Search Results

Search found 3677 results on 148 pages for 'concurrent vector'.

Page 61/148 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • Quaternion Cameras and projectile vectors

    - by Tom J Nowell
    In our software we have a camera based on mouse movement, and a quarternion at its heart. We want to fire projectiles from this position, which we can do, however we want to use the camera to aim. The projectile takes a vector which it will add to its position each game frame. How do we acquire such a vector from a given camera/quaternion?

    Read the article

  • Best way to have common class shared by both C++ and Ruby?

    - by shuttle87
    I am currently working on a project where a team of us are designing a game, all of us are proficient in ruby and some (but not all) of us are proficient in c++. Initially we made the backend in ruby but we ported it to c++ for more speed. The c++ port of the backend has exactly the same features and algorithms as the original ruby code. However we still have a bunch of code in ruby that does useful things but we want it to now get the data from the c++ classes. Our first thought was that we could save some of the data structures in something like XML or redis and call that, but some of the developers don't like that idea. We don't need anything particularly complex data structures to be passed between the different parts of the code, just tuples, strings and ints. Is there any way of integrating the ruby code so that it can call the c++ stuff natively? Will we need to embed code? Will we have to make a ruby extension? If so are there any good resources/tutorials you could suggest? For example say we have this code in the c++ backend: class The_game{ private: bool printinfo; //print the player diagnostic info at the beginning if true int numplayers; std::vector<Player*> players; string current_action; int action_is_on; // the index of the player in the players array that the action is now on //more code here public: Table(std::vector<Player *> in_players, std::vector<Statistics *> player_stats ,const int in_numplayers); ~Table(); void play_game(); History actions_history; }; class History{ private: int action_sequence_number; std::vector<Action*> hand_actions; public: void print_history(); void add_action(Action* the_action_to_be_added); int get_action_sequence_number(){ return action_sequence_number;} bool history_actions_are_equal(); int last_action_size(int street,int number_of_actions_ago); History(); ~History(); }; Is there any way to natively call something in the actions_history via The_game object in ruby? (The objects in the original ruby code all had the same names and functionality) By this I mean: class MyRubyClass def method1(arg1) puts arg1 self.f() # ... but still available puts cpp_method.the_current_game.actions_history.get_action_sequence_number() end # Constructor: def initialize(arg) puts "In constructor with arg #{arg}" #get the c++ object here and call it cpp_method end end Is this possible? Any advice or suggestions are appreciated.

    Read the article

  • Matlab - Find point of intersection between two vectors

    - by Silv3rSurf
    I have a very simple matlab question. What is the easiest way to find the point of intersection between two vectors. I am not familiar with the various matlab fuctions -- it seems like there should be one for this. For example if I have one vector from (0,0) to (6,6) and another vector from (0,6) to (6,0), I need to determine that they intersect at (3,3) Thanks.

    Read the article

  • length between 2 values

    - by alex
    In R, what is the most efficient way to count the length between 2 values. for example, i have vector x , which are all randomly choose from 1 to 100, how can i find out the length between the first"2" and first"40", x=(1,2,3,4,5,6,7,40,1,2,3,21,4,1,23,4,43,23,4,12,3,43,5,36,3,45,12,31,3,4,23,41,23,5,53,45,3,7,6,36) for this vector, the answer should be 5 and 6

    Read the article

  • How do I calculate the average direction of two vectors

    - by Mike Broughton
    Hi, I am writing and opengl based iphone app and would like to allow a user to translate around a view based on the direction that they move two fingers on the screen. For one finger I know I could just calculate the vector from the start position to the current position of the users finger and then find the unit vector of this to get just the direction, but I don't know how I would do this for two fingers, I don't think adding the components of the vectors and calculating the average would work so I'm pretty much stuck... thanks in advance

    Read the article

  • Can IDL create a contour plot colorbar like this?

    - by Carthage
    At the bottom of this image, you'll see a nice colorbar that matches the colors of the graph correctly: http://stribog.cc.umanitoba.ca/ceos/20100517_00z_prod/ I couldn't find anything that created a color bar with exactly the colors I wanted, it always seemed to involve a spectrum that included colors I didn't use. I have a vector of colors I use for my data. Is there I way I can use that vector to create a color bar with only those colors?

    Read the article

  • Best way to render Tesselated Objects (OpenGL)

    - by user146780
    I'm using the GLUTesselator for Polygons. Right now the vertex callback does glvertex2f and gltex2f. Would it be better simply to collect the verticies from the vertex callback in a std::vector then use gldrawarrays()? Or would this actually be less efficient since it has to put the verts and texture coordinates in a vector? Thanks

    Read the article

  • Best Java thread-safe locking mechanism for collections?

    - by Simon
    What would be the least-slow thread-safe mechanism for controlling multiple accesses to a collection in Java? I am adding objects to the top of a collection and i am very unsure what would be the best performing collection. Would it be a vector or a queue? I originally thought an ArrayList would be fast but i ran some experiments and it was very slow. EDIT: In my insertion testing a Vector delared using volatile seems to be the fastest?

    Read the article

  • Split a binary file into chunks c++

    - by L4nce0
    I've been bashing my head against trying to first divide up a file into chunks, for the purpose of sending over sockets. I can read / write a file easily without splitting it into chunks. The code below runs, works, kinda. It will write a textfile and has a garbage character. Which if this was just for txt, no problem. Jpegs aren't working with said garbage. Been at it for a few days, so I've done my research, and it's time to get some help. I do want to stick strictly to binary readers, as this need to handle any file. I've seen a lot of slick examples out there. (none of them worked for me with jpgs) Mostly something along the lines of while(file)... I subscribe to the, if you know the size, use a for-loop, not a while-loop camp. Thank you for the help!! vector<char*> readFile(const char* fn){ vector<char*> v; ifstream::pos_type size; char * memblock; ifstream file; file.open(fn,ios::in|ios::binary|ios::ate); if (file.is_open()) { size = fileS(fn); file.seekg (0, ios::beg); int bs = size/3; // arbitrary. Actual program will use the socket send size int ws = 0; int i = 0; for(i = 0; i < size; i+=bs){ if(i+bs > size) ws = size%bs; else ws = bs; memblock = new char [ws]; file.read (memblock, ws); v.push_back(memblock); } } else{ exit(-4); } return v; } int main(int argc, char **argv) { vector<char*> v = readFile("foo.txt"); ofstream myFile ("bar.txt", ios::out | ios::binary); for(vector<char*>::iterator it = v.begin(); it!=v.end(); ++it ){ myFile.write(*it,strlen(*it)); } }

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • JMeter Stress testing

    - by mcondiff
    MAMP server hosting a Joomla instance. I'd like to hear the community's thoughts on the best way to stress test the server and find it's breaking point on concurrent users etc. Currently I have setup a test plan which I have going to the home page, grabbing the index.php, css, js and all images and have run tests on 1 to 100 users and a varying number of loops. What I'd like to know is how do I determine at what number of concurrent requests or looping requests is a good way to gauge if my server can handle the proposed increase in traffic? What is a good KB/sec, Throughput, Average, Max, Min via the Aggregate Report and at what number of threads/loops etc? I have googled and have not found immediate answers to these questions and thought to come here. More or less I have just used this http://jakarta.apache.org/jmeter/usermanual/jmeter_proxy_step_by_step.pdf to guide me and then I have been winging it in terms of Thread and Loop numbers. Any light shed on these subject would be much appreciated.

    Read the article

  • JBoss Seam project can not be run/deployed

    - by user1494328
    I created sample application in Seam framework (Seam Web Project) and JBoss Server 7.1. When I try run application, console dislays: 23:29:35,419 ERROR [org.jboss.msc.service.fail] (MSC service thread 1-3) MSC00001: Failed to start service jboss.deployment.unit."secoundProject-ds.xml".PARSE: org.jboss.msc.service.StartException in service jboss.deployment.unit."secoundProject-ds.xml".PARSE: Failed to process phase PARSE of deployment "secoundProject-ds.xml" at org.jboss.as.server.deployment.DeploymentUnitPhaseService.start(DeploymentUnitPhaseService.java:119) [jboss-as-server-7.1.1.Final.jar:7.1.1.Final] at org.jboss.msc.service.ServiceControllerImpl$StartTask.startService(ServiceControllerImpl.java:1811) [jboss-msc-1.0.2.GA.jar:1.0.2.GA] at org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:1746) [jboss-msc-1.0.2.GA.jar:1.0.2.GA] at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) [rt.jar:1.6.0_24] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) [rt.jar:1.6.0_24] at java.lang.Thread.run(Thread.java:662) [rt.jar:1.6.0_24] Caused by: org.jboss.as.server.deployment.DeploymentUnitProcessingException: IJ010061: Unexpected element: local-tx-datasource at org.jboss.as.connector.deployers.processors.DsXmlDeploymentParsingProcessor.deploy(DsXmlDeploymentParsingProcessor.java:85) at org.jboss.as.server.deployment.DeploymentUnitPhaseService.start(DeploymentUnitPhaseService.java:113) [jboss-as-server-7.1.1.Final.jar:7.1.1.Final] ... 5 more Caused by: org.jboss.jca.common.metadata.ParserException: IJ010061: Unexpected element: local-tx-datasource at org.jboss.jca.common.metadata.ds.DsParser.parseDataSources(DsParser.java:183) at org.jboss.jca.common.metadata.ds.DsParser.parse(DsParser.java:119) at org.jboss.jca.common.metadata.ds.DsParser.parse(DsParser.java:82) at org.jboss.as.connector.deployers.processors.DsXmlDeploymentParsingProcessor.deploy(DsXmlDeploymentParsingProcessor.java:80) ... 6 more 23:29:35,452 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) JBAS015877: Stopped deployment secoundProject-ds.xml in 1ms 23:29:35,455 INFO [org.jboss.as.server] (DeploymentScanner-threads - 2) JBAS015863: Replacement of deployment "secoundProject-ds.xml" by deployment "secoundProject-ds.xml" was rolled back with failure message {"JBAS014671: Failed services" => {"jboss.deployment.unit.\"secoundProject-ds.xml\".PARSE" => "org.jboss.msc.service.StartException in service jboss.deployment.unit.\"secoundProject-ds.xml\".PARSE: Failed to process phase PARSE of deployment \"secoundProject-ds.xml\""}} 23:29:35,457 INFO [org.jboss.as.server.deployment] (MSC service thread 1-1) JBAS015876: Starting deployment of "secoundProject-ds.xml" 23:29:35,920 ERROR [org.jboss.msc.service.fail] (MSC service thread 1-1) MSC00001: Failed to start service jboss.deployment.unit."secoundProject-ds.xml".PARSE: org.jboss.msc.service.StartException in service jboss.deployment.unit."secoundProject-ds.xml".PARSE: Failed to process phase PARSE of deployment "secoundProject-ds.xml" at org.jboss.as.server.deployment.DeploymentUnitPhaseService.start(DeploymentUnitPhaseService.java:119) [jboss-as-server-7.1.1.Final.jar:7.1.1.Final] at org.jboss.msc.service.ServiceControllerImpl$StartTask.startService(ServiceControllerImpl.java:1811) [jboss-msc-1.0.2.GA.jar:1.0.2.GA] at org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:1746) [jboss-msc-1.0.2.GA.jar:1.0.2.GA] at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) [rt.jar:1.6.0_24] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) [rt.jar:1.6.0_24] at java.lang.Thread.run(Thread.java:662) [rt.jar:1.6.0_24] Caused by: org.jboss.as.server.deployment.DeploymentUnitProcessingException: IJ010061: Unexpected element: local-tx-datasource at org.jboss.as.connector.deployers.processors.DsXmlDeploymentParsingProcessor.deploy(DsXmlDeploymentParsingProcessor.java:85) at org.jboss.as.server.deployment.DeploymentUnitPhaseService.start(DeploymentUnitPhaseService.java:113) [jboss-as-server-7.1.1.Final.jar:7.1.1.Final] ... 5 more Caused by: org.jboss.jca.common.metadata.ParserException: IJ010061: Unexpected element: local-tx-datasource at org.jboss.jca.common.metadata.ds.DsParser.parseDataSources(DsParser.java:183) at org.jboss.jca.common.metadata.ds.DsParser.parse(DsParser.java:119) at org.jboss.jca.common.metadata.ds.DsParser.parse(DsParser.java:82) at org.jboss.as.connector.deployers.processors.DsXmlDeploymentParsingProcessor.deploy(DsXmlDeploymentParsingProcessor.java:80) ... 6 more 23:29:35,952 INFO [org.jboss.as.controller] (DeploymentScanner-threads - 2) JBAS014774: Service status report JBAS014777: Services which failed to start: service jboss.deployment.unit."secoundProject-ds.xml".PARSE: org.jboss.msc.service.StartException in service jboss.deployment.unit."secoundProject-ds.xml".PARSE: Failed to process phase PARSE of deployment "secoundProject-ds.xml" My secoundProject-ds.xml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE datasources PUBLIC "-//JBoss//DTD JBOSS JCA Config 1.5//EN" "http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd"> <datasources> <local-tx-datasource> <jndi-name>secoundProjectDatasource</jndi-name> <use-java-context>true</use-java-context> <connection-url>jdbc:mysql://localhost:3306/database</connection-url> <driver-class>com.mysql.jdbc.Driver</driver-class> <user-name>root</user-name> <password></password> </local-tx-datasource> </datasources> When I comment tags errors disappear, but application is disabled in browser (The requested resource (/secoundProject/) is not available.). What should I do to fix this problem?

    Read the article

  • java.lang.OutOfMemoryError on ec2 machine

    - by vinchan
    I have a java app on a large instance that will spawn up to 800 threads. I can run the application fine as user "root" but not as another user which I created. I get the deadly. java.lang.OutOfMemoryError: unable to create new native thread at java.lang.Thread.start0(Native Method) at java.lang.Thread.start(Thread.java:657) at java.util.concurrent.ThreadPoolExecutor.addWorker(ThreadPoolExecutor.java:943) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1325) nightmare. I have tried increasing the stack size already in limits.conf to no avail. Please, help me out. What is different here for the root and other user?

    Read the article

  • What would be better in my case - apache, nginx or lighttpd ?

    - by The Devil
    Hey everybody, I'm writing a php site that's expected to get about 200-300 concurrent users browsing it. When initializing the application will load about 30 php classes, some 10 maybe 15 images and a couple of css files. So my question is what else can I do (except optimizing my code and using apc/eaccelerator for php) to get as close as possible to those numbers of concurrent users ? Currently we haven't chosen a server for the site to be hosted on but most probably it'll be a VPS Dual core + 2 or maybe 4gb ram. Is it possible for such a server to handle that load ? Also how could I test it myself and be sure that it'll be able to handle it ? Thanks in advance, Me

    Read the article

  • how limit the number of open TCP streams from same IP to a local port?

    - by JMW
    Hi, i would like to limit the number of concurrent open TCP streams from the the same IP to the server's (local) port. Let's say 4 concurrent conncetions. How can this be done with ip tables? the closest thing, that i've found was: In Apache, is there a way to limit the number of new connections per second/hour/day? iptables -A INPUT -p tcp --dport 80 -i eth0 -m state --state NEW -m recent --set iptables -A INPUT -p tcp --dport 80 -i eth0 -m state --state NEW -m recent --update --seconds 86400 --hitcount 100 -j REJECT But this limitation just messures the number of new connections over the time. This might be good for controlling HTTP traffic. But this is not a good solution for me, since my TCP streams usually have a lifetime between 5 minutes and 2 hours. thanks a lot in advance for any reply :)

    Read the article

  • AB failed requests - What can I do about them?

    - by matthewsteiner
    So, in the past I've never had any problems with this app. All benchmarks had 100% success rate. Yesterday I set up nginx to server static content and pass on other requests to apache. Now, if I have 1 concurrent user (-c 1) then everything is fine. But it seems the more concurrent users I have, the more failed requests I get. Not a lot, but maybe about 10 or 15 out of 350. They're "length", whatever that means. Visiting the website with a browser, I don't have any problems at all. How can I find out the cause of these failed requests?

    Read the article

  • TCP and fair bandwidth sharing

    - by lxgr
    The congestion control algorithm(s) of TCP seem to distribute the available bandwidth fairly between individual TCP flows. Is there some way to enable (or more precisely, enforce) fair bandwidth sharing on a per-host instead of a per-flow basis on a router? There should not be an (easy) way for a user to gain a disproportional bandwidth share by using multiple concurrent TCP flows (the way some download managers and most P2P clients do). I'm currently running a DD-WRT router to share a residential DSL line, and currently it's possible to (inadvertently or maliciously) hog most of the bandwidth by using multiple concurrent connections, which affecty VoIP conversations badly. I've played with the QoS settings a bit, but I'm not sure how to enable fair bandwidth sharing on a per-IP basis (per-service is not an option, as most of the flows are HTTP).

    Read the article

  • Can't run my servlet from tomcat server even though the classes are in package

    - by Mido
    Hi there, i am trying to get my servlet to run, i have been searching for 2 days and trying every possible solution and no luck. The servet class is in the appropriate folder (i.e under the package name). I also added the jar files needed in my servlet into lib folder. the web.xml file maps the url and defines the servlet. So i did everything in the documentation and wt people said in here and still getting this error : type Exception report message description The server encountered an internal error () that prevented it from fulfilling this request. exception javax.servlet.ServletException: Error instantiating servlet class assign1a.RPCServlet org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:108) org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:558) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:379) org.apache.coyote.http11.Http11AprProcessor.process(Http11AprProcessor.java:282) org.apache.coyote.http11.Http11AprProtocol$Http11ConnectionHandler.process(Http11AprProtocol.java:357) org.apache.tomcat.util.net.AprEndpoint$SocketProcessor.run(AprEndpoint.java:1687) java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) java.lang.Thread.run(Thread.java:619) root cause java.lang.NoClassDefFoundError: assign1a/RPCServlet (wrong name: server/RPCServlet) java.lang.ClassLoader.defineClass1(Native Method) java.lang.ClassLoader.defineClassCond(ClassLoader.java:632) java.lang.ClassLoader.defineClass(ClassLoader.java:616) java.security.SecureClassLoader.defineClass(SecureClassLoader.java:141) org.apache.catalina.loader.WebappClassLoader.findClassInternal(WebappClassLoader.java:2820) org.apache.catalina.loader.WebappClassLoader.findClass(WebappClassLoader.java:1143) org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1638) org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1516) org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:108) org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:558) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:379) org.apache.coyote.http11.Http11AprProcessor.process(Http11AprProcessor.java:282) org.apache.coyote.http11.Http11AprProtocol$Http11ConnectionHandler.process(Http11AprProtocol.java:357) org.apache.tomcat.util.net.AprEndpoint$SocketProcessor.run(AprEndpoint.java:1687) java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) java.lang.Thread.run(Thread.java:619) note The full stack trace of the root cause is available in the Apache Tomcat/7.0.5 logs. Also here is my servlet code : package assign1a; import java.io.IOException; import java.util.logging.Level; import java.util.logging.Logger; import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import lib.jsonrpc.RPCService; public class RPCServlet extends HttpServlet { /** * */ private static final long serialVersionUID = -5274024331393844879L; private static final Logger log = Logger.getLogger(RPCServlet.class.getName()); protected RPCService service = new ServiceImpl(); public void doGet(HttpServletRequest request, HttpServletResponse response) throws IOException, ServletException { response.setContentType("text/html"); response.getWriter().write("rpc service " + service.getServiceName() + " is running..."); } public void doPost(HttpServletRequest request, HttpServletResponse response) throws IOException, ServletException { try { service.dispatch(request, response); } catch (Throwable t) { log.log(Level.WARNING, t.getMessage(), t); } } } Please help me :) Thanks. EDIT: here are the contents of my web.xml file <web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" version="3.0" metadata-complete="true"> <servlet> <servlet-name>jsonrpc</servlet-name> <servlet-class>assign1a.RPCServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>jsonrpc</servlet-name> <url-pattern>/rpc</url-pattern> </servlet-mapping> </web-app>

    Read the article

  • Why does this Java code not utilize all CPU cores?

    - by ReneS
    The attached simple Java code should load all available cpu core when starting it with the right parameters. So for instance, you start it with java VMTest 8 int 0 and it will start 8 threads that do nothing else than looping and adding 2 to an integer. Something that runs in registers and not even allocates new memory. The problem we are facing now is, that we do not get a 24 core machine loaded (AMD 2 sockets with 12 cores each), when running this simple program (with 24 threads of course). Similar things happen with 2 programs each 12 threads or smaller machines. So our suspicion is that the JVM (Sun JDK 6u20 on Linux x64) does not scale well. Did anyone see similar things or has the ability to run it and report whether or not it runs well on his/her machine (= 8 cores only please)? Ideas? I tried that on Amazon EC2 with 8 cores too, but the virtual machine seems to run different from a real box, so the loading behaves totally strange. package com.test; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; public class VMTest { public class IntTask implements Runnable { @Override public void run() { int i = 0; while (true) { i = i + 2; } } } public class StringTask implements Runnable { @Override public void run() { int i = 0; String s; while (true) { i++; s = "s" + Integer.valueOf(i); } } } public class ArrayTask implements Runnable { private final int size; public ArrayTask(int size) { this.size = size; } @Override public void run() { int i = 0; String[] s; while (true) { i++; s = new String[size]; } } } public void doIt(String[] args) throws InterruptedException { final String command = args[1].trim(); ExecutorService executor = Executors.newFixedThreadPool(Integer.valueOf(args[0])); for (int i = 0; i < Integer.valueOf(args[0]); i++) { Runnable runnable = null; if (command.equalsIgnoreCase("int")) { runnable = new IntTask(); } else if (command.equalsIgnoreCase("string")) { runnable = new StringTask(); } Future<?> submit = executor.submit(runnable); } executor.awaitTermination(1, TimeUnit.HOURS); } public static void main(String[] args) throws InterruptedException { if (args.length < 3) { System.err.println("Usage: VMTest threadCount taskDef size"); System.err.println("threadCount: Number 1..n"); System.err.println("taskDef: int string array"); System.err.println("size: size of memory allocation for array, "); System.exit(-1); } new VMTest().doIt(args); } }

    Read the article

  • SQL SERVER – Concurrency Basics – Guest Post by Vinod Kumar

    - by pinaldave
    This guest post is by Vinod Kumar. Vinod Kumar has worked with SQL Server extensively since joining the industry over a decade ago. Working on various versions from SQL Server 7.0, Oracle 7.3 and other database technologies – he now works with the Microsoft Technology Center (MTC) as a Technology Architect. Let us read the blog post in Vinod’s own voice. Learning is always fun when it comes to SQL Server and learning the basics again can be more fun. I did write about Transaction Logs and recovery over my blogs and the concept of simplifying the basics is a challenge. In the real world we always see checks and queues for a process – say railway reservation, banks, customer supports etc there is a process of line and queue to facilitate everyone. Shorter the queue higher is the efficiency of system (a.k.a higher is the concurrency). Every database does implement this using checks like locking, blocking mechanisms and they implement the standards in a way to facilitate higher concurrency. In this post, let us talk about the topic of Concurrency and what are the various aspects that one needs to know about concurrency inside SQL Server. Let us learn the concepts as one-liners: Concurrency can be defined as the ability of multiple processes to access or change shared data at the same time. The greater the number of concurrent user processes that can be active without interfering with each other, the greater the concurrency of the database system. Concurrency is reduced when a process that is changing data prevents other processes from reading that data or when a process that is reading data prevents other processes from changing that data. Concurrency is also affected when multiple processes are attempting to change the same data simultaneously. Two approaches to managing concurrent data access: Optimistic Concurrency Model Pessimistic Concurrency Model Concurrency Models Pessimistic Concurrency Default behavior: acquire locks to block access to data that another process is using. Assumes that enough data modification operations are in the system that any given read operation is likely affected by a data modification made by another user (assumes conflicts will occur). Avoids conflicts by acquiring a lock on data being read so no other processes can modify that data. Also acquires locks on data being modified so no other processes can access the data for either reading or modifying. Readers block writer, writers block readers and writers. Optimistic Concurrency Assumes that there are sufficiently few conflicting data modification operations in the system that any single transaction is unlikely to modify data that another transaction is modifying. Default behavior of optimistic concurrency is to use row versioning to allow data readers to see the state of the data before the modification occurs. Older versions of the data are saved so a process reading data can see the data as it was when the process started reading and not affected by any changes being made to that data. Processes modifying the data is unaffected by processes reading the data because the reader is accessing a saved version of the data rows. Readers do not block writers and writers do not block readers, but, writers can and will block writers. Transaction Processing A transaction is the basic unit of work in SQL Server. Transaction consists of SQL commands that read and update the database but the update is not considered final until a COMMIT command is issued (at least for an explicit transaction: marked with a BEGIN TRAN and the end is marked by a COMMIT TRAN or ROLLBACK TRAN). Transactions must exhibit all the ACID properties of a transaction. ACID Properties Transaction processing must guarantee the consistency and recoverability of SQL Server databases. Ensures all transactions are performed as a single unit of work regardless of hardware or system failure. A – Atomicity C – Consistency I – Isolation D- Durability Atomicity: Each transaction is treated as all or nothing – it either commits or aborts. Consistency: ensures that a transaction won’t allow the system to arrive at an incorrect logical state – the data must always be logically correct.  Consistency is honored even in the event of a system failure. Isolation: separates concurrent transactions from the updates of other incomplete transactions. SQL Server accomplishes isolation among transactions by locking data or creating row versions. Durability: After a transaction commits, the durability property ensures that the effects of the transaction persist even if a system failure occurs. If a system failure occurs while a transaction is in progress, the transaction is completely undone, leaving no partial effects on data. Transaction Dependencies In addition to supporting all four ACID properties, a transaction might exhibit few other behaviors (known as dependency problems or consistency problems). Lost Updates: Occur when two processes read the same data and both manipulate the data, changing its value and then both try to update the original data to the new value. The second process might overwrite the first update completely. Dirty Reads: Occurs when a process reads uncommitted data. If one process has changed data but not yet committed the change, another process reading the data will read it in an inconsistent state. Non-repeatable Reads: A read is non-repeatable if a process might get different values when reading the same data in two reads within the same transaction. This can happen when another process changes the data in between the reads that the first process is doing. Phantoms: Occurs when membership in a set changes. It occurs if two SELECT operations using the same predicate in the same transaction return a different number of rows. Isolation Levels SQL Server supports 5 isolation levels that control the behavior of read operations. Read Uncommitted All behaviors except for lost updates are possible. Implemented by allowing the read operations to not take any locks, and because of this, it won’t be blocked by conflicting locks acquired by other processes. The process can read data that another process has modified but not yet committed. When using the read uncommitted isolation level and scanning an entire table, SQL Server can decide to do an allocation order scan (in page-number order) instead of a logical order scan (following page pointers). If another process doing concurrent operations changes data and move rows to a new location in the table, the allocation order scan can end up reading the same row twice. Also can happen if you have read a row before it is updated and then an update moves the row to a higher page number than your scan encounters later. Performing an allocation order scan under Read Uncommitted can cause you to miss a row completely – can happen when a row on a high page number that hasn’t been read yet is updated and moved to a lower page number that has already been read. Read Committed Two varieties of read committed isolation: optimistic and pessimistic (default). Ensures that a read never reads data that another application hasn’t committed. If another transaction is updating data and has exclusive locks on data, your transaction will have to wait for the locks to be released. Your transaction must put share locks on data that are visited, which means that data might be unavailable for others to use. A share lock doesn’t prevent others from reading but prevents them from updating. Read committed (snapshot) ensures that an operation never reads uncommitted data, but not by forcing other processes to wait. SQL Server generates a version of the changed row with its previous committed values. Data being changed is still locked but other processes can see the previous versions of the data as it was before the update operation began. Repeatable Read This is a Pessimistic isolation level. Ensures that if a transaction revisits data or a query is reissued the data doesn’t change. That is, issuing the same query twice within a transaction cannot pickup any changes to data values made by another user’s transaction because no changes can be made by other transactions. However, this does allow phantom rows to appear. Preventing non-repeatable read is a desirable safeguard but cost is that all shared locks in a transaction must be held until the completion of the transaction. Snapshot Snapshot Isolation (SI) is an optimistic isolation level. Allows for processes to read older versions of committed data if the current version is locked. Difference between snapshot and read committed has to do with how old the older versions have to be. It’s possible to have two transactions executing simultaneously that give us a result that is not possible in any serial execution. Serializable This is the strongest of the pessimistic isolation level. Adds to repeatable read isolation level by ensuring that if a query is reissued rows were not added in the interim, i.e, phantoms do not appear. Preventing phantoms is another desirable safeguard, but cost of this extra safeguard is similar to that of repeatable read – all shared locks in a transaction must be held until the transaction completes. In addition serializable isolation level requires that you lock data that has been read but also data that doesn’t exist. Ex: if a SELECT returned no rows, you want it to return no. rows when the query is reissued. This is implemented in SQL Server by a special kind of lock called the key-range lock. Key-range locks require that there be an index on the column that defines the range of values. If there is no index on the column, serializable isolation requires a table lock. Gets its name from the fact that running multiple serializable transactions at the same time is equivalent of running them one at a time. Now that we understand the basics of what concurrency is, the subsequent blog posts will try to bring out the basics around locking, blocking, deadlocks because they are the fundamental blocks that make concurrency possible. Now if you are with me – let us continue learning for SQL Server Locking Basics. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Concurrency

    Read the article

  • The C++ Standard Template Library as a BDB Database (part 1)

    - by Gregory Burd
    If you've used C++ you undoubtedly have used the Standard Template Libraries. Designed for in-memory management of data and collections of data this is a core aspect of all C++ programs. Berkeley DB is a database library with a variety of APIs designed to ease development, one of those APIs extends and makes use of the STL for persistent, transactional data storage. dbstl is an STL standard compatible API for Berkeley DB. You can make use of Berkeley DB via this API as if you are using C++ STL classes, and still make full use of Berkeley DB features. Being an STL library backed by a database, there are some important and useful features that dbstl can provide, while the C++ STL library can't. The following are a few typical use cases to use the dbstl extensions to the C++ STL for data storage. When data exceeds available physical memory.Berkeley DB dbstl can vastly improve performance when managing a dataset which is larger than available memory. Performance suffers when the data can't reside in memory because the OS is forced to use virtual memory and swap pages of memory to disk. Switching to BDB's dbstl improves performance while allowing you to keep using STL containers. When you need concurrent access to C++ STL containers.Few existing C++ STL implementations support concurrent access (create/read/update/delete) within a container, at best you'll find support for accessing different containers of the same type concurrently. With the Berkeley DB dbstl implementation you can concurrently access your data from multiple threads or processes with confidence in the outcome. When your objects are your database.You want to have object persistence in your application, and store objects in a database, and use the objects across different runs of your application without having to translate them to/from SQL. The dbstl is capable of storing complicated objects, even those not located on a continous chunk of memory space, directly to disk without any unnecessary overhead. These are a few reasons why you should consider using Berkeley DB's C++ STL support for your embedded database application. In the next few blog posts I'll show you a few examples of this approach, it's easy to use and easy to learn.

    Read the article

  • Application Lifecycle Management Tools

    - by John K. Hines
    Leading a team comprised of three former teams means that we have three of everything.  Three places to gather requirements, three (actually eight or nine) places for customers to submit support requests, three places to plan and track work. We’ve been looking into tools that combine these features into a single product.  Not just Agile planning tools, but those that allow us to look in a single place for requirements, work items, and reports. One of the interesting choices is Software Planner by Automated QA (the makers of Test Complete).  It's a lovely tool with real end-to-end process support.  We’re probably not going to use it for one reason – cost.  I’m sure our company could get a discount, but it’s on a concurrent user license that isn’t cheap for a large number of users.  Some initial guesswork had us paying over $6,000 for 3 concurrent users just to get started with the Enterprise version.  Still, it’s intuitive, has great Agile capabilities, and has a reputation for excellent customer support. At the moment we’re digging deeper into Rational Team Concert by IBM.  Reading the docs on this product makes me want to submit my resume to Big Blue.  Not only does RTC integrate everything we need, but it’s free for up to 10 developers.  It has beautiful support for all phases of Scrum.  We’re going to bring the sales representative in for a demo. This marks one of the few times that we’re trying to resist the temptation to write our own tool.  And I think this is the first time that something so complex may actually be capably provided by an external source.   Hooray for less work! Technorati tags: Scrum Scrum Tools

    Read the article

  • UML Diagrams of Multi-Threaded Applications

    - by PersonalNexus
    For single-threaded applications I like to use class diagrams to get an overview of the architecture of that application. This type of diagram, however, hasn’t been very helpful when trying to understand heavily multi-threaded/concurrent applications, for instance because different instances of a class "live" on different threads (meaning accessing an instance is save only from the one thread it lives on). Consequently, associations between classes don’t necessarily mean that I can call methods on those objects, but instead I have to make that call on the target object's thread. Most literature I have dug up on the topic such as Designing Concurrent, Distributed, and Real-Time Applications with UML by Hassan Gomaa had some nice ideas, such as drawing thread boundaries into object diagrams, but overall seemed a bit too academic and wordy to be really useful. I don’t want to use these diagrams as a high-level view of the problem domain, but rather as a detailed description of my classes/objects, their interactions and the limitations due to thread-boundaries I mentioned above. I would therefore like to know: What types of diagrams have you found to be most helpful in understanding multi-threaded applications? Are there any extensions to classic UML that take into account the peculiarities of multi-threaded applications, e.g. through annotations illustrating that some objects might live in a certain thread while others have no thread-affinity; some fields of an object may be read from any thread, but written to only from one; some methods are synchronous and return a result while others are asynchronous that get requests queued up and return results for instance via a callback on a different thread.

    Read the article

  • Exalogic Elastic Cloud Software (EECS) version 2.0.1 available

    - by JuergenKress
    We are pleased to announce that as of today (May 14, 2012) the Exalogic Elastic Cloud Software (EECS) version 2.0.1 has been made Generally Available. This release is the culmination of over two and a half years of engineering effort from an extended team spanning 18 product development organizations on three continents, and is the most powerful, sophisticated and comprehensive Exalogic Elastic Cloud Software release to date. With this new EECS release, Exalogic customers now have an ideal platform for not only high-performance and mission critical applications, but for standardization and consolidation of virtually all Oracle Fusion Middleware, Fusion Applications, Application Unlimited and Oracle GBU Applications. With the release of EECS 2.0.1, Exalogic is now capable of hosting multiple concurrent tenants, business applications and middleware deployments with fine-grained resource management, enterprise-grade security, unmatched manageability and extreme performance in a fully virtualized environment. The Exalogic Elastic Cloud Software 2.0.1 release brings important new technologies to the Exalogic platform: Exalogic is now capable of hosting multiple concurrent tenants, business applications and middleware deployments with fine-grained resource management, enterprise-grade security, unmatched manageabi! lity and extreme performance in a fully virtualized environment. Support for extremely high-performance x86 server virtualization via a highly optimized version of Oracle VM 3.x. A rich, fully integrated Infrastructure-as-a-Service management system called Exalogic Control which provides graphical, command line and Java interfaces that allows Cloud Users, or external systems, to create and manage users, virtual servers, virtual storage and virtual network resources. Webcast Series: Rethink Your Business Application Deployment Strategy Redefining the CRM and E-Commerce Experience with Oracle Exalogic, 7-Jun@10am PT & On-Demand: ‘The Road to a Cloud-Enabled, Infinitely Elastic Application Infrastructure’ (featuring Gartner Analysts). WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: ExaLogic Elastic Cloud,ExaLogic,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress,ExaLogic 2.0.1

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >