"> <b>Creating Pricing Sheets | </b> </td> <td id="lblPort"> <b>Portfolio Analysis | </b> </td> <td id="lblAdmin"> <b>Administration</b> </td> </tr> </tr> </table> </div> </div> </td> </table> <div id="pageMessage"></div> <script> $(document).ready(function () { $('#btnIc').live('click', function () { window.location.href = "<%=Url.Action("Indications") %>"; }); $('#btnIcOld').live('click', function () { window.location.href = 'https://extranetint/swap'; }); $('#btnPricing').live('click', function () { //window.location.href = "<%=Url.Action("Triggers") %>"; }); $('#btnSheets').live('click', function () { //window.location.href = "<%=Url.Action("Sheets") %>"; }); $('#btnPort').live('click', function () { //window.location.href = "<%=Url.Action("Analysis") %>"; }); $('#btnAdmin').live('click', function () { //window.location.href = "<%=Url.Action("Admin") %>"; }); }); </script> </asp:Content> How can I, with JQuery (or really anything), achieve a mouse-over effect on my images where they will grow a little bit as you hover over them? I tried using JQuery animate but for some reason I couldn't get it to work. Thanks!

    Read the article

  • exporting non_public type through public API

    - by user329820
    Hi I have written this code in Netbeans but it will show this warning for the name of this method ,would you please help me for what it shows this warning? thanks public Node returnNode(int index) throws IndexOutOfBoundsException { if (index < 0 || index > size) { throw new IndexOutOfBoundsException(); } else { for (int i = 0; i < index; i++) { pointer = pointer.getNext(); } } return pointer; }

    Read the article

  • [c]how to take input for a character pionter without using fget?

    - by ashish yadav
    consider the code include int main() {char* a; scanf("%s",a);//&a and &a[0] give same results-crashes printf("%s",); return 0; } why does this code results in crashing?whereas this code using character array works fine? include int main() {char a[100]; scanf("%s",&a[0]);//works fine printf("%s",a); return 0; } the difference being character array and pointer?but i knew that pointer just points to the first element that is &a[0] should work fine but upper code crashes for all three that is a,&a and &a[0]? the main thing i would to gather is how can i take input of a character pointer if i insist on using scanf only? i apologize if i am not clear. thanks in advance:)

    Read the article

  • Best way to call other class view in iphone?

    - by aman-gupta
    Hi, Generally i call my other class view by creating a pointer of delegate and then call the other class by using its link as below:- First Way :- Mydelegate *ptr = (Mydelegate *)[[UIApplication sharedApplication]delegate]; [self.navigationController pushViewController:ptr.NextClasspointer animated:YES]; Second Way :- Create a pointer of that class which u want to call :-- NextClass *nextptr = [[NextClass alloc]initWithnibName:@"NextClass" bundle:nil]; [self.navigationController pushViewController:nextptr animated:YES]; [nextptr release]; nextptr = nil; These above two methods i generally used but my problem is that which one is best for big project so that my stack problem will be removed I mean memory issue will be solved.And is it necessary to release pointer in first and second case is the way i release is correct or wrong Please help me Thanks in Advance

    Read the article

  • The ** idiom in C++ for object construction

    - by bobobobo
    In a lot of C++ API'S (COM-based ones spring to mind) that make something for you, the pointer to the object that is constructed is usually required as a ** pointer (and the function will construct and init it for you) You usually see signatures like: HRESULT createAnObject( int howbig, Object **objectYouWantMeToInitialize ) ; -- but you seldom see the new object being passed as a return value. Besides people wanting to see error codes, what is the reason for this? Is it better to use the ** pattern rather than a returned pointer for simpler operations such as: wchar_t* getUnicode( const char* src ) ; Or would this better be written as: void getUnicode( const char* src, wchar_t** dst ) ; The most important thing I can think of is to remember to free it, and the ** way, for some reason, tends to remind me that I have to deallocate it as well.

    Read the article

  • Access to bytes array of a Bitmap

    - by Deulis
    1- In Windows CE, I have a Bitmap object in C#. 2- I have a C function in an extern dll that expects as parameters the pointer to a bytes array that represents an image in RGB565 format, width and height. This function will draw on this array of bytes. So I need to pass the byte array pointer of the Bitmap object, but I can find a practical way to get this pointer. One way is convert this Bitmap into a bytes array using a memory stream or something else, but it will create a new bytes array, so I will keep in memory both object, the Bitmap and the bytes array, but I don’t want it because the few available memory, that’s why I need to access to the bytes array of the bitmap object, not create a new bytes array. Anyone can help me?

    Read the article

  • C++: static function member shared between threads, can block all?

    - by mhambra
    Hi all, I have a class, which has static function defined to work with C-style extern C { static void callback(foo bar) { } }. // static is defined in header. Three objects (each in separate pthread) are instantiated from this class, each of them has own loop (in class constructor), which can receive the callback. The pointer to function is passed as: x = init_function(h, queue_id, &callback, NULL); while(1) { loop_function(x); } So each thread has the same pointer to &callback. Callback function can block for minutes. Each thread object, excluding the one which got the blocking callback, can call callback again. If the callback function exists only once, then any thread attempting to callback will also block. This would give me an undesired bug, circa is interesting to ask: can anything in C++ become acting this way? Maybe, due to extern { } or some pointer usage?

    Read the article

  • C++: Question about freeing memory

    - by Martijn Courteaux
    On Learn C++, they wrote this to free memory: int *pnValue = new int; // dynamically allocate an integer *pnValue = 7; // assign 7 to this integer delete pnValue; pnValue = 0; My question is: "Is the last statement needed to free the memory correctly, completly?" I thought that the pointer *pnValue was still on the stack and new doesn't make any sense to the pointer. And if it is on the stack it will be cleaned up when the application leaves the scope (where the pointer is declared in), isn't it?

    Read the article

  • Is void *p = 0L valid?

    - by Artefacto
    In this answer, sassman initializes a pointer with: zend_class_entry* ce = 0L; My question is – is this valid? I would say it isn't, to initialize the variable with a null pointer either an unadorned (and possibly casted to void *) 0 constant, or some macro that evaluates to that such as NULL should be used. However, I can't find definitive language in the standard that supports this interpretation. All it says is: An integer constant expression with the value 0, or such an expression cast to type void *, is called a null pointer constant.

    Read the article

  • Determine an object's class returned by a factory method (Error: function does not take 1 arguments

    - by tzippy
    I have a factorymethod that either returns an object of baseclass or one that is of derivedclass (a derived class of baseclass). The derived class has a method virtual void foo(int x) that takes one argument. baseclass however has virtual void foo() without an argument. In my code, a factory method returns a pointer of type bar that definetly points to an object of class derivedclass. However since this is only known at runtime I get a compiler error saying that foo() does not take an argument. Can I cast this pointer to a pointer of type derivedclass? std::auto_ptr<baseclass> bar = classfactory::CreateBar(); //returns object of class derivedclass bar->foo(5); class baseclass { public: virtual void foo(); } class derivedclass : public baseclass { public: virtual void foo(int x); }

    Read the article

  • in c++ what is bettr to delete poiner or set it with new value?

    - by user63898
    Hi simple question in c++ , say i have a loop and i have function that returns pointer to item so i have to define inner loop pointer so my question is what to do with the pointer inside the loop , delete it ? or to set it with new value is good for example: for(int i =0;i<count();i++) { ptrTmp* ptr = getItemPtr(); // do somthing with the ptr ... // what to do here ? to delete the poinetr or not? delete ptr; // ?? }

    Read the article

  • Assigning variables to pointers

    - by tys
    When compiling the below, the program seem to crash. However, there is no error in the compiling process. ... int *x; *x = 3; printf("%d", *x); ... From what I know, this program initializes the pointer *x to an integer value, and subsequently assigns the value of 3 to the deferenced pointer *x. So why does the program crashes? If I do this instead, the program can work normally. ... int *x, y; y = 3; x = &y; printf("%d", *x); ... So, what seems to be the problem with the skipping of the y variable, and instead, assigning the pointer *x directly to an integer value?

    Read the article

  • Multiple data centers and HTTP traffic: DNS Round Robin is the ONLY way to assure instant fail-over?

    - by vmiazzo
    Hi, Multiple A records pointing to the same domain seem to be used almost exclusively to implement DNS Round Robin as a cheap load balancing technique. The usual warning against DNS RR is that it is not good for high availability. When 1 IP goes down clients will continue to use it for minutes. A load balancer is often suggested as a better choice. Both claims are not completely true: When the traffic is HTTP then, most of the HTML browsers are able to automatically try the next A record if the previous is down, without a new DNS look-up. Read here chapter 3.1 and here. When multiple data centers are involved then, DNS RR is the only option to distribute traffic across them. So, is it true that, with multiple data centers and HTTP traffic, the use of DNS RR is the ONLY way to assure instant fail-over when one data center goes down? Thanks, Valentino Edit: Off course each data center has a local Load Balancer with hot spare. It's OK to sacrifice session affinity for an instant fail-over. AFAIK the only way for a DNS to suggest a data center instead of another is to reply with just the IP (or IPs) associated to that data center. If the data center becomes unreachable then all those IP are also unreachables. This means that, even if smart HTML browsers are able to instantly try another A record , all the attempts will fail until the local cache entry expires and a new DNS lookup is done, fetching the new working IPs (I assume DNS automatically suggests to a new data center when one fail). So, "smart DNS" cannot assure instant fail-over. Conversely a DNS round-robin permits it. When one data center fail, the smart HTML browsers (most of them) instantly try the other cached A records jumping to another (working) data center. So, DNS round-robin doesn't assure session affinity or the lowest RTT but seems to be the only way to assure instant fail-over when the clients are "smart" HTML browsers. Edit 2: Some people suggest TCP Anycast as a definitive solution. In this paper (chapter 6) is explained that Anycast fail-over is related to BGP convergence. For this reason Anycast can employ from 15 minutes to 20 seconds to complete. 20 seconds are possible on networks where the topology was optimized for this. Probably just CDN operators can grant such fast fail-overs. Edit 3:* I did some DNS look-ups and traceroutes (maybe some expert can double check) and: The only CDN using TCP Anycast seems to be CacheFly, other operators like CDN networks and BitGravity use CacheFly. Seems that their edges cannot be used as reverse proxies. Therefore, they cannot be used to grant instant failover. Akamai and LimeLight seems to use geo-aware DNS. But! They return multiple A records. From traceroutes seems that the returned IPs are on the same data center. So, I'm puzzled on how they can offer a 100% SLA when one data center goes down.

    Read the article

  • Bye Bye Year of the Dragon, Hello BPM

    - by Ajay Khanna
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} As 2012 fades and we usher in a New Year, let’s look back at some of the hottest BPM trends and those we’ll be seeing more of in the coming months. BPM is as much about people as it is about technology. As people adopt new ways of engagement, new channels of communications and new devices to interact , the changes are reflected in BPM practices. As Social and Mobile have become an integral part of our personal and professional lives, we’ll see tighter integration of social and mobile with BPM, and more use cases emerging for smarter process management in 2013. And with products and services becoming less differentiated, organizations will strive to differentiate on Customer Experience. Concepts like Pace Layered Architecture and Dynamic Case Management will provide more flexibility and agility to IT groups and knowledge workers. Take a look at some of these capabilities we showcased (see video) at Oracle OpenWorld 2012. Some of these trends that will continue to gain momentum in 2013: Social networks and social media have provided a new way for businesses to engage with customers. A prospect is likely to reach out to their social network before making any purchase. Companies are increasingly engaging with customers in social networks to influence their purchasing decisions, as well as listening to customers via tools like sentiment analysis to see what customers think about a particular product or process. These insights are valuable as companies look to improve their processes. Inside organizations, workers are using social tools to engage with each other to design new products and processes. Social collaboration tools are being used to resolve issues where an employee needs consultation to reach a decision. Oracle BPM Suite includes social interaction as an integral part of its process design and work management to empower today’s business users. Ubiquitous smart mobile devices are trending as a tool of choice for many workers. Many companies are adopting the policy of “Bring Your Own Device,” and the device of choice is a tablet. Devices like smart phones and tablets not only provide mobility to workers and customers, but they also provide additional important information – the context. By integrating the mobile context (location, photos, and preferences) into your processes, organizations can make much more informed decisions, as well as offer more personalized service to customers. Using Oracle ADF Mobile, you can easily create user interfaces for mobile devices and also capture location data for process execution. Customer experience was at the forefront of trending topics in 2012. Organizations are trying to understand their customers better and offer them more personalized and differentiated services. Customer experience is paramount when companies design sales and support processes. Companies are looking to BPM to consistently and efficiently orchestrate customer facing processes across disparate systems, departments and channels of communication. Oracle BPM Suite provides just the right capabilities for organizations to design and deliver an excellent customer experience. Pace Layered Architecture strategy is gaining traction as a way to maximize agility and minimize disruption in organizations. It provides a framework to manage the evolution of your information system when different pieces of it are changing at different rates and need to be updated independent of one another. Oracle Fusion Middleware and Oracle BPM Suite are designed with this in mind. The database layer, integration layer, application layer, and process layer should not be required to change at the same time. Most of the business changes to policy or process can be done at the process layer without disrupting the whole infrastructure. By understanding the type of change needed at a particular level, organizations can become much more agile and efficient. Adaptive Case Management proposes more flexibility to manage processes or cases that do not follow a structured process flow. In such situations, the knowledge worker managing the case needs to evaluate what step should occur next because the sequence of steps can’t be predetermined. Another characteristic is that it requires much more collaboration than straight-through process. As simple processes become automated, and customers adopt more and more self-service, cases that reach the case workers are much more complex and need more investigation. Oracle BPM suite includes comprehensive adaptive case management capability to manage such unstructured and complex processes. Smart BPM or making your BPM intelligent has been the holy grail for BPM practitioners who imagined that one day BPM would become one with Business Intelligence, Business Activity Monitoring and Complex Event Processing, making it much more responsive and helpful in organizational decision making. In 2013, organizations will begin to deploy these intelligent BPM solutions. Oracle offers an integrated solution that brings together the powerful functionality of BI, BAM, event processing, and Real Time Decisions to help organizations create smart process based solutions. In order to help customers reach their BPM goals faster and remove risks associated with BPM initiatives, Oracle has introduced Oracle Process Accelerators, pre-built best practices applications built on Oracle BPM Suite that are fully production grade and ready to deploy. These are exiting times for BPM practitioners and there is so much to look forward to in 2013. We wish you a very happy and prosperous New Year 2013. Happy BPMing!

    Read the article

  • Silverlight for Windows Embedded tutorial (step 6)

    - by Valter Minute
    In this tutorial step we will develop a very simple clock application that may be used as a screensaver on our devices and will allow us to discover a new feature of Silverlight for Windows Embedded (transforms) and how to use an “old” feature of Windows CE (timers) inside a Silverlight for Windows Embedded application. Let’s start with some XAML, as usual: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="640" Height="480" FontSize="18" x:Name="Clock">   <Canvas x:Name="LayoutRoot" Background="#FF000000"> <Grid Height="24" Width="150" Canvas.Left="320" Canvas.Top="234" x:Name="SecondsHand" Background="#FFFF0000"> <TextBlock Text="Seconds" TextWrapping="Wrap" Width="50" HorizontalAlignment="Right" VerticalAlignment="Center" x:Name="SecondsText" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="MinutesHand" Width="100" Background="#FF00FF00" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="MinutesText" VerticalAlignment="Center" Width="50" Text="Minutes" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="HoursHand" Width="50" Background="#FF0000FF" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="HoursText" VerticalAlignment="Center" Width="50" Text="Hours" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> </Canvas> </UserControl> This XAML file defines three grid panels, one for each hand of our clock (we are implementing an analog clock using one of the most advanced technologies of the digital world… how cool is that?). Inside each hand we put a TextBlock that will be used to display the current hour, minute, second inside the dial (you can’t do that on plain old analog clocks, but it looks nice). As usual we use XAML2CPP to generate the boring part of our code. We declare a class named “Clock” and derives from the TClock template that XAML2CPP has declared for us. class Clock : public TClock<Clock> { ... }; Our WinMain function is more or less the same we used in all the previous samples. It initializes the XAML runtime, create an instance of our class, initialize it and shows it as a dialog: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1; Clock clock;   if (FAILED(clock.Init(hInstance,app))) return -1;     UINT exitcode;   if (FAILED(clock.GetVisualHost()->StartDialog(&exitcode))) return -1;   return exitcode; } Silverlight for Windows Embedded provides a lot of features to implement our UI, but it does not provide timers. How we can update our clock if we don’t have a timer feature? We just use plain old Windows timers, as we do in “regular” Windows CE applications! To use a timer in WinCE we should declare an id for it: #define IDT_CLOCKUPDATE 0x12341234 We also need an HWND that will be used to receive WM_TIMER messages. Our Silverlight for Windows Embedded page is “hosted” inside a GWES Window and we can retrieve its handle using the GetContainerHWND function of our VisualHost object. Let’s see how this is implemented inside our Clock class’ Init method: HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TClock<Clock>::Init(hInstance,app))) return retcode;   // create the timer user to update the clock HWND clockhwnd;   if (FAILED(GetVisualHost()->GetContainerHWND(&clockhwnd))) return -1;   timer=SetTimer(clockhwnd,IDT_CLOCKUPDATE,1000,NULL); return 0; } We use SetTimer to create a new timer and GWES will send a WM_TIMER to our window every second, giving us a chance to update our clock. That sounds great… but how could we handle the WM_TIMER message if we didn’t implement a window procedure for our window? We have to move a step back and look how a visual host is created. This code is generated by XAML2CPP and is inside xaml2cppbase.h: virtual HRESULT CreateHost(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode; XRWindowCreateParams wp;   ZeroMemory(&wp, sizeof(XRWindowCreateParams)); InitWindowParms(&wp);   XRXamlSource xamlsrc;   SetXAMLSource(hInstance,&xamlsrc); if (FAILED(retcode=app->CreateHostFromXaml(&xamlsrc, &wp, &vhost))) return retcode;   if (FAILED(retcode=vhost->GetRootElement(&root))) return retcode; return S_OK; } As you can see the CreateHostFromXaml function of IXRApplication accepts a structure named XRWindowCreateParams that control how the “plain old” GWES Window is created by the runtime. This structure is initialized inside the InitWindowParm method: // Initializes Windows parameters, can be overridden in the user class to change its appearance virtual void InitWindowParms(XRWindowCreateParams* wp) { wp->Style = WS_OVERLAPPED; wp->pTitle = windowtitle; wp->Left = 0; wp->Top = 0; } This method set up the window style, title and position. But the XRWindowCreateParams contains also other fields and, since the function is declared as virtual, we could initialize them inside our version of InitWindowParms: // add hook procedure to the standard windows creation parms virtual void InitWindowParms(XRWindowCreateParams* wp) { TClock<Clock>::InitWindowParms(wp);   wp->pHookProc=StaticHostHookProc; wp->pvUserParam=this; } This method calls the base class implementation (useful to not having to re-write some code, did I told you that I’m quite lazy?) and then initializes the pHookProc and pvUserParam members of the XRWindowsCreateParams structure. Those members will allow us to install a “hook” procedure that will be called each time the GWES window “hosting” our Silverlight for Windows Embedded UI receives a message. We can declare a hook procedure inside our Clock class: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { ... } You should notice two things here. First that the function is declared as static. This is required because a non-static function has a “hidden” parameters, that is the “this” pointer of our object. Having an extra parameter is not allowed for the type defined for the pHookProc member of the XRWindowsCreateParams struct and so we should implement our hook procedure as static. But in a static procedure we will not have a this pointer. How could we access the data member of our class? Here’s the second thing to notice. We initialized also the pvUserParam of the XRWindowsCreateParams struct. We set it to our this pointer. This value will be passed as the first parameter of the hook procedure. In this way we can retrieve our this pointer and use it to call a non-static version of our hook procedure: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { return ((Clock*)pv)->HostHookProc(hwnd,Msg,wParam,lParam,pRetVal); } Inside our non-static hook procedure we will have access to our this pointer and we will be able to update our clock: // hook procedure (handles timers) BOOL HostHookProc(HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { switch (Msg) { case WM_TIMER: if (wParam==IDT_CLOCKUPDATE) UpdateClock(); *pRetVal=0; return TRUE; } return FALSE; } The UpdateClock member function will update the text inside our TextBlocks and rotate the hands to reflect current time: // udates Hands positions and labels HRESULT UpdateClock() { SYSTEMTIME time; HRESULT retcode;   GetLocalTime(&time);   //updates the text fields TCHAR timebuffer[32];   _itow(time.wSecond,timebuffer,10);   SecondsText->SetText(timebuffer);   _itow(time.wMinute,timebuffer,10);   MinutesText->SetText(timebuffer);   _itow(time.wHour,timebuffer,10);   HoursText->SetText(timebuffer);   if (FAILED(retcode=RotateHand(((float)time.wSecond)*6-90,SecondsHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)time.wMinute)*6-90,MinutesHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)(time.wHour%12))*30-90,HoursHand))) return retcode;   return S_OK; } The function retrieves current time, convert hours, minutes and seconds to strings and display those strings inside the three TextBlocks that we put inside our clock hands. Then it rotates the hands to position them at the right angle (angles are in degrees and we have to subtract 90 degrees because 0 degrees means horizontal on Silverlight for Windows Embedded and usually a clock 0 is in the top position of the dial. The code of the RotateHand function uses transforms to rotate our clock hands on the screen: // rotates a Hand HRESULT RotateHand(float angle,IXRFrameworkElement* Hand) { HRESULT retcode; IXRRotateTransformPtr rotatetransform; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode;   if (FAILED(retcode=app->CreateObject(IID_IXRRotateTransform,&rotatetransform))) return retcode;     if (FAILED(retcode=rotatetransform->SetAngle(angle))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterX(0.0))) return retcode;   float height;   if (FAILED(retcode==Hand->GetActualHeight(&height))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterY(height/2))) return retcode; if (FAILED(retcode=Hand->SetRenderTransform(rotatetransform))) return retcode;   return S_OK; } It creates a IXRotateTransform object, set its rotation angle and origin (the default origin is at the top-left corner of our Grid panel, we move it in the vertical center to keep the hand rotating around a single point in a more “clock like” way. Then we can apply the transform to our UI object using SetRenderTransform. Every UI element (derived from IXRFrameworkElement) can be rotated! And using different subclasses of IXRTransform also moved, scaled, skewed and distorted in many ways. You can also concatenate multiple transforms and apply them at once suing a IXRTransformGroup object. The XAML engine uses vector graphics and object will not look “pixelated” when they are rotated or scaled. As usual you can download the code here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/Clock.zip If you read up to (down to?) this point you seem to be interested in Silverlight for Windows Embedded. If you want me to discuss some specific topic, please feel free to point it out in the comments! Technorati Tags: Silverlight for Windows Embedded,Windows CE

    Read the article

  • Error in running script [closed]

    - by SWEngineer
    I'm trying to run heathusf_v1.1.0.tar.gz found here I installed tcsh to make build_heathusf work. But, when I run ./build_heathusf, I get the following (I'm running that on a Fedora Linux system from Terminal): $ ./build_heathusf Compiling programs to build a library of image processing functions. convexpolyscan.c: In function ‘cdelete’: convexpolyscan.c:346:5: warning: incompatible implicit declaration of built-in function ‘bcopy’ [enabled by default] myalloc.c: In function ‘mycalloc’: myalloc.c:68:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘mymalloc’: myalloc.c:101:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘myfree’: myalloc.c:129:27: error: invalid storage class for function ‘find_link’ myalloc.c:131:12: warning: assignment makes pointer from integer without a cast [enabled by default] myalloc.c: At top level: myalloc.c:150:13: warning: conflicting types for ‘store_link’ [enabled by default] myalloc.c:150:13: error: static declaration of ‘store_link’ follows non-static declaration myalloc.c:91:4: note: previous implicit declaration of ‘store_link’ was here myalloc.c:164:24: error: conflicting types for ‘find_link’ myalloc.c:131:14: note: previous implicit declaration of ‘find_link’ was here Building the mammogram resizing program. gcc -O2 -I. -I../common mkimage.o -o mkimage -L../common -lmammo -lm ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [mkimage] Error 1 Building the breast segmentation program. gcc -O2 -I. -I../common breastsegment.o segment.o -o breastsegment -L../common -lmammo -lm breastsegment.o: In function `render_segmentation_sketch': breastsegment.c:(.text+0x43): undefined reference to `mycalloc' breastsegment.c:(.text+0x58): undefined reference to `mycalloc' breastsegment.c:(.text+0x12f): undefined reference to `mycalloc' breastsegment.c:(.text+0x1b9): undefined reference to `myfree' breastsegment.c:(.text+0x1c6): undefined reference to `myfree' breastsegment.c:(.text+0x1e1): undefined reference to `myfree' segment.o: In function `find_center': segment.c:(.text+0x53): undefined reference to `mycalloc' segment.c:(.text+0x71): undefined reference to `mycalloc' segment.c:(.text+0x387): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x4ac): undefined reference to `mycalloc' segment.c:(.text+0x546): undefined reference to `mycalloc' segment.c:(.text+0x651): undefined reference to `mycalloc' segment.c:(.text+0x691): undefined reference to `myfree' segment.o: In function `estimate_tissue_image': segment.c:(.text+0x10d4): undefined reference to `mycalloc' segment.c:(.text+0x14da): undefined reference to `mycalloc' segment.c:(.text+0x1698): undefined reference to `mycalloc' segment.c:(.text+0x1834): undefined reference to `mycalloc' segment.c:(.text+0x1850): undefined reference to `mycalloc' segment.o:segment.c:(.text+0x186a): more undefined references to `mycalloc' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x1bbc): undefined reference to `myfree' segment.c:(.text+0x1c4a): undefined reference to `mycalloc' segment.c:(.text+0x1c7c): undefined reference to `mycalloc' segment.c:(.text+0x1d8e): undefined reference to `myfree' segment.c:(.text+0x1d9b): undefined reference to `myfree' segment.c:(.text+0x1da8): undefined reference to `myfree' segment.c:(.text+0x1dba): undefined reference to `myfree' segment.c:(.text+0x1dc9): undefined reference to `myfree' segment.o:segment.c:(.text+0x1dd8): more undefined references to `myfree' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x20bf): undefined reference to `mycalloc' segment.o: In function `segment_breast': segment.c:(.text+0x24cd): undefined reference to `mycalloc' segment.o: In function `find_center': segment.c:(.text+0x3a4): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x6ac): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label': cc_label.c:(.text+0x20c): undefined reference to `mycalloc' cc_label.c:(.text+0x6c2): undefined reference to `mycalloc' cc_label.c:(.text+0xbaa): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label_0bkgd': cc_label.c:(.text+0xe17): undefined reference to `mycalloc' cc_label.c:(.text+0x12d7): undefined reference to `mycalloc' cc_label.c:(.text+0x17e7): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x18c5): undefined reference to `mycalloc' ../common/libmammo.a(cc_label.o): In function `cc_label_4connect': cc_label.c:(.text+0x1cf0): undefined reference to `mycalloc' cc_label.c:(.text+0x2195): undefined reference to `mycalloc' cc_label.c:(.text+0x26a4): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x1b06): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [breastsegment] Error 1 Building the mass feature generation program. gcc -O2 -I. -I../common afumfeature.o -o afumfeature -L../common -lmammo -lm afumfeature.o: In function `afum_process': afumfeature.c:(.text+0xd80): undefined reference to `mycalloc' afumfeature.c:(.text+0xd9c): undefined reference to `mycalloc' afumfeature.c:(.text+0xe80): undefined reference to `mycalloc' afumfeature.c:(.text+0x11f8): undefined reference to `myfree' afumfeature.c:(.text+0x1207): undefined reference to `myfree' afumfeature.c:(.text+0x1214): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [afumfeature] Error 1 Building the mass detection program. make: Nothing to be done for `all'. Building the performance evaluation program. gcc -O2 -I. -I../common DDSMeval.o polyscan.o -o DDSMeval -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [DDSMeval] Error 1 Building the template creation program. gcc -O2 -I. -I../common mktemplate.o polyscan.o -o mktemplate -L../common -lmammo -lm Building the drawimage program. gcc -O2 -I. -I../common drawimage.o -o drawimage -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [drawimage] Error 1 Building the compression/decompression program jpeg. gcc -O2 -DSYSV -DNOTRUNCATE -c lexer.c lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyin’) lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyout’) lexer.c: In function ‘initparser’: lexer.c:387:21: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c: In function ‘MakeLink’: lexer.c:443:16: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:447:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:452:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:455:34: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:458:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:460:3: warning: incompatible implicit declaration of built-in function ‘strcpy’ [enabled by default] lexer.c: In function ‘getstr’: lexer.c:548:26: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:552:4: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:557:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:557:28: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c:561:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘parser’: lexer.c:794:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:798:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1074:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1078:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1116:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1120:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1154:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1158:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1190:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1247:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1251:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1283:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘yylook’: lexer.c:1867:9: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1867:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:12: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:23: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] make: *** [lexer.o] Error 1

    Read the article

  • How to set a target as image [on hold]

    - by Zadalaxmi
    How to set a target as image in given code. public void addListenerForImage(final Image roomImage) { final DragAndDrop dragAndDrop = new DragAndDrop(); dragAndDrop.addSource(new DragAndDrop.Source(roomImage) { public DragAndDrop.Payload dragStart (InputEvent event, float x, float y, int pointer) { DragAndDrop.Payload payload = new DragAndDrop.Payload(); payload.setDragActor(roomImage); dragAndDrop.setDragActorPosition(-x, -y + roomImage.getHeight()); return payload; } public void dragStop (InputEvent event, float x, float y, int pointer,Target target) { roomImage.setBounds(50, 125, roomImage.getWidth(), roomImage.getHeight()); if(target != null) { roomImage.setPosition(target.getActor().getX(), target.getActor().getY()); } System.out.println(target); stage.addActor(roomImage); } }); My problem is i can drag the images and i am not able to set target as image; and target shows as null;One more if a invisible some of the images in group how can i test that it is overlapped or not;Please give some links and suggestion

    Read the article

  • Display problem with fresh install of 12.04

    - by Dan
    Just intalled Ubuntu 12.04 from CD and install went with no problems. After rebooting, I get the initial purple screen and then a black screen with mouse pointer and a few stray pixels at the bottom left of screen. Occasionally during the boot process, the purple screen comes back momentarily but then back to the black screen with the mouse pointer. When I finally give up and press the power button, the purple screen returns with the Shut Down box visible as it is shutting down. Any ideas? I have tried adding nomodeset after quiet splash, but no change. Possibly not doing it correctly, since I am somewhat of a newbie to linux. Thanks! Dan

    Read the article

  • Pythonika installation error on ubuntu 12

    - by user1426913
    I have been following links: to install pythonika on ubuntu: How to install Pythonika on Ubuntu? I get error: $ sudo make -f Makefile.linux cc -c Pythonika.c -I/usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions -I/usr/include/python2.7/ Pythonika.c: In function ‘PyUnicodeString’: Pythonika.c:109:5: warning: passing argument 1 of ‘PyUnicodeUCS4_FromUnicode’ from incompatible pointer type [enabled by default] /usr/include/python2.7/unicodeobject.h:464:23: note: expected ‘const Py_UNICODE *’ but argument is of type ‘short unsigned int *’ Pythonika.c: In function ‘python_to_mathematica_object’: Pythonika.c:411:13: warning: passing argument 2 of ‘MLPutUnicodeString’ from incompatible pointer type [enabled by default] /usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions/mathlink.h:4299:1: note: expected ‘const short unsigned int *’ but argument is of type ‘Py_UNICODE ’ "/usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions/mprep" Pythonika.tm -o Pythonikatm.c /bin/sh: 1: /usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions/mprep: not found make: ** [Pythonikatm.o] Error 127

    Read the article

  • Touchpad too sensitive on Samsung Series 7

    - by Amit Prakash
    I just installed Ubuntu 12.04 on my SAMSUNG Series 7 NP700Z5B-S01UB. The touchpad worked out of the box and that has been awesome. But the touch pad's tap to click is too sensitive. It keeps selecting things as I'm just trying to move the pointer. I didn't have this problem with windows so this tells me that it can be configured to be less sensitive. Need help doing this. PS: I know turning off tap to click is an option but I don't want that. PPS: I see various sensitivity sliders in the config but they seem to be at the lowest and mostly around acceleration of pointer not for tap sensitivity.

    Read the article

  • array and array_view from amp.h

    - by Daniel Moth
    This is a very long post, but it also covers what are probably the classes (well, array_view at least) that you will use the most with C++ AMP, so I hope you enjoy it! Overview The concurrency::array and concurrency::array_view template classes represent multi-dimensional data of type T, of N dimensions, specified at compile time (and you can later access the number of dimensions via the rank property). If N is not specified, it is assumed that it is 1 (i.e. single-dimensional case). They are rectangular (not jagged). The difference between them is that array is a container of data, whereas array_view is a wrapper of a container of data. So in that respect, array behaves like an STL container, whereas the closest thing an array_view behaves like is an STL iterator (albeit with random access and allowing you to view more than one element at a time!). The data in the array (whether provided at creation time or added later) resides on an accelerator (which is specified at creation time either explicitly by the developer, or set to the default accelerator at creation time by the runtime) and is laid out contiguously in memory. The data provided to the array_view is not stored by/in the array_view, because the array_view is simply a view over the real source (which can reside on the CPU or other accelerator). The underlying data is copied on demand to wherever the array_view is accessed. Elements which differ by one in the least significant dimension of the array_view are adjacent in memory. array objects must be captured by reference into the lambda you pass to the parallel_for_each call, whereas array_view objects must be captured by value (into the lambda you pass to the parallel_for_each call). Creating array and array_view objects and relevant properties You can create array_view objects from other array_view objects of the same rank and element type (shallow copy, also possible via assignment operator) so they point to the same underlying data, and you can also create array_view objects over array objects of the same rank and element type e.g.   array_view<int,3> a(b); // b can be another array or array_view of ints with rank=3 Note: Unlike the constructors above which can be called anywhere, the ones in the rest of this section can only be called from CPU code. You can create array objects from other array objects of the same rank and element type (copy and move constructors) and from other array_view objects, e.g.   array<float,2> a(b); // b can be another array or array_view of floats with rank=2 To create an array from scratch, you need to at least specify an extent object, e.g. array<int,3> a(myExtent);. Note that instead of an explicit extent object, there are convenience overloads when N<=3 so you can specify 1-, 2-, 3- integers (dependent on the array's rank) and thus have the extent created for you under the covers. At any point, you can access the array's extent thought the extent property. The exact same thing applies to array_view (extent as constructor parameters, incl. convenience overloads, and property). While passing only an extent object to create an array is enough (it means that the array will be written to later), it is not enough for the array_view case which must always wrap over some other container (on which it relies for storage space and actual content). So in addition to the extent object (that describes the shape you'd like to be viewing/accessing that data through), to create an array_view from another container (e.g. std::vector) you must pass in the container itself (which must expose .data() and a .size() methods, e.g. like std::array does), e.g.   array_view<int,2> aaa(myExtent, myContainerOfInts); Similarly, you can create an array_view from a raw pointer of data plus an extent object. Back to the array case, to optionally initialize the array with data, you can pass an iterator pointing to the start (and optionally one pointing to the end of the source container) e.g.   array<double,1> a(5, myVector.begin(), myVector.end()); We saw that arrays are bound to an accelerator at creation time, so in case you don’t want the C++ AMP runtime to assign the array to the default accelerator, all array constructors have overloads that let you pass an accelerator_view object, which you can later access via the accelerator_view property. Note that at the point of initializing an array with data, a synchronous copy of the data takes place to the accelerator, and then to copy any data back we'll see that an explicit copy call is required. This does not happen with the array_view where copying is on demand... refresh and synchronize on array_view Note that in the previous section on constructors, unlike the array case, there was no overload that accepted an accelerator_view for array_view. That is because the array_view is simply a wrapper, so the allocation of the data has already taken place before you created the array_view. When you capture an array_view variable in your call to parallel_for_each, the copy of data between the non-CPU accelerator and the CPU takes place on demand (i.e. it is implicit, versus the explicit copy that has to happen with the array). There are some subtleties to the on-demand-copying that we cover next. The assumption when using an array_view is that you will continue to access the data through the array_view, and not through the original underlying source, e.g. the pointer to the data that you passed to the array_view's constructor. So if you modify the data through the array_view on the GPU, the original pointer on the CPU will not "know" that, unless one of two things happen: you access the data through the array_view on the CPU side, i.e. using indexing that we cover below you explicitly call the array_view's synchronize method on the CPU (this also gets called in the array_view's destructor for you) Conversely, if you make a change to the underlying data through the original source (e.g. the pointer), the array_view will not "know" about those changes, unless you call its refresh method. Finally, note that if you create an array_view of const T, then the data is copied to the accelerator on demand, but it does not get copied back, e.g.   array_view<const double, 5> myArrView(…); // myArrView will not get copied back from GPU There is also a similar mechanism to achieve the reverse, i.e. not to copy the data of an array_view to the GPU. copy_to, data, and global copy/copy_async functions Both array and array_view expose two copy_to overloads that allow copying them to another array, or to another array_view, and these operations can also be achieved with assignment (via the = operator overloads). Also both array and array_view expose a data method, to get a raw pointer to the underlying data of the array or array_view, e.g. float* f = myArr.data();. Note that for array_view, this only works when the rank is equal to 1, due to the data only being contiguous in one dimension as covered in the overview section. Finally, there are a bunch of global concurrency::copy functions returning void (and corresponding concurrency::copy_async functions returning a future) that allow copying between arrays and array_views and iterators etc. Just browse intellisense or amp.h directly for the full set. Note that for array, all copying described throughout this post is deep copying, as per other STL container expectations. You can never have two arrays point to the same data. indexing into array and array_view plus projection Reading or writing data elements of an array is only legal when the code executes on the same accelerator as where the array was bound to. In the array_view case, you can read/write on any accelerator, not just the one where the original data resides, and the data gets copied for you on demand. In both cases, the way you read and write individual elements is via indexing as described next. To access (or set the value of) an element, you can index into it by passing it an index object via the subscript operator. Furthermore, if the rank is 3 or less, you can use the function ( ) operator to pass integer values instead of having to use an index object. e.g. array<float,2> arr(someExtent, someIterator); //or array_view<float,2> arr(someExtent, someContainer); index<2> idx(5,4); float f1 = arr[idx]; float f2 = arr(5,4); //f2 ==f1 //and the reverse for assigning, e.g. arr(idx[0], 7) = 6.9; Note that for both array and array_view, regardless of rank, you can also pass a single integer to the subscript operator which results in a projection of the data, and (for both array and array_view) you get back an array_view of rank N-1 (or if the rank was 1, you get back just the element at that location). Not Covered In this already very long post, I am not going to cover three very cool methods (and related overloads) that both array and array_view expose: view_as, section, reinterpret_as. We'll revisit those at some point in the future, probably on the team blog. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Should *'s go next to the type or the variable name? [closed]

    - by derekerdmann
    Possible Duplicate: int* i; or int *i; or int * i; When working in C or C++, how should pointers be declared? Like this: char* derp; or this: char *derp; I typically use the first method, because the variable is a character pointer, but I know that it can create confusion when declaring multiple variables at once: char* herp, derp; herp becomes a character pointer, while derp is just a character. I know it often comes down to coding style, but which one is "better?" Should I sacrifice clarity to eliminate potential confusion?

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >