Search Results

Search found 2565 results on 103 pages for 'sys'.

Page 60/103 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Informaton of pendriver with libudv on linux

    - by Catanzaro
    I'm doing a little app in C that read the driver information of my pendrive: Plugged it and typed dmesg: [ 7676.243994] scsi 7:0:0:0: Direct-Access Lexar USB Flash Drive 1100 PQ: 0 ANSI: 0 CCS [ 7676.248359] sd 7:0:0:0: Attached scsi generic sg2 type 0 [ 7676.256733] sd 7:0:0:0: [sdb] 7831552 512-byte logical blocks: (4.00 GB/3.73 GiB) [ 7676.266559] sd 7:0:0:0: [sdb] Write Protect is off [ 7676.266566] sd 7:0:0:0: [sdb] Mode Sense: 43 00 00 00 [ 7676.266569] sd 7:0:0:0: [sdb] Assuming drive cache: write through [ 7676.285373] sd 7:0:0:0: [sdb] Assuming drive cache: write through [ 7676.285383] sdb: sdb1 [ 7676.298661] sd 7:0:0:0: [sdb] Assuming drive cache: write through [ 7676.298667] sd 7:0:0:0: [sdb] Attached SCSI removable disk with "udevadm info -q all -n /dev/sdb" P: /devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-1/1-1:1.0/host7/target7:0:0/7:0:0:0/block/sdb N: sdb W: 36 S: block/8:16 S: disk/by-id/usb-Lexar_USB_Flash_Drive_AA5OCYQII8PSQXBB-0:0 S: disk/by-path/pci-0000:02:03.0-usb-0:1:1.0-scsi-0:0:0:0 E: UDEV_LOG=3 E: DEVPATH=/devices/pci0000:00/0000:00:11.0/0000:02:03.0/usb1/1-1/1-1:1.0/host7/target7:0:0/7:0:0:0/block/sdb E: MAJOR=8 E: MINOR=16 E: DEVNAME=/dev/sdb E: DEVTYPE=disk E: SUBSYSTEM=block E: ID_VENDOR=Lexar E: ID_VENDOR_ENC=Lexar\x20\x20\x20 E: ID_VENDOR_ID=05dc E: ID_MODEL=USB_Flash_Drive E: ID_MODEL_ENC=USB\x20Flash\x20Drive\x20 E: ID_MODEL_ID=a813 E: ID_REVISION=1100 E: ID_SERIAL=Lexar_USB_Flash_Drive_AA5OCYQII8PSQXBB-0:0 E: ID_SERIAL_SHORT=AA5OCYQII8PSQXBB E: ID_TYPE=disk E: ID_INSTANCE=0:0 E: ID_BUS=usb E: ID_USB_INTERFACES=:080650: E: ID_USB_INTERFACE_NUM=00 E: ID_USB_DRIVER=usb-storage E: ID_PATH=pci-0000:02:03.0-usb-0:1:1.0-scsi-0:0:0:0 E: ID_PART_TABLE_TYPE=dos E: UDISKS_PRESENTATION_NOPOLICY=0 E: UDISKS_PARTITION_TABLE=1 E: UDISKS_PARTITION_TABLE_SCHEME=mbr E: UDISKS_PARTITION_TABLE_COUNT=1 E: DEVLINKS=/dev/block/8:16 /dev/disk/by-id/usb-Lexar_USB_Flash_Drive_AA5OCYQII8PSQXBB-0:0 /dev/disk/by-path/pci-0000:02:03.0-usb-0:1:1.0-scsi-0:0:0:0 and my software is: Codice: Seleziona tutto #include <stdio.h> #include <libudev.h> #include <stdlib.h> #include <locale.h> #include <unistd.h> int main(void) { struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; struct udev_device *dev; /* Create the udev object */ struct udev *udev = udev_new(); if (!udev) { printf("Can't create udev\n"); exit(0); } enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_subsystem(enumerate, "scsi_generic"); udev_enumerate_scan_devices(enumerate); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { const char *path; /* Get the filename of the /sys entry for the device and create a udev_device object (dev) representing it */ path = udev_list_entry_get_name(dev_list_entry); dev = udev_device_new_from_syspath(udev, path); /* usb_device_get_devnode() returns the path to the device node itself in /dev. */ printf("Device Node Path: %s\n", udev_device_get_devnode(dev)); /* The device pointed to by dev contains information about the hidraw device. In order to get information about the USB device, get the parent device with the subsystem/devtype pair of "usb"/"usb_device". This will be several levels up the tree, but the function will find it.*/ dev = udev_device_get_parent_with_subsystem_devtype( dev, "block", "disk"); if (!dev) { printf("Errore\n"); exit(1); } /* From here, we can call get_sysattr_value() for each file in the device's /sys entry. The strings passed into these functions (idProduct, idVendor, serial, etc.) correspond directly to the files in the directory which represents the USB device. Note that USB strings are Unicode, UCS2 encoded, but the strings returned from udev_device_get_sysattr_value() are UTF-8 encoded. */ printf(" VID/PID: %s %s\n", udev_device_get_sysattr_value(dev,"idVendor"), udev_device_get_sysattr_value(dev, "idProduct")); printf(" %s\n %s\n", udev_device_get_sysattr_value(dev,"manufacturer"), udev_device_get_sysattr_value(dev,"product")); printf(" serial: %s\n", udev_device_get_sysattr_value(dev, "serial")); udev_device_unref(dev); } /* Free the enumerator object */ udev_enumerate_unref(enumerate); udev_unref(udev); return 0; } the problem is that i obtain in output: Device Node Path: /dev/sg0 Errore and dont view information. subsystem and the devtype i think that are inserted well : "block" and "disk". thanks for help. Bye

    Read the article

  • Ajax Control Toolkit Now Supports jQuery

    - by Stephen.Walther
    I’m excited to announce the September 2013 release of the Ajax Control Toolkit, which now supports building new Ajax Control Toolkit controls with jQuery. You can download the latest release of the Ajax Control Toolkit from http://AjaxControlToolkit.CodePlex.com or you can install the Ajax Control Toolkit directly within Visual Studio by executing the following NuGet command: The New jQuery Extender Base Class This release of the Ajax Control Toolkit introduces a new jQueryExtender base class. This new base class enables you to create Ajax Control Toolkit controls with jQuery instead of the Microsoft Ajax Library. Currently, only one control in the Ajax Control Toolkit has been rewritten to use the new jQueryExtender base class (only one control has been jQueryized). The ToggleButton control is the first of the Ajax Control Toolkit controls to undergo this dramatic transformation. All of the other controls in the Ajax Control Toolkit are written using the Microsoft Ajax Library. We hope to gradually rewrite these controls as jQuery controls over time. You can view the new jQuery ToggleButton live at the Ajax Control Toolkit sample site: http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/ToggleButton/ToggleButton.aspx Why are we rewriting Ajax Control Toolkits with jQuery? There are very few developers actively working with the Microsoft Ajax Library while there are thousands of developers actively working with jQuery. Because we want talented developers in the community to continue to contribute to the Ajax Control Toolkit, and because almost all JavaScript developers are familiar with jQuery, it makes sense to support jQuery with the Ajax Control Toolkit. Also, we believe that the Ajax Control Toolkit is a great framework for Web Forms developers who want to build new ASP.NET controls that use JavaScript. The Ajax Control Toolkit has great features such as automatic bundling, minification, caching, and compression. We want to make it easy for ASP.NET developers to build new controls that take advantage of these features. Instantiating Controls with data-* Attributes We took advantage of the new JQueryExtender base class to change the way that Ajax Control Toolkit controls are instantiated. In the past, adding an Ajax Control Toolkit to a page resulted in inline JavaScript being injected into the page. For example, adding the ToggleButton control to a page injected the following HTML and script: <input id="ctl00_SampleContent_CheckBox1" name="ctl00$SampleContent$CheckBox1" type="checkbox" checked="checked" /> <script type="text/javascript"> //<![CDATA[ Sys.Application.add_init(function() { $create(Sys.Extended.UI.ToggleButtonBehavior, {"CheckedImageAlternateText":"Check", "CheckedImageUrl":"ToggleButton_Checked.gif", "ImageHeight":19, "ImageWidth":19, "UncheckedImageAlternateText":"UnCheck", "UncheckedImageUrl":"ToggleButton_Unchecked.gif", "id":"ctl00_SampleContent_ToggleButtonExtender1"}, null, null, $get("ctl00_SampleContent_CheckBox1")); }); //]]> </script> Notice the call to the JavaScript $create() method at the bottom of the page. When using the Microsoft Ajax Library, this call to the $create() method is necessary to create the Ajax Control Toolkit control. This inline script looks pretty ugly to a modern JavaScript developer. Inline script! Horrible! The jQuery version of the ToggleButton injects the following HTML and script into the page: <input id="ctl00_SampleContent_CheckBox1" name="ctl00$SampleContent$CheckBox1" type="checkbox" checked="checked" data-act-togglebuttonextender="imageWidth:19, imageHeight:19, uncheckedImageUrl:'ToggleButton_Unchecked.gif', checkedImageUrl:'ToggleButton_Checked.gif', uncheckedImageAlternateText:'I don&#39;t understand why you don&#39;t like ASP.NET', checkedImageAlternateText:'It&#39;s really nice to hear from you that you like ASP.NET'" /> Notice that there is no script! There is no call to the $create() method. In fact, there is no inline JavaScript at all. The jQuery version of the ToggleButton uses an HTML5 data-* attribute instead of an inline script. The ToggleButton control is instantiated with a data-act-togglebuttonextender attribute. Using data-* attributes results in much cleaner markup (You don’t need to feel embarrassed when selecting View Source in your browser). Ajax Control Toolkit versus jQuery So in a jQuery world why is the Ajax Control Toolkit needed at all? Why not just use jQuery plugins instead of the Ajax Control Toolkit? For example, there are lots of jQuery ToggleButton plugins floating around the Internet. Why not just use one of these jQuery plugins instead of using the Ajax Control Toolkit ToggleButton control? There are three main reasons why the Ajax Control Toolkit continues to be valuable in a jQuery world: Ajax Control Toolkit controls run on both the server and client jQuery plugins are client only. A jQuery plugin does not include any server-side code. If you need to perform any work on the server – think of the AjaxFileUpload control – then you can’t use a pure jQuery solution. Ajax Control Toolkit controls provide a better Visual Studio experience You don’t get any design time experience when you use jQuery plugins within Visual Studio. Ajax Control Toolkit controls, on the other hand, are designed to work with Visual Studio. For example, you can use the Visual Studio Properties window to set Ajax Control Toolkit control properties. Ajax Control Toolkit controls shield you from working with JavaScript I like writing code in JavaScript. However, not all developers like JavaScript and some developers want to completely avoid writing any JavaScript code at all. The Ajax Control Toolkit enables you to take advantage of JavaScript (and the latest features of HTML5) in your ASP.NET Web Forms websites without writing a single line of JavaScript. Better ToolkitScriptManager Documentation With this release, we have added more detailed documentation for using the ToolkitScriptManager. In particular, we added documentation that describes how to take advantage of the new bundling, minification, compression, and caching features of the Ajax Control Toolkit. The ToolkitScriptManager documentation is part of the Ajax Control Toolkit sample site and it can be read here: http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/ToolkitScriptManager/ToolkitScriptManager.aspx Other Fixes This release of the Ajax Control Toolkit includes several important bug fixes. For example, the Ajax Control Toolkit Twitter control was completely rewritten with this release. Twitter is in the process of retiring the first version of their API. You can read about their plans here: https://dev.twitter.com/blog/planning-for-api-v1-retirement We completely rewrote the Ajax Control Toolkit Twitter control to use the new Twitter API. To take advantage of the new Twitter API, you must get a key and access token from Twitter and add the key and token to your web.config file. Detailed instructions for using the new version of the Ajax Control Toolkit Twitter control can be found here: http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/Twitter/Twitter.aspx   Summary We’ve made some really great changes to the Ajax Control Toolkit over the last two releases to modernize the toolkit. In the previous release, we updated the Ajax Control Toolkit to use a better bundling, minification, compression, and caching system. With this release, we updated the Ajax Control Toolkit to support jQuery. We also continue to update the Ajax Control Toolkit with important bug fixes. I hope you like these changes and I look forward to hearing your feedback.

    Read the article

  • Adding DTrace Probes to PHP Extensions

    - by cj
    The powerful DTrace tracing facility has some PHP-specific probes that can be enabled with --enable-dtrace. DTrace for Linux is being created by Oracle and is currently in tech preview. Currently it doesn't support userspace tracing so, in the meantime, Systemtap can be used to monitor the probes implemented in PHP. This was recently outlined in David Soria Parra's post Probing PHP with Systemtap on Linux. My post shows how DTrace probes can be added to PHP extensions and traced on Linux. I was using Oracle Linux 6.3. Not all Linux kernels are built with Systemtap, since this can impact stability. Check whether your running kernel (or others installed) have Systemtap enabled, and reboot with such a kernel: # grep CONFIG_UTRACE /boot/config-`uname -r` # grep CONFIG_UTRACE /boot/config-* When you install Systemtap itself, the package systemtap-sdt-devel is needed since it provides the sdt.h header file: # yum install systemtap-sdt-devel You can now install and build PHP as shown in David's article. Basically the build is with: $ cd ~/php-src $ ./configure --disable-all --enable-dtrace $ make (For me, running 'make' a second time failed with an error. The workaround is to do 'git checkout Zend/zend_dtrace.d' and then rerun 'make'. See PHP Bug 63704) David's article shows how to trace the probes already implemented in PHP. You can also use Systemtap to trace things like userspace PHP function calls. For example, create test.php: <?php $c = oci_connect('hr', 'welcome', 'localhost/orcl'); $s = oci_parse($c, "select dbms_xmlgen.getxml('select * from dual') xml from dual"); $r = oci_execute($s); $row = oci_fetch_array($s, OCI_NUM); $x = $row[0]->load(); $row[0]->free(); echo $x; ?> The normal output of this file is the XML form of Oracle's DUAL table: $ ./sapi/cli/php ~/test.php <?xml version="1.0"?> <ROWSET> <ROW> <DUMMY>X</DUMMY> </ROW> </ROWSET> To trace the PHP function calls, create the tracing file functrace.stp: probe process("sapi/cli/php").function("zif_*") { printf("Started function %s\n", probefunc()); } probe process("sapi/cli/php").function("zif_*").return { printf("Ended function %s\n", probefunc()); } This makes use of the way PHP userspace functions (not builtins) like oci_connect() map to C functions with a "zif_" prefix. Login as root, and run System tap on the PHP script: # cd ~cjones/php-src # stap -c 'sapi/cli/php ~cjones/test.php' ~cjones/functrace.stp Started function zif_oci_connect Ended function zif_oci_connect Started function zif_oci_parse Ended function zif_oci_parse Started function zif_oci_execute Ended function zif_oci_execute Started function zif_oci_fetch_array Ended function zif_oci_fetch_array Started function zif_oci_lob_load <?xml version="1.0"?> <ROWSET> <ROW> <DUMMY>X</DUMMY> </ROW> </ROWSET> Ended function zif_oci_lob_load Started function zif_oci_free_descriptor Ended function zif_oci_free_descriptor Each call and return is logged. The Systemtap scripting language allows complex scripts to be built. There are many examples on the web. To augment this generic capability and the PHP probes in PHP, other extensions can have probes too. Below are the steps I used to add probes to OCI8: I created a provider file ext/oci8/oci8_dtrace.d, enabling three probes. The first one will accept a parameter that runtime tracing can later display: provider php { probe oci8__connect(char *username); probe oci8__nls_start(); probe oci8__nls_done(); }; I updated ext/oci8/config.m4 with the PHP_INIT_DTRACE macro. The patch is at the end of config.m4. The macro takes the provider prototype file, a name of the header file that 'dtrace' will generate, and a list of sources files with probes. When --enable-dtrace is used during PHP configuration, then the outer $PHP_DTRACE check is true and my new probes will be enabled. I've chosen to define an OCI8 specific macro, HAVE_OCI8_DTRACE, which can be used in the OCI8 source code: diff --git a/ext/oci8/config.m4 b/ext/oci8/config.m4 index 34ae76c..f3e583d 100644 --- a/ext/oci8/config.m4 +++ b/ext/oci8/config.m4 @@ -341,4 +341,17 @@ if test "$PHP_OCI8" != "no"; then PHP_SUBST_OLD(OCI8_ORACLE_VERSION) fi + + if test "$PHP_DTRACE" = "yes"; then + AC_CHECK_HEADERS([sys/sdt.h], [ + PHP_INIT_DTRACE([ext/oci8/oci8_dtrace.d], + [ext/oci8/oci8_dtrace_gen.h],[ext/oci8/oci8.c]) + AC_DEFINE(HAVE_OCI8_DTRACE,1, + [Whether to enable DTrace support for OCI8 ]) + ], [ + AC_MSG_ERROR( + [Cannot find sys/sdt.h which is required for DTrace support]) + ]) + fi + fi In ext/oci8/oci8.c, I added the probes at, for this example, semi-arbitrary places: diff --git a/ext/oci8/oci8.c b/ext/oci8/oci8.c index e2241cf..ffa0168 100644 --- a/ext/oci8/oci8.c +++ b/ext/oci8/oci8.c @@ -1811,6 +1811,12 @@ php_oci_connection *php_oci_do_connect_ex(char *username, int username_len, char } } +#ifdef HAVE_OCI8_DTRACE + if (DTRACE_OCI8_CONNECT_ENABLED()) { + DTRACE_OCI8_CONNECT(username); + } +#endif + /* Initialize global handles if they weren't initialized before */ if (OCI_G(env) == NULL) { php_oci_init_global_handles(TSRMLS_C); @@ -1870,11 +1876,22 @@ php_oci_connection *php_oci_do_connect_ex(char *username, int username_len, char size_t rsize = 0; sword result; +#ifdef HAVE_OCI8_DTRACE + if (DTRACE_OCI8_NLS_START_ENABLED()) { + DTRACE_OCI8_NLS_START(); + } +#endif PHP_OCI_CALL_RETURN(result, OCINlsEnvironmentVariableGet, (&charsetid_nls_lang, 0, OCI_NLS_CHARSET_ID, 0, &rsize)); if (result != OCI_SUCCESS) { charsetid_nls_lang = 0; } smart_str_append_unsigned_ex(&hashed_details, charsetid_nls_lang, 0); + +#ifdef HAVE_OCI8_DTRACE + if (DTRACE_OCI8_NLS_DONE_ENABLED()) { + DTRACE_OCI8_NLS_DONE(); + } +#endif } timestamp = time(NULL); The oci_connect(), oci_pconnect() and oci_new_connect() calls all use php_oci_do_connect_ex() internally. The first probe simply records that the PHP application made a connection call. I already showed a way to do this without needing a probe, but adding a specific probe lets me record the username. The other two probes can be used to time how long the globalization initialization takes. The relationships between the oci8_dtrace.d names like oci8__connect, the probe guards like DTRACE_OCI8_CONNECT_ENABLED() and probe names like DTRACE_OCI8_CONNECT() are obvious after seeing the pattern of all three probes. I included the new header that will be automatically created by the dtrace tool when PHP is built. I did this in ext/oci8/php_oci8_int.h: diff --git a/ext/oci8/php_oci8_int.h b/ext/oci8/php_oci8_int.h index b0d6516..c81fc5a 100644 --- a/ext/oci8/php_oci8_int.h +++ b/ext/oci8/php_oci8_int.h @@ -44,6 +44,10 @@ # endif # endif /* osf alpha */ +#ifdef HAVE_OCI8_DTRACE +#include "oci8_dtrace_gen.h" +#endif + #if defined(min) #undef min #endif Now PHP can be rebuilt: $ cd ~/php-src $ rm configure && ./buildconf --force $ ./configure --disable-all --enable-dtrace \ --with-oci8=instantclient,/home/cjones/instantclient $ make If 'make' fails, do the 'git checkout Zend/zend_dtrace.d' trick I mentioned. The new probes can be seen by logging in as root and running: # stap -l 'process.provider("php").mark("oci8*")' -c 'sapi/cli/php -i' process("sapi/cli/php").provider("php").mark("oci8__connect") process("sapi/cli/php").provider("php").mark("oci8__nls_done") process("sapi/cli/php").provider("php").mark("oci8__nls_start") To test them out, create a new trace file, oci.stp: global numconnects; global start; global numcharlookups = 0; global tottime = 0; probe process.provider("php").mark("oci8-connect") { printf("Connected as %s\n", user_string($arg1)); numconnects += 1; } probe process.provider("php").mark("oci8-nls_start") { start = gettimeofday_us(); numcharlookups++; } probe process.provider("php").mark("oci8-nls_done") { tottime += gettimeofday_us() - start; } probe end { printf("Connects: %d, Charset lookups: %ld\n", numconnects, numcharlookups); printf("Total NLS charset initalization time: %ld usecs/connect\n", (numcharlookups 0 ? tottime/numcharlookups : 0)); } This calculates the average time that the NLS character set lookup takes. It also prints out the username of each connection, as an example of using parameters. Login as root and run Systemtap over the PHP script: # cd ~cjones/php-src # stap -c 'sapi/cli/php ~cjones/test.php' ~cjones/oci.stp Connected as cj <?xml version="1.0"?> <ROWSET> <ROW> <DUMMY>X</DUMMY> </ROW> </ROWSET> Connects: 1, Charset lookups: 1 Total NLS charset initalization time: 164 usecs/connect This shows the time penalty of making OCI8 look up the default character set. This time would be zero if a character set had been passed as the fourth argument to oci_connect() in test.php.

    Read the article

  • Session memory – who’s this guy named Max and what’s he doing with my memory?

    - by extended_events
    SQL Server MVP Jonathan Kehayias (blog) emailed me a question last week when he noticed that the total memory used by the buffers for an event session was larger than the value he specified for the MAX_MEMORY option in the CREATE EVENT SESSION DDL. The answer here seems like an excellent subject for me to kick-off my new “401 – Internals” tag that identifies posts where I pull back the curtains a bit and let you peek into what’s going on inside the extended events engine. In a previous post (Option Trading: Getting the most out of the event session options) I explained that we use a set of buffers to store the event data before  we write the event data to asynchronous targets. The MAX_MEMORY along with the MEMORY_PARTITION_MODE defines how big each buffer will be. Theoretically, that means that I can predict the size of each buffer using the following formula: max memory / # of buffers = buffer size If it was that simple I wouldn’t be writing this post. I’ll take “boundary” for 64K Alex For a number of reasons that are beyond the scope of this blog, we create event buffers in 64K chunks. The result of this is that the buffer size indicated by the formula above is rounded up to the next 64K boundary and that is the size used to create the buffers. If you think visually, this means that the graph of your max_memory option compared to the actual buffer size that results will look like a set of stairs rather than a smooth line. You can see this behavior by looking at the output of dm_xe_sessions, specifically the fields related to the buffer sizes, over a range of different memory inputs: Note: This test was run on a 2 core machine using per_cpu partitioning which results in 5 buffers. (Seem my previous post referenced above for the math behind buffer count.) input_memory_kb total_regular_buffers regular_buffer_size total_buffer_size 637 5 130867 654335 638 5 130867 654335 639 5 130867 654335 640 5 196403 982015 641 5 196403 982015 642 5 196403 982015 This is just a segment of the results that shows one of the “jumps” between the buffer boundary at 639 KB and 640 KB. You can verify the size boundary by doing the math on the regular_buffer_size field, which is returned in bytes: 196403 – 130867 = 65536 bytes 65536 / 1024 = 64 KB The relationship between the input for max_memory and when the regular_buffer_size is going to jump from one 64K boundary to the next is going to change based on the number of buffers being created. The number of buffers is dependent on the partition mode you choose. If you choose any partition mode other than NONE, the number of buffers will depend on your hardware configuration. (Again, see the earlier post referenced above.) With the default partition mode of none, you always get three buffers, regardless of machine configuration, so I generated a “range table” for max_memory settings between 1 KB and 4096 KB as an example. start_memory_range_kb end_memory_range_kb total_regular_buffers regular_buffer_size total_buffer_size 1 191 NULL NULL NULL 192 383 3 130867 392601 384 575 3 196403 589209 576 767 3 261939 785817 768 959 3 327475 982425 960 1151 3 393011 1179033 1152 1343 3 458547 1375641 1344 1535 3 524083 1572249 1536 1727 3 589619 1768857 1728 1919 3 655155 1965465 1920 2111 3 720691 2162073 2112 2303 3 786227 2358681 2304 2495 3 851763 2555289 2496 2687 3 917299 2751897 2688 2879 3 982835 2948505 2880 3071 3 1048371 3145113 3072 3263 3 1113907 3341721 3264 3455 3 1179443 3538329 3456 3647 3 1244979 3734937 3648 3839 3 1310515 3931545 3840 4031 3 1376051 4128153 4032 4096 3 1441587 4324761 As you can see, there are 21 “steps” within this range and max_memory values below 192 KB fall below the 64K per buffer limit so they generate an error when you attempt to specify them. Max approximates True as memory approaches 64K The upshot of this is that the max_memory option does not imply a contract for the maximum memory that will be used for the session buffers (Those of you who read Take it to the Max (and beyond) know that max_memory is really only referring to the event session buffer memory.) but is more of an estimate of total buffer size to the nearest higher multiple of 64K times the number of buffers you have. The maximum delta between your initial max_memory setting and the true total buffer size occurs right after you break through a 64K boundary, for example if you set max_memory = 576 KB (see the green line in the table), your actual buffer size will be closer to 767 KB in a non-partitioned event session. You get “stepped up” for every 191 KB block of initial max_memory which isn’t likely to cause a problem for most machines. Things get more interesting when you consider a partitioned event session on a computer that has a large number of logical CPUs or NUMA nodes. Since each buffer gets “stepped up” when you break a boundary, the delta can get much larger because it’s multiplied by the number of buffers. For example, a machine with 64 logical CPUs will have 160 buffers using per_cpu partitioning or if you have 8 NUMA nodes configured on that machine you would have 24 buffers when using per_node. If you’ve just broken through a 64K boundary and get “stepped up” to the next buffer size you’ll end up with total buffer size approximately 10240 KB and 1536 KB respectively (64K * # of buffers) larger than max_memory value you might think you’re getting. Using per_cpu partitioning on large machine has the most impact because of the large number of buffers created. If the amount of memory being used by your system within these ranges is important to you then this is something worth paying attention to and considering when you configure your event sessions. The DMV dm_xe_sessions is the tool to use to identify the exact buffer size for your sessions. In addition to the regular buffers (read: event session buffers) you’ll also see the details for large buffers if you have configured MAX_EVENT_SIZE. The “buffer steps” for any given hardware configuration should be static within each partition mode so if you want to have a handy reference available when you configure your event sessions you can use the following code to generate a range table similar to the one above that is applicable for your specific machine and chosen partition mode. DECLARE @buf_size_output table (input_memory_kb bigint, total_regular_buffers bigint, regular_buffer_size bigint, total_buffer_size bigint) DECLARE @buf_size int, @part_mode varchar(8) SET @buf_size = 1 -- Set to the begining of your max_memory range (KB) SET @part_mode = 'per_cpu' -- Set to the partition mode for the table you want to generate WHILE @buf_size <= 4096 -- Set to the end of your max_memory range (KB) BEGIN     BEGIN TRY         IF EXISTS (SELECT * from sys.server_event_sessions WHERE name = 'buffer_size_test')             DROP EVENT SESSION buffer_size_test ON SERVER         DECLARE @session nvarchar(max)         SET @session = 'create event session buffer_size_test on server                         add event sql_statement_completed                         add target ring_buffer                         with (max_memory = ' + CAST(@buf_size as nvarchar(4)) + ' KB, memory_partition_mode = ' + @part_mode + ')'         EXEC sp_executesql @session         SET @session = 'alter event session buffer_size_test on server                         state = start'         EXEC sp_executesql @session         INSERT @buf_size_output (input_memory_kb, total_regular_buffers, regular_buffer_size, total_buffer_size)             SELECT @buf_size, total_regular_buffers, regular_buffer_size, total_buffer_size FROM sys.dm_xe_sessions WHERE name = 'buffer_size_test'     END TRY     BEGIN CATCH         INSERT @buf_size_output (input_memory_kb)             SELECT @buf_size     END CATCH     SET @buf_size = @buf_size + 1 END DROP EVENT SESSION buffer_size_test ON SERVER SELECT MIN(input_memory_kb) start_memory_range_kb, MAX(input_memory_kb) end_memory_range_kb, total_regular_buffers, regular_buffer_size, total_buffer_size from @buf_size_output group by total_regular_buffers, regular_buffer_size, total_buffer_size Thanks to Jonathan for an interesting question and a chance to explore some of the details of Extended Event internals. - Mike

    Read the article

  • PPTP connection disconnect

    - by Vladimir Franciz S. Blando
    My pptp connection wont stay connected, it will disconnect in less than a minute here are some relevant log entries May 31 13:32:31 localhost NetworkManager[931]: <info> Starting VPN service 'pptp'... May 31 13:32:31 localhost NetworkManager[931]: <info> VPN service 'pptp' started (org.freedesktop.NetworkManager.pptp), PID 15216 May 31 13:32:31 localhost NetworkManager[931]: <info> VPN service 'pptp' appeared; activating connections May 31 13:32:31 localhost NetworkManager[931]: <info> VPN plugin state changed: init (1) May 31 13:32:31 localhost NetworkManager[931]: <info> VPN plugin state changed: starting (3) May 31 13:32:31 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (Connect) reply received. May 31 13:32:31 localhost pppd[15221]: Plugin /usr/lib/pppd/2.4.5/nm-pptp-pppd-plugin.so loaded. May 31 13:32:31 localhost pppd[15221]: pppd 2.4.5 started by root, uid 0 May 31 13:32:31 localhost pptp[15224]: nm-pptp-service-15216 log[main:pptp.c:314]: The synchronous pptp option is NOT activated May 31 13:32:31 localhost pppd[15221]: Using interface ppp0 May 31 13:32:31 localhost pppd[15221]: Connect: ppp0 <--> /dev/pts/5 May 31 13:32:31 localhost NetworkManager[931]: SCPlugin-Ifupdown: devices added (path: /sys/devices/virtual/net/ppp0, iface: ppp0) May 31 13:32:31 localhost NetworkManager[931]: SCPlugin-Ifupdown: device added (path: /sys/devices/virtual/net/ppp0, iface: ppp0): no ifupdown configuration found. May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 1 'Start-Control-Connection-Request' May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:739]: Received Start Control Connection Reply May 31 13:32:32 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:773]: Client connection established. May 31 13:32:33 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_rep:pptp_ctrl.c:251]: Sent control packet type is 7 'Outgoing-Call-Request' May 31 13:32:34 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:858]: Received Outgoing Call Reply. May 31 13:32:34 localhost pptp[15235]: nm-pptp-service-15216 log[ctrlp_disp:pptp_ctrl.c:897]: Outgoing call established (call ID 0, peer's call ID 1536). May 31 13:32:37 localhost pppd[15221]: CHAP authentication succeeded May 31 13:32:37 localhost kernel: [54007.078553] PPP MPPE Compression module registered May 31 13:32:40 localhost pppd[15221]: MPPE 128-bit stateless compression enabled May 31 13:32:42 localhost pppd[15221]: local IP address 10.100.0.52 May 31 13:32:42 localhost pppd[15221]: remote IP address 10.100.0.1 May 31 13:32:42 localhost pppd[15221]: primary DNS address 4.2.2.1 May 31 13:32:42 localhost pppd[15221]: secondary DNS address 255.255.255.255 May 31 13:32:42 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (IP Config Get) reply received. May 31 13:32:42 localhost NetworkManager[931]: <info> VPN Gateway: 103.28.219.2 May 31 13:32:42 localhost NetworkManager[931]: <info> Tunnel Device: ppp0 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Address: 10.100.0.52 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Prefix: 32 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 Point-to-Point Address: 10.100.0.1 May 31 13:32:42 localhost NetworkManager[931]: <info> Maximum Segment Size (MSS): 0 May 31 13:32:42 localhost NetworkManager[931]: <info> Forbid Default Route: no May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 DNS: 4.2.2.1 May 31 13:32:42 localhost NetworkManager[931]: <info> Internal IP4 DNS: 255.255.255.255 May 31 13:32:42 localhost NetworkManager[931]: <info> DNS Domain: '(none)' May 31 13:32:43 localhost dnsmasq[2127]: exiting on receipt of SIGTERM May 31 13:32:43 localhost NetworkManager[931]: <info> DNS: starting dnsmasq... May 31 13:32:43 localhost NetworkManager[931]: <info> (ppp0): writing resolv.conf to /sbin/resolvconf May 31 13:32:43 localhost dnsmasq[15290]: error at line 2 of /var/run/nm-dns-dnsmasq.conf May 31 13:32:43 localhost dnsmasq[15290]: FAILED to start up May 31 13:32:43 localhost NetworkManager[931]: <info> VPN connection 'Dynalabs' (IP Config Get) complete. May 31 13:32:43 localhost NetworkManager[931]: <info> Policy set 'Dynalabs' (ppp0) as default for IPv4 routing and DNS. May 31 13:32:43 localhost NetworkManager[931]: <info> VPN plugin state changed: started (4) May 31 13:32:43 localhost NetworkManager[931]: <warn> dnsmasq exited with error: Configuration problem (1) May 31 13:32:43 localhost NetworkManager[931]: <info> (ppp0): writing resolv.conf to /sbin/resolvconf May 31 13:32:43 localhost dbus[872]: [system] Activating service name='org.freedesktop.nm_dispatcher' (using servicehelper) May 31 13:32:43 localhost dbus[872]: [system] Successfully activated service 'org.freedesktop.nm_dispatcher' May 31 13:33:00 localhost ntpdate[15370]: step time server 91.189.94.4 offset -1.110301 sec May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd6d6 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x93aa May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xcc83 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2031 May 31 13:33:21 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x13d4 May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x5b11 May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x414b May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2f5f May 31 13:33:22 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe9ff May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8e20 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8f0 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf166 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x36e6 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xdd19 May 31 13:33:23 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xda26 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xac5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x53a5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x507e May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x1dc5 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf87b May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2f27 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd10c May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x66ef May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xa294 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xb15 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x52a2 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd863 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8a96 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xde19 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x9763 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xb23 May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x83ca May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x964e May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe8ae May 31 13:33:24 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf614 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x9b1 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf086 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xbff4 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x66c5 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xe42 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf295 May 31 13:33:25 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x86fe May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x3bc1 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xbaad May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x88b5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xd7a May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x30d5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x2d8f May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x3933 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x8d42 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x4b4 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xa205 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x7cc5 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x1b6a May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0xf004 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x21b6 May 31 13:33:26 localhost pppd[15221]: Protocol-Reject for unsupported protocol 0x51eb

    Read the article

  • 6 Ways to Free Up Hard Drive Space Used by Windows System Files

    - by Chris Hoffman
    We’ve previously covered the standard ways to free up space on Windows. But if you have a small solid-state drive and really want more hard space, there are geekier ways to reclaim hard drive space. Not all of these tips are recommended — in fact, if you have more than enough hard drive space, following these tips may actually be a bad idea. There’s a tradeoff to changing all of these settings. Erase Windows Update Uninstall Files Windows allows you to uninstall patches you install from Windows Update. This is helpful if an update ever causes a problem — but how often do you need to uninstall an update, anyway? And will you really ever need to uninstall updates you’ve installed several years ago? These uninstall files are probably just wasting space on your hard drive. A recent update released for Windows 7 allows you to erase Windows Update files from the Windows Disk Cleanup tool. Open Disk Cleanup, click Clean up system files, check the Windows Update Cleanup option, and click OK. If you don’t see this option, run Windows Update and install the available updates. Remove the Recovery Partition Windows computers generally come with recovery partitions that allow you to reset your computer back to its factory default state without juggling discs. The recovery partition allows you to reinstall Windows or use the Refresh and Reset your PC features. These partitions take up a lot of space as they need to contain a complete system image. On Microsoft’s Surface Pro, the recovery partition takes up about 8-10 GB. On other computers, it may be even larger as it needs to contain all the bloatware the manufacturer included. Windows 8 makes it easy to copy the recovery partition to removable media and remove it from your hard drive. If you do this, you’ll need to insert the removable media whenever you want to refresh or reset your PC. On older Windows 7 computers, you could delete the recovery partition using a partition manager — but ensure you have recovery media ready if you ever need to install Windows. If you prefer to install Windows from scratch instead of using your manufacturer’s recovery partition, you can just insert a standard Window disc if you ever want to reinstall Windows. Disable the Hibernation File Windows creates a hidden hibernation file at C:\hiberfil.sys. Whenever you hibernate the computer, Windows saves the contents of your RAM to the hibernation file and shuts down the computer. When it boots up again, it reads the contents of the file into memory and restores your computer to the state it was in. As this file needs to contain much of the contents of your RAM, it’s 75% of the size of your installed RAM. If you have 12 GB of memory, that means this file takes about 9 GB of space. On a laptop, you probably don’t want to disable hibernation. However, if you have a desktop with a small solid-state drive, you may want to disable hibernation to recover the space. When you disable hibernation, Windows will delete the hibernation file. You can’t move this file off the system drive, as it needs to be on C:\ so Windows can read it at boot. Note that this file and the paging file are marked as “protected operating system files” and aren’t visible by default. Shrink the Paging File The Windows paging file, also known as the page file, is a file Windows uses if your computer’s available RAM ever fills up. Windows will then “page out” data to disk, ensuring there’s always available memory for applications — even if there isn’t enough physical RAM. The paging file is located at C:\pagefile.sys by default. You can shrink it or disable it if you’re really crunched for space, but we don’t recommend disabling it as that can cause problems if your computer ever needs some paging space. On our computer with 12 GB of RAM, the paging file takes up 12 GB of hard drive space by default. If you have a lot of RAM, you can certainly decrease the size — we’d probably be fine with 2 GB or even less. However, this depends on the programs you use and how much memory they require. The paging file can also be moved to another drive — for example, you could move it from a small SSD to a slower, larger hard drive. It will be slower if Windows ever needs to use the paging file, but it won’t use important SSD space. Configure System Restore Windows seems to use about 10 GB of hard drive space for “System Protection” by default. This space is used for System Restore snapshots, allowing you to restore previous versions of system files if you ever run into a system problem. If you need to free up space, you could reduce the amount of space allocated to system restore or even disable it entirely. Of course, if you disable it entirely, you’ll be unable to use system restore if you ever need it. You’d have to reinstall Windows, perform a Refresh or Reset, or fix any problems manually. Tweak Your Windows Installer Disc Want to really start stripping down Windows, ripping out components that are installed by default? You can do this with a tool designed for modifying Windows installer discs, such as WinReducer for Windows 8 or RT Se7en Lite for Windows 7. These tools allow you to create a customized installation disc, slipstreaming in updates and configuring default options. You can also use them to remove components from the Windows disc, shrinking the size of the resulting Windows installation. This isn’t recommended as you could cause problems with your Windows installation by removing important features. But it’s certainly an option if you want to make Windows as tiny as possible. Most Windows users can benefit from removing Windows Update uninstallation files, so it’s good to see that Microsoft finally gave Windows 7 users the ability to quickly and easily erase these files. However, if you have more than enough hard drive space, you should probably leave well enough alone and let Windows manage the rest of these settings on its own. Image Credit: Yutaka Tsutano on Flickr     

    Read the article

  • How to archive data from a table to a local or remote database in SQL 2005 and SQL 2008

    - by simonsabin
    Often you have the need to archive data from a table. This leads to a number of challenges 1. How can you do it without impacting users 2. How can I make it transactionally consistent, i.e. the data I put in the archive is the data I remove from the main table 3. How can I get it to perform well Points 1 is very much tied to point 3. If it doesn't perform well then the delete of data is going to cause lots of locks and thus potentially blocking. For points 1 and 3 refer to my previous posts DELETE-TOP-x-rows-avoiding-a-table-scan and UPDATE-and-DELETE-TOP-and-ORDER-BY---Part2. In essence you need to be removing small chunks of data from your table and you want to do that avoiding a table scan. So that deals with the delete approach but archiving is about inserting that data somewhere else. Well in SQL 2008 they introduced a new feature INSERT over DML (Data Manipulation Language, i.e. SQL statements that change data), or composable DML. The ability to nest DML statements within themselves, so you can past the results of an insert to an update to a merge. I've mentioned this before here SQL-Server-2008---MERGE-and-optimistic-concurrency. This feature is currently limited to being able to consume the results of a DML statement in an INSERT statement. There are many restrictions which you can find here http://msdn.microsoft.com/en-us/library/ms177564.aspx look for the section "Inserting Data Returned From an OUTPUT Clause Into a Table" Even with the restrictions what we can do is consume the OUTPUT from a DELETE and INSERT the results into a table in another database. Note that in BOL it refers to not being able to use a remote table, remote means a table on another SQL instance. To show this working use this SQL to setup two databases foo and fooArchive create database foo go --create the source table fred in database foo select * into foo..fred from sys.objects go create database fooArchive go if object_id('fredarchive',DB_ID('fooArchive')) is null begin     select getdate() ArchiveDate,* into fooArchive..FredArchive from sys.objects where 1=2       end go And then we can use this simple statement to archive the data insert into fooArchive..FredArchive select getdate(),d.* from (delete top (1)         from foo..Fred         output deleted.*) d         go In this statement the delete can be any delete statement you wish so if you are deleting by ids or a range of values then you can do that. Refer to the DELETE-TOP-x-rows-avoiding-a-table-scan post to ensure that your delete is going to perform. The last thing you want to do is to perform 100 deletes each with 5000 records for each of those deletes to do a table scan. For a solution that works for SQL2005 or if you want to archive to a different server then you can use linked servers or SSIS. This example shows how to do it with linked servers. [ONARC-LAP03] is the source server. begin transaction insert into fooArchive..FredArchive select getdate(),d.* from openquery ([ONARC-LAP03],'delete top (1)                     from foo..Fred                     output deleted.*') d commit transaction and to prove the transactions work try, you should get the same number of records before and after. select (select count(1) from foo..Fred) fred        ,(select COUNT(1) from fooArchive..FredArchive ) fredarchive   begin transaction insert into fooArchive..FredArchive select getdate(),d.* from openquery ([ONARC-LAP03],'delete top (1)                     from foo..Fred                     output deleted.*') d rollback transaction   select (select count(1) from foo..Fred) fred        ,(select COUNT(1) from fooArchive..FredArchive ) fredarchive The transactions are very important with this solution. Look what happens when you don't have transactions and an error occurs   select (select count(1) from foo..Fred) fred        ,(select COUNT(1) from fooArchive..FredArchive ) fredarchive   insert into fooArchive..FredArchive select getdate(),d.* from openquery ([ONARC-LAP03],'delete top (1)                     from foo..Fred                     output deleted.*                     raiserror (''Oh doo doo'',15,15)') d                     select (select count(1) from foo..Fred) fred        ,(select COUNT(1) from fooArchive..FredArchive ) fredarchive Before running this think what the result would be. I got it wrong. What seems to happen is that the remote query is executed as a transaction, the error causes that to rollback. However the results have already been sent to the client and so get inserted into the

    Read the article

  • DBCC CHECKDB on VVLDB and latches (Or: My Pain is Your Gain)

    - by Argenis
      Does your CHECKDB hurt, Argenis? There is a classic blog series by Paul Randal [blog|twitter] called “CHECKDB From Every Angle” which is pretty much mandatory reading for anybody who’s even remotely considering going for the MCM certification, or its replacement (the Microsoft Certified Solutions Master: Data Platform – makes my fingers hurt just from typing it). Of particular interest is the post “Consistency Options for a VLDB” – on it, Paul provides solid, timeless advice (I use the word “timeless” because it was written in 2007, and it all applies today!) on how to perform checks on very large databases. Well, here I was trying to figure out how to make CHECKDB run faster on a restored copy of one of our databases, which happens to exceed 7TB in size. The whole thing was taking several days on multiple systems, regardless of the storage used – SAS, SATA or even SSD…and I actually didn’t pay much attention to how long it was taking, or even bothered to look at the reasons why - as long as it was finishing okay and found no consistency errors. Yes – I know. That was a huge mistake, as corruption found in a database several days after taking place could only allow for further spread of the corruption – and potentially large data loss. In the last two weeks I increased my attention towards this problem, as we noticed that CHECKDB was taking EVEN LONGER on brand new all-flash storage in the SAN! I couldn’t really explain it, and were almost ready to blame the storage vendor. The vendor told us that they could initially see the server driving decent I/O – around 450Mb/sec, and then it would settle at a very slow rate of 10Mb/sec or so. “Hum”, I thought – “CHECKDB is just not pushing the I/O subsystem hard enough”. Perfmon confirmed the vendor’s observations. Dreaded @BlobEater What was CHECKDB doing all the time while doing so little I/O? Eating Blobs. It turns out that CHECKDB was taking an extremely long time on one of our frankentables, which happens to be have 35 billion rows (yup, with a b) and sucks up several terabytes of space in the database. We do have a project ongoing to purge/split/partition this table, so it’s just a matter of time before we deal with it. But the reality today is that CHECKDB is coming to a screeching halt in performance when dealing with this particular table. Checking sys.dm_os_waiting_tasks and sys.dm_os_latch_stats showed that LATCH_EX (DBCC_OBJECT_METADATA) was by far the top wait type. I remembered hearing recently about that wait from another post that Paul Randal made, but that was related to computed-column indexes, and in fact, Paul himself reminded me of his article via twitter. But alas, our pathologic table had no non-clustered indexes on computed columns. I knew that latches are used by the database engine to do internal synchronization – but how could I help speed this up? After all, this is stuff that doesn’t have a lot of knobs to tweak. (There’s a fantastic level 500 talk by Bob Ward from Microsoft CSS [blog|twitter] called “Inside SQL Server Latches” given at PASS 2010 – and you can check it out here. DISCLAIMER: I assume no responsibility for any brain melting that might ensue from watching Bob’s talk!) Failed Hypotheses Earlier on this week I flew down to Palo Alto, CA, to visit our Headquarters – and after having a great time with my Monkey peers, I was relaxing on the plane back to Seattle watching a great talk by SQL Server MVP and fellow MCM Maciej Pilecki [twitter] called “Masterclass: A Day in the Life of a Database Transaction” where he discusses many different topics related to transaction management inside SQL Server. Very good stuff, and when I got home it was a little late – that slow DBCC CHECKDB that I had been dealing with was way in the back of my head. As I was looking at the problem at hand earlier on this week, I thought “How about I set the database to read-only?” I remembered one of the things Maciej had (jokingly) said in his talk: “if you don’t want locking and blocking, set the database to read-only” (or something to that effect, pardon my loose memory). I immediately killed the CHECKDB which had been running painfully for days, and set the database to read-only mode. Then I ran DBCC CHECKDB against it. It started going really fast (even a bit faster than before), and then throttled down again to around 10Mb/sec. All sorts of expletives went through my head at the time. Sure enough, the same latching scenario was present. Oh well. I even spent some time trying to figure out if NUMA was hurting performance. Folks on Twitter made suggestions in this regard (thanks, Lonny! [twitter]) …Eureka? This past Friday I was still scratching my head about the whole thing; I was ready to start profiling with XPERF to see if I could figure out which part of the engine was to blame and then get Microsoft to look at the evidence. After getting a bunch of good news I’ll blog about separately, I sat down for a figurative smack down with CHECKDB before the weekend. And then the light bulb went on. A sparse column. I thought that I couldn’t possibly be experiencing the same scenario that Paul blogged about back in March showing extreme latching with non-clustered indexes on computed columns. Did I even have a non-clustered index on my sparse column? As it turns out, I did. I had one filtered non-clustered index – with the sparse column as the index key (and only column). To prove that this was the problem, I went and setup a test. Yup, that'll do it The repro is very simple for this issue: I tested it on the latest public builds of SQL Server 2008 R2 SP2 (CU6) and SQL Server 2012 SP1 (CU4). First, create a test database and a test table, which only needs to contain a sparse column: CREATE DATABASE SparseColTest; GO USE SparseColTest; GO CREATE TABLE testTable (testCol smalldatetime SPARSE NULL); GO INSERT INTO testTable (testCol) VALUES (NULL); GO 1000000 That’s 1 million rows, and even though you’re inserting NULLs, that’s going to take a while. In my laptop, it took 3 minutes and 31 seconds. Next, we run DBCC CHECKDB against the database: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; This runs extremely fast, as least on my test rig – 198 milliseconds. Now let’s create a filtered non-clustered index on the sparse column: CREATE NONCLUSTERED INDEX [badBadIndex] ON testTable (testCol) WHERE testCol IS NOT NULL; With the index in place now, let’s run DBCC CHECKDB one more time: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; In my test system this statement completed in 11433 milliseconds. 11.43 full seconds. Quite the jump from 198 milliseconds. I went ahead and dropped the filtered non-clustered indexes on the restored copy of our production database, and ran CHECKDB against that. We went down from 7+ days to 19 hours and 20 minutes. Cue the “Argenis is not impressed” meme, please, Mr. LaRock. My pain is your gain, folks. Go check to see if you have any of such indexes – they’re likely causing your consistency checks to run very, very slow. Happy CHECKDBing, -Argenis ps: I plan to file a Connect item for this issue – I consider it a pretty serious bug in the engine. After all, filtered indexes were invented BECAUSE of the sparse column feature – and it makes a lot of sense to use them together. Watch this space and my twitter timeline for a link.

    Read the article

  • ???????????????

    - by Todd Bao
    ?????????,???????????????????,??????????,???????,??????,?????????????: SYS@fmw//Scripts> @showfkparent hr employees---------------|             ||DEPARTMENT_ID| +>-->HR.DEPARTMENTS.DEPARTMENT_ID|             ||JOB_ID       | +>-->HR.JOBS.JOB_ID|             ||MANAGER_ID   | +>-->HR.EMPLOYEES.EMPLOYEE_ID|             |--------------- SYS@fmw//Scripts> @showfkparent sh sales------------|          ||CHANNEL_ID| +>-->SH.CHANNELS.CHANNEL_ID|          ||CUST_ID   | +>-->SH.CUSTOMERS.CUST_ID|          ||PROD_ID   | +>-->SH.PRODUCTS.PROD_ID|          ||PROMO_ID  | +>-->SH.PROMOTIONS.PROMO_ID|          ||TIME_ID   | +>-->SH.TIMES.TIME_ID|          |------------ ????????? ??? 30-08-2012 set echo offset verify offset serveroutput ondefine table_owner='&1'define table_name='&2'declare        type info_typ is record (ct varchar2(30),cc varchar2(30),po varchar2(30),pt varchar2(30),pc varchar2(30));        type info_tab_typ is table of info_typ index by pls_integer;        info_tab info_tab_typ;        max_col_length number := 0;beginwith        cons_child as (select                        owner,constraint_name,table_name,                        r_owner,r_constraint_name                from dba_constraints                where                        constraint_type='R' and                        owner=upper('&table_owner') and                        table_name=upper('&table_name')),        cons_parent as (select owner,constraint_name,table_name                from dba_constraints                where                        (owner,constraint_name) in                        (select r_owner,r_constraint_name from cons_child))select        child.table_name child_table_name,        child.column_name child_column_name,        parent.owner parent_owner,        parent.table_name parent_table_name,        parent.column_name parent_column_name        bulk collect into info_tabfrom        cons_child cc,        cons_parent cp,        dba_cons_columns parent,        dba_cons_columns childwhere        cc.owner = child.owner and        cc.constraint_name = child.constraint_name and        cp.owner = parent.owner and        cp.constraint_name = parent.constraint_name and        cc.r_owner = cp.owner and        cc.r_constraint_name = cp.constraint_name and        parent.position = child.positionorder by 2;if (info_tab is not null and info_tab.count >0) then        for i in 1..info_tab.count loop                if length(info_tab(i).cc) > max_col_length then                        max_col_length := length(info_tab(i).cc);                end if;        end loop;        dbms_output.put_line(rpad('-',max_col_length+2,'-'));                dbms_output.put_line(' '||'|'||rpad(' ',max_col_length,' ')||'|');        for i in 1..info_tab.count loop                dbms_output.put('|'||rpad(info_tab(i).cc,max_col_length,' ')||'|');                dbms_output.put_line(' +>-->'||info_tab(i).po||'.'||info_tab(i).pt||'.'||info_tab(i).pc);                dbms_output.put_line('|'||rpad(' ',max_col_length,' ')||'|');        end loop;        dbms_output.put_line(rpad('-',max_col_length+2,'-'));else        dbms_output.put_line('### No foreign key defined on this table! ###');end if;end;/undefine table_ownerundefine table_nameset serveroutput off Todd

    Read the article

  • socket operation on nonsocket or bad file descriptor

    - by Magn3s1um
    I'm writing a pthread server which takes requests from clients and sends them back a bunch of .ppm files. Everything seems to go well, but sometimes when I have just 1 client connected, when trying to read from the file descriptor (for the file), it says Bad file Descriptor. This doesn't make sense, since my int fd isn't -1, and the file most certainly exists. Other times, I get this "Socket operation on nonsocket" error. This is weird because other times, it doesn't give me this error and everything works fine. When trying to connect multiple clients, for some reason, it will only send correctly to one, and then the other client gets the bad file descriptor or "nonsocket" error, even though both threads are processing the same messages and do the same routines. Anyone have an idea why? Here's the code that is giving me that error: while(mqueue.head != mqueue.tail && count < dis_m){ printf("Sending to client %s: %s\n", pointer->id, pointer->message); int fd; fd = open(pointer->message, O_RDONLY); char buf[58368]; int bytesRead; printf("This is fd %d\n", fd); bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); fflush(stdout); close(fd); mqueue.mcount--; mqueue.head = mqueue.head->next; free(pointer->message); free(pointer); pointer = mqueue.head; count++; } printf("Sending %s\n", pointer->message); int fd; fd = open(pointer->message, O_RDONLY); printf("This is fd %d\n", fd); printf("I am hhere2\n"); char buf[58368]; int bytesRead; bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); close(fd); mqueue.mcount--; if(mqueue.head != mqueue.tail){ mqueue.head = mqueue.head->next; } else{ mqueue.head->next = malloc(sizeof(struct message)); mqueue.head = mqueue.head->next; mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.head->message = NULL; } free(pointer->message); free(pointer); pthread_mutex_unlock(&numm); pthread_mutex_unlock(&circ); pthread_mutex_unlock(&slots); The messages for both threads are the same, being of the form ./path/imageXX.ppm where XX is the number that should go to the client. The file size of each image is 58368 bytes. Sometimes, this code hangs on the read, and stops execution. I don't know this would be either, because the file descriptor comes back as valid. Thanks in advanced. Edit: Here's some sample output: Sending to client a: ./support/images/sw90.ppm This is fd 4 Error: : Socket operation on non-socket Sending to client a: ./support/images/sw91.ppm This is fd 4 Error: : Socket operation on non-socket Sending ./support/images/sw92.ppm This is fd 4 I am hhere2 Error: : Socket operation on non-socket My dispatcher has defeated evil Sample with 2 clients (client b was serviced first) Sending to client b: ./support/images/sw87.ppm This is fd 6 Error: : Success Sending to client b: ./support/images/sw88.ppm This is fd 6 Error: : Success Sending to client b: ./support/images/sw89.ppm This is fd 6 Error: : Success This is fd 6 Error: : Bad file descriptor Sending to client a: ./support/images/sw85.ppm This is fd 6 Error: As you can see, who ever is serviced first in this instance can open the files, but not the 2nd person. Edit2: Full code. Sorry, its pretty long and terribly formatted. #include <netinet/in.h> #include <netinet/in.h> #include <netdb.h> #include <arpa/inet.h> #include <sys/types.h> #include <sys/socket.h> #include <errno.h> #include <stdio.h> #include <unistd.h> #include <pthread.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include "ring.h" /* Version 1 Here is what is implemented so far: The threads are created from the arguments specified (number of threads that is) The server will lock and update variables based on how many clients are in the system and such. The socket that is opened when a new client connects, must be passed to the threads. To do this, we need some sort of global array. I did this by specifying an int client and main_pool_busy, and two pointers poolsockets and nonpoolsockets. My thinking on this was that when a new client enters the system, the server thread increments the variable client. When a thread is finished with this client (after it sends it the data), the thread will decrement client and close the socket. HTTP servers act this way sometimes (they terminate the socket as soon as one transmission is sent). *Note down at bottom After the server portion increments the client counter, we must open up a new socket (denoted by new_sd) and get this value to the appropriate thread. To do this, I created global array poolsockets, which will hold all the socket descriptors for our pooled threads. The server portion gets the new socket descriptor, and places the value in the first spot of the array that has a 0. We only place a value in this array IF: 1. The variable main_pool_busy < worknum (If we have more clients in the system than in our pool, it doesn't mean we should always create a new thread. At the end of this, the server signals on the condition variable clientin that a new client has arrived. In our pooled thread, we then must walk this array and check the array until we hit our first non-zero value. This is the socket we will give to that thread. The thread then changes the array to have a zero here. What if our all threads in our pool our busy? If this is the case, then we will know it because our threads in this pool will increment main_pool_busy by one when they are working on a request and decrement it when they are done. If main_pool_busy >= worknum, then we must dynamically create a new thread. Then, we must realloc the size of our nonpoolsockets array by 1 int. We then add the new socket descriptor to our pool. Here's what we need to figure out: NOTE* Each worker should generate 100 messages which specify the worker thread ID, client socket descriptor and a copy of the client message. Additionally, each message should include a message number, starting from 0 and incrementing for each subsequent message sent to the same client. I don't know how to keep track of how many messages were to the same client. Maybe we shouldn't close the socket descriptor, but rather keep an array of structs for each socket that includes how many messages they have been sent. Then, the server adds the struct, the threads remove it, then the threads add it back once they've serviced one request (unless the count is 100). ------------------------------------------------------------- CHANGES Version 1 ---------- NONE: this is the first version. */ #define MAXSLOTS 30 #define dis_m 15 //problems with dis_m ==1 //Function prototypes void inc_clients(); void init_mutex_stuff(pthread_t*, pthread_t*); void *threadpool(void *); void server(int); void add_to_socket_pool(int); void inc_busy(); void dec_busy(); void *dispatcher(); void create_message(long, int, int, char *, char *); void init_ring(); void add_to_ring(char *, char *, int, int, int); int socket_from_string(char *); void add_to_head(char *); void add_to_tail(char *); struct message * reorder(struct message *, struct message *, int); int get_threadid(char *); void delete_socket_messages(int); struct message * merge(struct message *, struct message *, int); int get_request(char *, char *, char*); ///////////////////// //Global mutexes and condition variables pthread_mutex_t startservice; pthread_mutex_t numclients; pthread_mutex_t pool_sockets; pthread_mutex_t nonpool_sockets; pthread_mutex_t m_pool_busy; pthread_mutex_t slots; pthread_mutex_t numm; pthread_mutex_t circ; pthread_cond_t clientin; pthread_cond_t m; /////////////////////////////////////// //Global variables int clients; int main_pool_busy; int * poolsockets, nonpoolsockets; int worknum; struct ring mqueue; /////////////////////////////////////// int main(int argc, char ** argv){ //error handling if not enough arguments to program if(argc != 3){ printf("Not enough arguments to server: ./server portnum NumThreadsinPool\n"); _exit(-1); } //Convert arguments from strings to integer values int port = atoi(argv[1]); worknum = atoi(argv[2]); //Start server portion server(port); } /////////////////////////////////////////////////////////////////////////////////////////////// //The listen server thread///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// void server(int port){ int sd, new_sd; struct sockaddr_in name, cli_name; int sock_opt_val = 1; int cli_len; pthread_t threads[worknum]; //create our pthread id array pthread_t dis[1]; //create our dispatcher array (necessary to create thread) init_mutex_stuff(threads, dis); //initialize mutexes and stuff //Server setup /////////////////////////////////////////////////////// if ((sd = socket (AF_INET, SOCK_STREAM, 0)) < 0) { perror("(servConn): socket() error"); _exit (-1); } if (setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, (char *) &sock_opt_val, sizeof(sock_opt_val)) < 0) { perror ("(servConn): Failed to set SO_REUSEADDR on INET socket"); _exit (-1); } name.sin_family = AF_INET; name.sin_port = htons (port); name.sin_addr.s_addr = htonl(INADDR_ANY); if (bind (sd, (struct sockaddr *)&name, sizeof(name)) < 0) { perror ("(servConn): bind() error"); _exit (-1); } listen (sd, 5); //End of server Setup ////////////////////////////////////////////////// for (;;) { cli_len = sizeof (cli_name); new_sd = accept (sd, (struct sockaddr *) &cli_name, &cli_len); printf ("Assigning new socket descriptor: %d\n", new_sd); inc_clients(); //New client has come in, increment clients add_to_socket_pool(new_sd); //Add client to the pool of sockets if (new_sd < 0) { perror ("(servConn): accept() error"); _exit (-1); } } pthread_exit(NULL); //Quit } //Adds the new socket to the array designated for pthreads in the pool void add_to_socket_pool(int socket){ pthread_mutex_lock(&m_pool_busy); //Lock so that we can check main_pool_busy int i; //If not all our main pool is busy, then allocate to one of them if(main_pool_busy < worknum){ pthread_mutex_unlock(&m_pool_busy); //unlock busy, we no longer need to hold it pthread_mutex_lock(&pool_sockets); //Lock the socket pool array so that we can edit it without worry for(i = 0; i < worknum; i++){ //Find a poolsocket that is -1; then we should put the real socket there. This value will be changed back to -1 when the thread grabs the sockfd if(poolsockets[i] == -1){ poolsockets[i] = socket; pthread_mutex_unlock(&pool_sockets); //unlock our pool array, we don't need it anymore inc_busy(); //Incrememnt busy (locks the mutex itself) pthread_cond_signal(&clientin); //Signal first thread waiting on a client that a client needs to be serviced break; } } } else{ //Dynamic thread creation goes here pthread_mutex_unlock(&m_pool_busy); } } //Increments the client number. If client number goes over worknum, we must dynamically create new pthreads void inc_clients(){ pthread_mutex_lock(&numclients); clients++; pthread_mutex_unlock(&numclients); } //Increments busy void inc_busy(){ pthread_mutex_lock(&m_pool_busy); main_pool_busy++; pthread_mutex_unlock(&m_pool_busy); } //Initialize all of our mutexes at the beginning and create our pthreads void init_mutex_stuff(pthread_t * threads, pthread_t * dis){ pthread_mutex_init(&startservice, NULL); pthread_mutex_init(&numclients, NULL); pthread_mutex_init(&pool_sockets, NULL); pthread_mutex_init(&nonpool_sockets, NULL); pthread_mutex_init(&m_pool_busy, NULL); pthread_mutex_init(&circ, NULL); pthread_cond_init (&clientin, NULL); main_pool_busy = 0; poolsockets = malloc(sizeof(int)*worknum); int threadreturn; //error checking variables long i = 0; //Loop and create pthreads for(i; i < worknum; i++){ threadreturn = pthread_create(&threads[i], NULL, threadpool, (void *) i); poolsockets[i] = -1; if(threadreturn){ perror("Thread pool created unsuccessfully"); _exit(-1); } } pthread_create(&dis[0], NULL, dispatcher, NULL); } ////////////////////////////////////////////////////////////////////////////////////////// /////////Main pool routines ///////////////////////////////////////////////////////////////////////////////////////// void dec_busy(){ pthread_mutex_lock(&m_pool_busy); main_pool_busy--; pthread_mutex_unlock(&m_pool_busy); } void dec_clients(){ pthread_mutex_lock(&numclients); clients--; pthread_mutex_unlock(&numclients); } //This is what our threadpool pthreads will be running. void *threadpool(void * threadid){ long id = (long) threadid; //Id of this thread int i; int socket; int counter = 0; //Try and gain access to the next client that comes in and wait until server signals that a client as arrived while(1){ pthread_mutex_lock(&startservice); //lock start service (required for cond wait) pthread_cond_wait(&clientin, &startservice); //wait for signal from server that client exists pthread_mutex_unlock(&startservice); //unlock mutex. pthread_mutex_lock(&pool_sockets); //Lock the pool socket so we can get the socket fd unhindered/interrupted for(i = 0; i < worknum; i++){ if(poolsockets[i] != -1){ socket = poolsockets[i]; poolsockets[i] = -1; pthread_mutex_unlock(&pool_sockets); } } printf("Thread #%d is past getting the socket\n", id); int incoming = 1; while(counter < 100 && incoming != 0){ char buffer[512]; bzero(buffer,512); int startcounter = 0; incoming = read(socket, buffer, 512); if(buffer[0] != 0){ //client ID:priority:request:arguments char id[100]; long prior; char request[100]; char arg1[100]; char message[100]; char arg2[100]; char * point; point = strtok(buffer, ":"); strcpy(id, point); point = strtok(NULL, ":"); prior = atoi(point); point = strtok(NULL, ":"); strcpy(request, point); point = strtok(NULL, ":"); strcpy(arg1, point); point = strtok(NULL, ":"); if(point != NULL){ strcpy(arg2, point); } int fd; if(strcmp(request, "start_movie") == 0){ int count = 1; while(count <= 100){ char temp[10]; snprintf(temp, 50, "%d\0", count); strcpy(message, "./support/images/"); strcat(message, arg1); strcat(message, temp); strcat(message, ".ppm"); printf("This is message %s to %s\n", message, id); count++; add_to_ring(message, id, prior, counter, socket); //Adds our created message to the ring counter++; } printf("I'm out of the loop\n"); } else if(strcmp(request, "seek_movie") == 0){ int count = atoi(arg2); while(count <= 100){ char temp[10]; snprintf(temp, 10, "%d\0", count); strcpy(message, "./support/images/"); strcat(message, arg1); strcat(message, temp); strcat(message, ".ppm"); printf("This is message %s\n", message); count++; } } //create_message(id, socket, counter, buffer, message); //Creates our message from the input from the client. Stores it in buffer } else{ delete_socket_messages(socket); break; } } counter = 0; close(socket);//Zero out counter again } dec_clients(); //client serviced, decrement clients dec_busy(); //thread finished, decrement busy } //Creates a message void create_message(long threadid, int socket, int counter, char * buffer, char * message){ snprintf(message, strlen(buffer)+15, "%d:%d:%d:%s", threadid, socket, counter, buffer); } //Gets the socket from the message string (maybe I should just pass in the socket to another method) int socket_from_string(char * message){ char * substr1 = strstr(message, ":"); char * substr2 = substr1; substr2++; int occurance = strcspn(substr2, ":"); char sock[10]; strncpy(sock, substr2, occurance); return atoi(sock); } //Adds message to our ring buffer's head void add_to_head(char * message){ printf("Adding to head of ring\n"); mqueue.head->message = malloc(strlen(message)+1); //Allocate space for message strcpy(mqueue.head->message, message); //copy bytes into allocated space } //Adds our message to our ring buffer's tail void add_to_tail(char * message){ printf("Adding to tail of ring\n"); mqueue.tail->message = malloc(strlen(message)+1); //allocate space for message strcpy(mqueue.tail->message, message); //copy bytes into allocated space mqueue.tail->next = malloc(sizeof(struct message)); //allocate space for the next message struct } //Adds a message to our ring void add_to_ring(char * message, char * id, int prior, int mnum, int socket){ //printf("This is message %s:" , message); pthread_mutex_lock(&circ); //Lock the ring buffer pthread_mutex_lock(&numm); //Lock the message count (will need this to make sure we can't fill the buffer over the max slots) if(mqueue.head->message == NULL){ add_to_head(message); //Adds it to head mqueue.head->socket = socket; //Set message socket mqueue.head->priority = prior; //Set its priority (thread id) mqueue.head->mnum = mnum; //Set its message number (used for sorting) mqueue.head->id = malloc(sizeof(id)); strcpy(mqueue.head->id, id); } else if(mqueue.tail->message == NULL){ //This is the problem for dis_m 1 I'm pretty sure add_to_tail(message); mqueue.tail->socket = socket; mqueue.tail->priority = prior; mqueue.tail->mnum = mnum; mqueue.tail->id = malloc(sizeof(id)); strcpy(mqueue.tail->id, id); } else{ mqueue.tail->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.tail->next; add_to_tail(message); mqueue.tail->socket = socket; mqueue.tail->priority = prior; mqueue.tail->mnum = mnum; mqueue.tail->id = malloc(sizeof(id)); strcpy(mqueue.tail->id, id); } mqueue.mcount++; pthread_mutex_unlock(&circ); if(mqueue.mcount >= dis_m){ pthread_mutex_unlock(&numm); pthread_cond_signal(&m); } else{ pthread_mutex_unlock(&numm); } printf("out of add to ring\n"); fflush(stdout); } ////////////////////////////////// //Dispatcher routines ///////////////////////////////// void *dispatcher(){ init_ring(); while(1){ pthread_mutex_lock(&slots); pthread_cond_wait(&m, &slots); pthread_mutex_lock(&numm); pthread_mutex_lock(&circ); printf("Dispatcher to the rescue!\n"); mqueue.head = reorder(mqueue.head, mqueue.tail, mqueue.mcount); //printf("This is the head %s\n", mqueue.head->message); //printf("This is the tail %s\n", mqueue.head->message); fflush(stdout); struct message * pointer = mqueue.head; int count = 0; while(mqueue.head != mqueue.tail && count < dis_m){ printf("Sending to client %s: %s\n", pointer->id, pointer->message); int fd; fd = open(pointer->message, O_RDONLY); char buf[58368]; int bytesRead; printf("This is fd %d\n", fd); bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); fflush(stdout); close(fd); mqueue.mcount--; mqueue.head = mqueue.head->next; free(pointer->message); free(pointer); pointer = mqueue.head; count++; } printf("Sending %s\n", pointer->message); int fd; fd = open(pointer->message, O_RDONLY); printf("This is fd %d\n", fd); printf("I am hhere2\n"); char buf[58368]; int bytesRead; bytesRead=read(fd,buf,58368); send(pointer->socket,buf,bytesRead,0); perror("Error:\n"); close(fd); mqueue.mcount--; if(mqueue.head != mqueue.tail){ mqueue.head = mqueue.head->next; } else{ mqueue.head->next = malloc(sizeof(struct message)); mqueue.head = mqueue.head->next; mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.head->message = NULL; } free(pointer->message); free(pointer); pthread_mutex_unlock(&numm); pthread_mutex_unlock(&circ); pthread_mutex_unlock(&slots); printf("My dispatcher has defeated evil\n"); } } void init_ring(){ mqueue.head = malloc(sizeof(struct message)); mqueue.head->next = malloc(sizeof(struct message)); mqueue.tail = mqueue.head->next; mqueue.mcount = 0; } struct message * reorder(struct message * begin, struct message * end, int num){ //printf("I am reordering for size %d\n", num); fflush(stdout); int i; if(num == 1){ //printf("Begin: %s\n", begin->message); begin->next = NULL; return begin; } else{ struct message * left = begin; struct message * right; int middle = num/2; for(i = 1; i < middle; i++){ left = left->next; } right = left -> next; left -> next = NULL; //printf("Begin: %s\nLeft: %s\nright: %s\nend:%s\n", begin->message, left->message, right->message, end->message); left = reorder(begin, left, middle); if(num%2 != 0){ right = reorder(right, end, middle+1); } else{ right = reorder(right, end, middle); } return merge(left, right, num); } } struct message * merge(struct message * left, struct message * right, int num){ //printf("I am merginging! left: %s %d, right: %s %dnum: %d\n", left->message,left->priority, right->message, right->priority, num); struct message * start, * point; int lenL= 0; int lenR = 0; int flagL = 0; int flagR = 0; int count = 0; int middle1 = num/2; int middle2; if(num%2 != 0){ middle2 = middle1+1; } else{ middle2 = middle1; } while(lenL < middle1 && lenR < middle2){ count++; //printf("In here for count %d\n", count); if(lenL == 0 && lenR == 0){ if(left->priority < right->priority){ start = left; //Set the start point point = left; //set our enum; left = left->next; //move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else if(left->priority > right->priority){ start = right; point = right; right = right->next; point->next = NULL; lenR++; } else{ if(left->mnum < right->mnum){ ////printf("This is where we are\n"); start = left; //Set the start point point = left; //set our enum; left = left->next; //move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else{ start = right; point = right; right = right->next; point->next = NULL; lenR++; } } } else{ if(left->priority < right->priority){ point->next = left; left = left->next; //move the left pointer point = point->next; point->next = NULL; //Set the next node to NULL lenL++; } else if(left->priority > right->priority){ point->next = right; right = right->next; point = point->next; point->next = NULL; lenR++; } else{ if(left->mnum < right->mnum){ point->next = left; //set our enum; left = left->next; point = point->next;//move the left pointer point->next = NULL; //Set the next node to NULL lenL++; } else{ point->next = right; right = right->next; point = point->next; point->next = NULL; lenR++; } } } if(lenL == middle1){ flagL = 1; break; } if(lenR == middle2){ flagR = 1; break; } } if(flagL == 1){ point->next = right; point = point->next; for(lenR; lenR< middle2-1; lenR++){ point = point->next; } point->next = NULL; mqueue.tail = point; } else{ point->next = left; point = point->next; for(lenL; lenL< middle1-1; lenL++){ point = point->next; } point->next = NULL; mqueue.tail = point; } //printf("This is the start %s\n", start->message); //printf("This is mqueue.tail %s\n", mqueue.tail->message); return start; } void delete_socket_messages(int a){ }

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • What is AssetCache and AFCache?

    - by gentmatt
    I'm currently investigating the different locations where the flashplayer in OSX stores its files. The reason is protecting privacy. I've found that Chrome and Firefox both read/write to the following directories: ~/Library/Caches/Adobe/Flash Player/AFCache ~/Library/Caches/Adobe/Flash Player/AssetCache ~/Library/Preferences/Macromedia/Flash Player/#SharedObjects ~/Library/Preferences/Macromedia/Flash Player/macromedia.com/support/flashplayer/sys The last two directories are locations where Firefox stores LSO cookies for long time tracking. You can manually delete them yourself or do this automatically using an extension such as BetterPrivacy for Firefox. However, I have no clue to what the AFCache and AssetCache are for. I assume that you should not delete them as cache generally improves the browsing experience, but I'd really like to know what is stored there? I've been searching the Internet quite a bit now, but there does not seem to be much documentation.

    Read the article

  • Error 0x6ba (RPC server is unavailable) when running sfc /scannow on Windows XP in Safe Mode

    - by leeand00
    I think that my mup.sys file is corrupt. I received the following error when trying to access a network share that was located on my Windows 7 box, from my Windows XP box: No network provider accepted the given network path. After reading this I attempted to follow the directions by rebooting my computer into safe mode. After I run "sfc /scannow" I receive the following error message: The specific error code is 0x000006ba [The RPC server is unavailable]. When I go into Services, it says that the Remote Procedure Call (RPC) service is running but that the Remote Procedure Call (RPC) Locator is not running. When I try to start the Remote Procedure Call (RPC) Locator, it gives me an error saying: Error 1084: This service cannot be started in Safe Mode What can I do about this? If it can't find the Remote Procedure Call service in safe mode?

    Read the article

  • Problems with SQL Server 2008 - "The client was unable to reuse a session with SPID 62, which had ..

    - by GrZeCh
    Hello, I'm having problems with my SQL Server 2008 installation (10.0.2531.0 - SP1 installed). It works as a database server for small hosting environment (about 500 sites). I'm getting errors like this: The client was unable to reuse a session with SPID 62, which had been reset for connection pooling. The failure ID is 29. This error may have been caused by an earlier operation failing. Check the error logs for failed operations immediately before this error message. in Windows event log and when I run this: SELECT * FROM sys.dm_os_performance_counters WHERE object_name = 'SQLServer:General Statistics' I see that one of counters looks a little odd: Logins/sec 429 Connection Reset/sec 163459 Logouts/sec 399 User Connections 30 Logical Connections 33 any ideas how to check what is causing this problem?

    Read the article

  • Running sfc /scannow provides the error The specific error code is 0x000006ba [The RPC server is una

    - by leeand00
    I think that my mup.sys file is corrupted, I received the following error when trying to access a network share that was located on my Windows 7 box, from my Windows xp box: No network provider accepted the given network path. After reading this I attempted to follow the directions by entering my computer into safe mode. After I run "sfc /scannow" I receive the following error message: The specific error code is 0x000006ba [The RPC server is unavailable]. Additionally when I go into Services, it says that the Remote Procedure Call (RPC) service is running but that the Remote Procedure Call (RPC) Locator is not running. When I try to start the Remote Procedure Call (RPC) Locator, it gives me an error saying: Error 1084: This service cannot be started in Safe Mode So what can I do about this exactly? If it can't find the Remote Procedure Call service in safe mode?

    Read the article

  • Remote desktop is slow when connecting to a computer which is part of a domain

    - by Peuge
    Hey all, We have two windows 2003 machines, one is a DC and another is joined to the domain of the DC. These machines are not locally available to us so we have to remote desktop into them. When we first got the machines remote desktop was blazing as the machines are only a couple of miles away. I then installed AD and setup routing and remote access, I also setup DNS on the DC. Now when I try remote Desktop into the machine which is part of the domain (not the DC) it is painfully slow! Remote Desktop onto the DC is also noticeably slower! Another problem is that our FTP to the DC has also become slow. I don't know what other information I can provide, as I am new to Sys Admin (moving over from development). The speed should be fast as these machines are only a couple of miles away. Any help / suggestions is greatly appreciated! Thanks Peuge

    Read the article

  • Running out of LowMem with Ubuntu PAE Kernel and 32GB of RAM

    - by magneticMonster
    I'm running a Java data import process on a 32-bit Ubuntu 10 PAE kernel machine. After running the process for a while, the oom-killer zaps my Java process. After some Googling and digging through docs, it looks like the system is running out of LowMem. I started the process for the third time and am watching free -lm show me Low: 464 386 77 with the free value (77MB) slowly decreasing. Why am I running out of lowmem and how do I increase it? Some details: $ cat /proc/sys/vm/lowmem_reserve_ratio 256 256 32 $ free -lm total used free shared buffers cached Mem: 32086 24611 7475 0 0 24012 Low: 464 407 57 High: 31621 24204 7417 -/+ buffers/cache: 598 31487 Swap: 2047 0 2047

    Read the article

  • How do I install an HP home-use printer on Windows Home Server (Windows Server 2003)

    - by Rob Allen
    I have an HP DeskJet F4210 printer that I would like to share on my network via Windows Home Server. Unfortunately, the driver installation checks for supported OS's, detects Home Server as Windows Server 2003 and exits. The driver install supports WinXP, W2k, Vista, and Win98SE. In theory, drivers for XP or Windows 2000 should work fine with Home Server. When using the "Install Printer" tool in Home Server I am only able to select .inf files (there are serveral on the install media) but the driver folders for XP and 2000 have .sys and .dll files. How can I bypass HP's short-sighted install program and get this printer up and running on Home server? I'll be happy with basic print functionality and will save the task of enabling scanning for another time.

    Read the article

  • Linux IPTables / routing issue

    - by Jon
    Hi all, EDIT 1/3/10 22:00 GMT - rewrote some of it after further investigation It has been a while since I looked at IPtables and I seem to be worse than before as I can not seem to get my webserver online. Below is my firewall rules on the gateway server that is running the dhcp server accessing the net. The webserver is inside my network on a static IP (192.168.0.98, default port). When I use Nmap or GRC.com I see that port 80 is open on the gateway server but when I browse to it, (via public URL. http://www.houseofhawkins.com) it always fails with a connection error, (nmap cannot connect and figure out what the web server is either). I can nmap the webserver and browse to it just fine via same IP inside my network. I believe it is my IPTable rules that are not letting it through. Internally I can route all my requests. Each machine can browse to the website and traffic works just fine. I can MSTSC / ssh to all the webservers internally and they inturn can connect to the web. IPTABLE: *EDIT - Added new firewall rules 2/3/10 * #!/bin/sh iptables="/sbin/iptables" modprobe="/sbin/modprobe" depmod="/sbin/depmod" EXTIF="eth2" INTIF="eth1" load () { $depmod -a $modprobe ip_tables $modprobe ip_conntrack $modprobe ip_conntrack_ftp $modprobe ip_conntrack_irc $modprobe iptable_nat $modprobe ip_nat_ftp echo "enable forwarding.." echo "1" > /proc/sys/net/ipv4/ip_forward echo "enable dynamic addr" echo "1" > /proc/sys/net/ipv4/ip_dynaddr # start firewall # default policies $iptables -P INPUT DROP $iptables -F INPUT $iptables -P OUTPUT DROP $iptables -F OUTPUT $iptables -P FORWARD DROP $iptables -F FORWARD $iptables -t nat -F #echo " Opening loopback interface for socket based services." $iptables -A INPUT -i lo -j ACCEPT $iptables -A OUTPUT -o lo -j ACCEPT #echo " Allow all connections OUT and only existing and related ones IN" $iptables -A INPUT -i $INTIF -j ACCEPT $iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT $iptables -A OUTPUT -o $EXTIF -j ACCEPT $iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT $iptables -A FORWARD -i $EXTIF -o $INTIF -m state --state ESTABLISHED,RELATED -j ACCEPT $iptables -A FORWARD -i $INTIF -o $EXTIF -j ACCEPT $iptables -A FORWARD -j LOG --log-level 7 --log-prefix "Dropped by firewall: " $iptables -A INPUT -j LOG --log-level 7 --log-prefix "Dropped by firewall: " $iptables -A OUTPUT -j LOG --log-level 7 --log-prefix "Dropped by firewall: " #echo " Enabling SNAT (MASQUERADE) functionality on $EXTIF" $iptables -t nat -A POSTROUTING -o $EXTIF -j MASQUERADE $iptables -A INPUT -i $INTIF -j ACCEPT $iptables -A OUTPUT -o $INTIF -j ACCEPT #echo " Allowing packets with ICMP data (i.e. ping)." $iptables -A INPUT -p icmp -j ACCEPT $iptables -A OUTPUT -p icmp -j ACCEPT $iptables -A INPUT -p udp -i $INTIF --dport 67 -m state --state NEW -j ACCEPT #echo " Port 137 is for NetBIOS." $iptables -A INPUT -i $INTIF -p udp --dport 137 -j ACCEPT $iptables -A OUTPUT -o $INTIF -p udp --dport 137 -j ACCEPT #echo " Opening port 53 for DNS queries." $iptables -A INPUT -p udp -i $EXTIF --sport 53 -j ACCEPT #echo " opening Apache webserver" $iptables -A PREROUTING -t nat -i $EXTIF -p tcp --dport 80 -j DNAT --to 192.168.0.96:80 $iptables -A FORWARD -p tcp -m state --state NEW -d 192.168.0.96 --dport 80 -j ACCEPT } flush () { echo "flushing rules..." $iptables -P FORWARD ACCEPT $iptables -F INPUT $iptables -P INPUT ACCEPT echo "rules flushed" } case "$1" in start|restart) flush load ;; stop) flush ;; *) echo "usage: start|stop|restart." ;; esac exit 0 route info: Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 5e0412a6.bb.sky * 255.255.255.255 UH 0 0 0 eth2 192.168.0.0 * 255.255.255.0 U 0 0 0 eth1 default 5e0412a6.bb.sky 0.0.0.0 UG 100 0 0 eth2 ifconfig: eth1 Link encap:Ethernet HWaddr 00:22:b0:cf:4a:1c inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::222:b0ff:fecf:4a1c/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:79023 errors:0 dropped:0 overruns:0 frame:0 TX packets:57786 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:11580918 (11.5 MB) TX bytes:22872030 (22.8 MB) Interrupt:17 Base address:0x2b00 eth2 Link encap:Ethernet HWaddr 00:0c:f1:7c:45:5b inet addr:94.4.18.166 Bcast:94.4.18.166 Mask:255.255.255.255 inet6 addr: fe80::20c:f1ff:fe7c:455b/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:57038 errors:0 dropped:0 overruns:0 frame:0 TX packets:34532 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:21631721 (21.6 MB) TX bytes:7685444 (7.6 MB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:16 errors:0 dropped:0 overruns:0 frame:0 TX packets:16 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1517 (1.5 KB) TX bytes:1517 (1.5 KB) EDIT OK so as requested I will try and expand on my infrastructure: I previously had it setup with a Sky broadband modem router that did the DHCP and I used its web interface to port forward the web across to the web server. The network looked something like this: I have now replaced the sky modem with a dlink modem which gives the IP to the gateway server that now does the DHCP. It looks like: The internet connection is a standard broadband connection with a dynamic IP, (use zoneedit.com to keep it updated). I have tried it on each of the webservers(one Ubuntu Apache server and one WS2008 IIS7). I think there must also be an issue with my IPTable rules as it can route to my win7 box which has the default IIS7 page and that would not display when I forwarded all port 80 to it. I would be really grateful for any and all help with this. Thanks Jon

    Read the article

  • setting ulimit and ubuntu 8.04

    - by Wizzard
    Hi there, We have two ubuntu 8.04 servers. With the database server I set the table_cache to 1000 however when I restart mysql the status only shows 257 and the open files limit says 1024 I adjusted ulimit by doing ulimit -n 8192 and then restarting mysql; this seemed to do the tick however after a few hours I did ulimit -n and saw it had returned back to 1024 Bit of a worry. I edited the /etc/security/limits.conf and added mysql soft nofile 8192 mysql hard nofile 8192 then rebooted, no change. I then edited and change mysql to * rebooted, no change I then edited and changed it to one line * - nofile 8192 and rebooted, no change. cat /proc/sys/fs/file-max gives me 768730 sysctl fs.file-max gives me fs.file-max = 768730 I am at a bit of a loss to how I can set and keep the ulimit value set so I can increase the table cache properly on mysql.

    Read the article

  • How to install plesk using YUM on centOS 5 ?

    - by Tom
    Hi, i have a vps running centOS 5.4 LAMP and i want to install Plesk panel, so i've installed ART packages using SSH like they said here : http://www.atomicorp.com/channels/plesk/ , i tried to execute : yum install plesk but i got : Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile * addons: mirrors.netdna.com * atomic: www5.atomicorp.com * base: yum.singlehop.com * extras: mirror.steadfast.net * updates: www.gtlib.gatech.edu atomic | 1.9 kB 00:00 atomic/primary_db | 425 kB 00:00 Setting up Install Process No package plesk available. Nothing to do Means that no package called "plesk" found. the question is what's the command to install Plesk in my vps or is there another "easy" way to do it, because i'm not really pro in sys administration :) Thanks

    Read the article

  • Cronjob as root?

    - by Rob
    I'm having a bit of a problem with cronjobs for backups. I've set up the following in sudo crontab -e (not under personal account): 0 1 * * * /backups/dobackup /backups/dobackup contains this: #!/bin/sh touch ITRAN tar -cvpjf /backups/$(date +%d.%m.%Y)_backup.tar.bz2 --exclude=/backups --exclude=/proc --exclude=/lost+found --exclude=/sys --exclude=/mnt --exclude=/media --exclude=/dev / The backup file is created, but the file ITRAN is not. Also, the backup file is vastly smaller than expected: -rw-r--r-- 1 rjrudman root 371620259 2012-06-21 12:39 21.06.2012_backup.tar.bz2 -rw-r--r-- 1 rjrudman root 1023211449 2012-06-22 18:00 22.06.2012_backup.tar.bz2 -rw-r--r-- 1 rjrudman root 1512785 2012-06-23 01:00 23.06.2012_backup.tar.bz2 -rw-r--r-- 1 rjrudman root 1023272455 2012-06-24 22:41 24.06.2012_backup.tar.bz2 -rw-r--r-- 1 rjrudman root 1514027 2012-06-25 01:00 25.06.2012_backup.tar.bz2 The backups with much larger file sizes are created by manually running sudo /backups/dobackup. It seems the cronjob is failing at some point.. but I have no idea how to debug this issue or where to start. Any ideas? Running ubuntu 10.04

    Read the article

  • Error while installing Xtrabackup

    - by Olin
    I'd like to install XtraBackup (rpm -i percona-xtrabackup-2.1.9-744.rhel6.x86_64.rpm). During the rpm install it told me that it misses a dependency. error: Failed dependencies: perl(DBD::mysql) is needed by percona-xtrabackup-2.1.9-744.rhel6.x86_64 perl(Time::HiRes) is needed by percona-xtrabackup-2.1.9-744.rhel6.x86_64 Then I run yum install perl-Time-HiRes, and yum install perl-DBD-MySQL. For install perl-TImes-Hires has successful but not for perl-DBD-MySQL. Error: file /usr/share/mysql/ukrainian/errmsg.sys from install of mysql-libs-5.1.73-3.el6_5.x86_64 conflicts with file from package MySQL-server-5.6.10-1.el6.x86_64. I also had try to install : yum install cpan cpan DBI cpan DBD::mysql But still get the same error. So I hope someone can explain me what the right fix is, to get XtraBackup running on MySQL.

    Read the article

  • redirection problem for my sites.

    - by redirect-p
    I have a site example.com and another one test.example.com. Both have different configuration file. But when I enter url test.example.com it will redirect to example.com. configuration file for example.com <VirtualHost *:80> ServerName example.com ServerAlias www.example.com DirectoryIndex index.html DocumentRoot my-document-path Options -Indexes ErrorDocument 404 /errors/404.html ErrorDocument 403 /errors/404.html <Location "/"> SetHandler python-program PythonHandler django.core.handlers.modpython PythonPath "['path', 'path'] + sys.path" SetEnv DJANGO_SETTINGS_MODULE example.settings PythonInterpreter example PythonAutoReload On PythonDebug On </Location> </VirtualHost>

    Read the article

  • Restart Fibre channel controller after blade bootup IBM HS bladecentre

    - by Spence
    I have a remote system that needs to resume on startup. If the system is simply powered on then the blades boot before the SAN is online and then the only thing you can do is restart the systems. Is it possible to restart the fibre channel controller? That way I could have a system restart the controller after boot, connect to the SAN and then restart all servers requiring SAN information? Please note that I'm not a sys admin, just shooting for ideas to get a clean startup to work, apologies if my terminology is wrong.

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >