Search Results

Search found 4517 results on 181 pages for 'expression sketchflow'.

Page 61/181 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • Problem with single quotes in man pages

    - by Peter
    When I ssh into my Debian Lenny server and open a man page, single quotes appear to be messed up. Example from the man page of apt-get: If no package matches the given expression and the expression contains one of ´.´, ´?´ or ´*´ then it is assumed to be a POSIX regular expression, and it is applied to all package names in the database. Any matches are then installed (or removed). Note that matching is done by substring so ´lo.*´ matches ´how-lo´ and ´lowest´. If this is undesired, anchor the regular expression with a ´^´ or ´$´ character, or create a more specific regular expression. I'm on Mac OS X and using xterm. If I use Terminal, the problem doesn't happen. My locale is configured correctly as far as I can see: $ locale LANG=en_US.UTF-8 LC_CTYPE="en_US.UTF-8" LC_NUMERIC="en_US.UTF-8" LC_TIME="en_US.UTF-8" LC_COLLATE="en_US.UTF-8" LC_MONETARY="en_US.UTF-8" LC_MESSAGES="en_US.UTF-8" LC_PAPER="en_US.UTF-8" LC_NAME="en_US.UTF-8" LC_ADDRESS="en_US.UTF-8" LC_TELEPHONE="en_US.UTF-8" LC_MEASUREMENT="en_US.UTF-8" LC_IDENTIFICATION="en_US.UTF-8" LC_ALL= I'm not sure what's wrong with my environment, and I have no idea what to check next. I'd appreciate help.

    Read the article

  • Add constant value to numeric XML attribute

    - by Dave Jarvis
    Background Add a constant value to numbers matched with a regular expression, using vim (gvim). Problem The following regular expression will match width="32": /width="\([0-9]\{2\}\)" Question How do you replace the numeric value of the width attribute with the results from a mathematical expression that uses the attribute's value? For example, I would like to perform the following global replacement: :%s/width="\([0-9]\{2\}\)"/width="\1+10"/g That would produce width="42" for width="32" and width="105" for width="95". Thank you!

    Read the article

  • Adding a hyperlink in a client report definition file (RDLC)

    - by rajbk
    This post shows you how to add a hyperlink to your RDLC report. In a previous post, I showed you how to create an RDLC report. We have been given the requirement to the report we created earlier, the Northwind Product report, to add a column that will contain hyperlinks which are unique per row.  The URLs will be RESTful with the ProductID at the end. Clicking on the URL will take them to a website like so: http://localhost/products/3  where 3 is the primary key of the product row clicked on. To start off, open the RDLC and add a new column to the product table.   Add text to the header (Details) and row (Product Website). Right click on the row (not header) and select “TextBox properties” Select Action – Go to URL. You could hard code a URL here but what we need is a URL that changes based on the ProductID.   Click on the expression button (fx) The expression builder gives you access to several functions and constants including the fields in your dataset. See this reference for more details: Common Expressions for ReportViewer Reports. Add the following expression: = "http://localhost/products/" & Fields!ProductID.Value Click OK to exit the Expression Builder. The report will not render because hyperlinks are disabled by default in the ReportViewer control. To enable it, add the following in your page load event (where rvProducts is the ID of your ReportViewerControl): protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { rvProducts.LocalReport.EnableHyperlinks = true; } } We want our links to open in a new window so set the HyperLinkTarget property of the ReportViewer control to “_blank”   We are done adding hyperlinks to our report. Clicking on the links for each product pops open a new windows. The URL has the ProductID added at the end. Enjoy!

    Read the article

  • Silverlight Cream for March 28, 2010 -- #823

    - by Dave Campbell
    In this Issue: Michael Washington, Andy Beaulieu, Bill Reiss, jocelyn, Shawn Wildermuth, Cameron Albert, Shawn Oster, Alex Yakhnin, ondrejsv, Giorgetti Alessandro, Jeff Handley, SilverLaw, deepm, and Kyle McClellan. Shoutouts: If I've listed this before, it's worth another... Introduction to Prototyping with SketchFlow (twelve video series) and on the same page is Creating a Beehive Game with Behaviors in Blend 3 (ten video series) Shawn Oster announced his Slides + Code + Video from ‘An Introduction to Developing Applications for Microsoft Silverlight’ from MIX10 Tim Heuer announced earlier this week: Silverlight Client for Facebook updated for Silverlight 4 RC Nikhil Kothari announced the availability of his MIX10 Talk - Slides and Code András Velvárt backed up his great MIX09 effort with MIX10.Zoomery.com... everything in one DZ effort... thanks András! Andy Beaulieu posted his material for his Code Camp 13 in Waltham: Windows Phone: Silverlight for Casual Games From SilverlightCream.com: Silverlight MVVM - The Revolution Has Begun Michael Washington did an awesome tutorial on MVVM and Silverlight creating a simple Silverlight File Manager. The post has a link to the tutorial at CodeProject... great tutorial. Windows Phone 7 + Silverlight Performance Andy Beaulieu has a post up we should all bookmark... getting a handle on the graphics performance of our app on WP7. Great examples, and external links. Space Rocks game step 6: Keyboard handling Bill Reiss has a post up about keyboard input for the WP7 game he's building ... this is Episode 6 ... you're working along with him, right? Panoramic Navigation on Windows Phone 7 with No Code! jocelyn at InnovativeSingapore (I found this by way of Shawn's post), has a Panoramic Navigation template out there for WP7 for all of us to grab... great post about it too. My First WP7 Application Shawn Wildermuth has been playing with WP7 development and has his XBOX Game library app up on the emulator... all with source of course Silverlight and Windows Phone 7 Game Cameron Albert built a web-based game called 'Shape Attack' and also did it for WP7 to compare the performance... check it out for yourself, but hey, it's game source for the phone... cool :) Changing the Onscreen Keyboard layout in Silverlight for Windows Phone using InputScope Shawn Oster has a cool post on changing the keyboard on WP7 to go along with what you're expecting the user to type... how cool is that?? Deep Zoom on WP7 Check out the quick work Alex Yakhnin made of putting DeepZoom on WP7... all source included. How to: Create a sketchy Siverlight GroupBox in Blend/SketchFlow ondrejsv has the xaml up to take Tim Greenfield's GroupBox control and insert it into SketchFlow. Silverlight / Castle Windsor – implementing a simple logging framework Giorgetti Alessandro posted about CastleWindsor for Silverlight, and a logging system inherited from LevelFilteredLogger in the absence of Log4Net. DomainDataSource in a ViewModel Jeff Handley responds to a common forum post about using DomainDataSource in a ViewModel. Read his comments on AutoLoad and ElementName Bindins. Digital Jugendstil TextEffect (Art Nouveau) - Silverlight 3 SilverLaw has a cool TagCloud demo and a UserControl he calls Art Nouveau up at the Expression Gallery... not for a business app, I don't think :) Configuring your DomainService for a Windows Phone 7 application deepm discusses RIA Services for WP7 and how to enable a WP7 app to communicate with a DomainService. Writing a Custom Filter or Parameter for DomainDataSource Kyle McClellan by way of Jeff Handley's blog, is discussing how to leverage the custom parameter types you defined in the previous version of RIA Services. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • ASP.NET 4.0- Html Encoded Expressions

    - by Jalpesh P. Vadgama
    We all know <%=expression%> features in asp.net. We can print any string on page from there. Mostly we are using them in asp.net mvc. Now we have one new features with asp.net 4.0 that we have HTML Encoded Expressions and this prevent Cross scripting attack as we are html encoding them. ASP.NET 4.0 introduces a new expression syntax <%: expression %> which automatically convert string into html encoded. Let’s take an example for that. I have just created an hello word protected method which will return a simple string which contains characters that needed to be HTML Encoded. Below is code for that. protected static string HelloWorld() { return "Hello World!!! returns from function()!!!>>>>>>>>>>>>>>>>>"; } Now let’s use the that hello world in our page html like below. I am going to use both expression to give you exact difference. <form id="form1" runat="server"> <div> <strong><%: HelloWorld()%></strong> </div> <div> <strong><%= HelloWorld()%></strong> </div> </form> Now let’s run the application and you can see in browser both look similar. But when look into page source html in browser like below you can clearly see one is HTML Encoded and another one is not. That’s it.. It’s cool.. Stay tuned for more.. Happy Programming Technorati Tags: ASP.NET 4.0,HTMLEncode,C#4.0

    Read the article

  • Silverlight Cream for March 30, 2010 -- #825

    - by Dave Campbell
    In this Issue: Jeremy Likness, Tim Greenfield, Tim Heuer, ondrejsv, XAML Ninja, Nikhil Kothari, Sergey Barskiy, Shawn Oster, smartyP, Christian Schormann(-2-), and John Papa And Glenn Block. Shoutouts: Victor Gaudioso produced a RefCard for DZone: Getting Started with Silverlight and Expression Blend Way to go Victor... it looks great! Gavin Wignall announced Metia launch FourSquare and Bing maps mash up – called Near.me Cheryl Simmons talks about VS2010 and the design surface: Changing Templates with the Silverlight Designer (and seeing the changes immediately) Michael S. Scherotter posted that New York Times Silverlight Kit Updated for Windows Phone 7 Series Jaime Rodriguez posted about 2 free chapters in his new book (with Yochay Kiriaty): A Journey Into Silverlight On Windows Phone -Via Learning WIndows PHone Programming Did you know there was "MSDN Radio"?? Tim Heuer posted follow-up answers to this morning's show: MSDN Radio follow-up answers: Prism for Silverlight, DomainServices and relationships Michael Klucher posted a great set of links for WP7 game development this morning: Great Game Development Tutorials for Windows Phone Zhiming Xue has 3 pages of synopsis and links for everything Windows Phone at MIX. This is the 1st, but at the top of the pages are links to the other two: Windows Phone 7 Content From MIX10 – Part I From SilverlightCream.com: Using WriteableBitmap to Simplify Animations with Clones Jeremy Likness takes a break from his LOB posts to demonstrate a page flip animation using WriteableBitmap to simplify the animation using clones. SAX-like Xml parsing Want some experience or fun with Rx? Tim Greenfield has a post up on building an observable XmlReader. nstalling Silverlight applications without the browser involved Last night I blogged Mike Taulty's take on the "Silent Install" for an OOB app, tonight, I'm posting Tim Heuer's insight on the topic. How to: Create computed/custom properties for sample data in Blend/Sketchflow ondrejsv posted an example of digging into the files that control the sample data for Blend to get what you really want. PathListBox Adventures – radial layout Check out the radial layout XAML Ninja did using the PathListBox ... and all code available. RIA Services and Validation Nikhil Kothari has a great (duh!) post up that follows his Silverlight TV on the same subject: RIA Services and validation... lots of good external links also. Windows Phone 7 Application with OData Sergey Barskiy did an OData to WP7 app by using the feed from MIX10. You can see a list of sessions, and click on one to see details. Getting Blur And DropShadow to work in the Windows Phone Emulator Shawn Oster responds to some forum questions about Blur and DropShadow effects not showing up in the WP7 emulator, and gives the code trick we have to do for now. Metro Icons for Windows Phone 7 We all got the other icon set for WP7 from MSDN, but smartyP pulled the Metro Icons from the PPT deck of the MIX10 presentations... good job! Fonts in SketchFlow Christian Schormann talks about fonts in Sketchflow, where they live on your machine, and how you can use them. Blend 4: About Path Layout, Part III Christian Schormann also has Part III of his epic tutorial up on Path Layout and Blend. This one is on dynamic resizing layouts, and he has links back to the other two if you missed them... or you can find them with a search at SilverlightCream... :) Simple ViewModel Locator for MVVM: The Patients Have Left the Asylum John Papa And Glenn Block teamed up to solve the View First model only without the maintenance involved with the ViewModel locator by using MEF. It only took these guys and hour... sigh... :) Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • What is the best book on Silverlight 4?

    - by mbcrump
    Silverlight/Expression 4 Books! I recently stumbled upon a post asking, “What is the best book on Silverlight 4?” In the age of the internet, it can be hard for anyone searching for a good book to actually find it. I have read a few Silverlight 4/Expression books in 2010 and decided to post the “best of” collection. Instead of reading multiple books, you can cut your list down to whatever category that you fit in. With Silverlight 5 coming soon, now is the time to get up to speed with what Silverlight 4 can offer. Be sure to read the full review at the bottom of each section. For the “Beginner” Silverlight Developer: Both of these books contains very simple applications and will get you started very fast. and Book Review: Microsoft Silverlight 4 Step by Step For the guy/gal that wants to “Master” Expression Blend 4: This is a hands-on kind of book. Victor get you started early on with some sample application and quickly deep dives into Storyboard and other Animations. If you want to learn Blend 4 then this is the place to start. Book Review: Foundation Expression Blend 4 by Victor Gaudioso If you are aiming to learn more about the Business side of Silverlight then check out the following two books: and Finally, For the Silverlight 4 guy/gal that wants to “Master” Silverlight 4, it really boils down to the following two books: and   Book Review: Silverlight 4 Unleashed by Laurent Bugnion Book Review: Silverlight 4 in Action by Pete Brown I can’t describe how much that I’ve actually learned from both of these books. I would also recommend you read these books if you are preparing for your Silverlight 4 Certification. For a complete list of all Silverlight 4 books then check out http://www.silverlight.net/learn/books/ and don’t forget to subscribe to my blog.  Subscribe to my feed CodeProject

    Read the article

  • MVVM Project and Item Templates

    - by Timmy Kokke
    Intro This is the first in a series of small articles about what is new in Silverlight 4 and Expression Blend 4. The series is build around a open source demo application SilverAmp which is available on http://SilverAmp.CodePlex.com.   MVVM Project and Item Templates Expression Blend has got a new project template to get started with a Model-View-ViewModel project  easily. The template provides you with a View and a ViewModel bound together. It also adds the ViewModel to the SampleData of your project. It is available for both Silverlight and Wpf. To get going, start a new project in Expression Blend and select Silverlight DataBound Application from the Silverlight project type. In this case I named the project DemoTest1. The solution now contains several folders: SampleData; which contains a data to show in Blend ViewModels; starts with one file, MainViewModel.cs Views; containing MainView.xaml with codebehind used for binding with the MainViewModel class. and your regular App.xaml and MainPage.xaml The MainViewModel class contains a sample property and a sample method. Both the property and the method are used in the MainView control. The MainView control is a regular UserControl and is placed in the MainPage. You can continue on building your applicaition by adding your own properties and methods to the ViewModel and adding controls to the View. Adding Views with ViewModels is very easy too. The guys at Microsoft where nice enough to add a new Item template too: a UserControl with ViewModel. If you add this new item to the root of your solution it will add the .xaml file to the views folder and a .cs file to the ViewModels folder. Conclusion The databound Application project type is a great to get your MVVM based project started. It also functions a great source of information about how to connect it all together.   Technorati Tags: Silverlight,Wpf,Expression Blend,MVVM

    Read the article

  • Dynamic filter expressions in an OpenAccess LINQ query

    We had some support questions recently where our customers had the need to combine multiple smaller predicate expressions with either an OR or an AND  logical operators (these will be the || and && operators if you are using C#). And because the code from the answer that we sent to these customers is very interesting, and can easily be refactorred into something reusable, we decided to write this blog post. The key thing that one must know is that if you want your predicate to be translated by OpenAccess ORM to SQL and executed on the server you must have a LINQ Expression that is not compiled. So, let’s say that you have these smaller predicate expressions: Expression<Func<Customer, bool>> filter1 = c => c.City.StartsWith("S");Expression<Func<Customer, bool>> filter2 = c => c.City.StartsWith("M");Expression<Func<Customer, bool>> filter3 = c => c.ContactTitle == "Owner"; And ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Automating Form Login

    - by Greg_Gutkin
    Introduction A common task in configuring a web application for proxying in Pagelet Producer is setting up form autologin. PP provides a wizard-like tool for detecting the login form fields, but this is usually only the first step in configuring this feature. If the generated configuration doesn't seem to work, some additional manual modifications will be needed to complete the setup. This article will try to guide you through this process while steering you away from common pitfalls. For the purposes of this article, let's assume the following characteristics about your environment: Web Application Base URL: http://host/app (configured as Resource Source URL in PP) Pagelet Producer Base URL: http://pp/pagelets Form Field Auto-Detection Form Autologin is configured in the PP Admin UI under resource_name/Autologin/Form Login. First, you'll enter the URL to the login form under "Login Form Identification". This will enable the admin wizard to connect to and display the login page. Caution: RedirectsMake sure the entered URL matches what you see in the browser's address bar, when the application login page is displayed. For example, even though you may be able to reach the login page by simply typing http://host/app, the URL you end up on may change to http://host/app/login via browser redirect(s).The second URL is the one you will want to use. Caution: External Login ServersThe login page may actually come from a different server than the application you are trying to proxy. For example, you may notice that the login page URL changes to http://hostB/appB. This is common when external SSO products are involved. There are two ways of dealing with this situation. One is to configure Pagelet Producer to participate in SSO. This approach is out of scope of this article and is discussed in a separate whitepaper (TODO add link). The second approach is to use the autologin feature to provide stored credentials to the SSO login form. Since the login form URL is not an extension of the application base URL (PP resource URL), you will need to add a new PP resource for the SSO server and configure the login form on that resource instead of the original application resource. One side benefit of this additional resource is that it can reused for other applications relying on the same SSO server for login. After entering the login page URL (make sure dropdown says "URL"), click "Automatically Detect Form Fields". This will bring up the web app's login page in a new browser window. Fill it out and submit it as you would normally. If everything goes right, Pagelet Producer will intercept the submitted values and fill out all the needed configuration data in the Admin UI. If the login form window doesn't close or configuration data doesn't get filled in, you may have not entered the login page URL correctly. Review the two cautionary notes above and make any necessary changes. If the form fields got filled automatically, it's time to save the configuration and test it out. If you can access a protected area of the backend application via a proxied PP URL without filling out its login form, then you are pretty much done with login form configuration. The only other step you will need to complete before declaring this aspect of configuration production ready is configuring form field source. You may skip to that section below. Manual Login Form Identification Let's take a closer look at Login Form Identification. This determines how Pagelet Producer recognizes login forms as such. URL The most efficient way of detecting login forms is by looking at the page URL. This method can only be used under the following conditions: Login page URL must be different from the post login application URLs. Login page URL must stay constant regardless of the path it takes to reach the page. For example, reaching the login page by going to the application base URL or to a specific protected URL must result in a redirect to the same login page URL (query string excluded). If only the query string parameters change, just leave out the query string from the configured login page URL. If either of these conditions is not fullfilled, you must switch to the RegEx approach below. RegEx If the login page URL is not uniform enough across all scenarios or is indistinguishable from other page locations, PP can be configured to recognize it by looking at the page markup itself. This is accomplished by changing the dropdown to "RegEx". If regular expressions scare you, take comfort from the fact that in most cases you won't need to enter any special regex characters. Let's look at an example: Say you have a login form that looks like <form id='loginForm' action='login?from=pageA' > <input id='user'> <input id='pass'> </form> Since this form has an id attribute, you can be reasonably sure that this login form can be uniquely identified across the web application by this snippet: "id='loginForm'". (Unless, of course your backend web application contains login forms to other apps). Since no wildcards are needed to find this snippet, you can just enter it as is into the RegEx field - no special regular expression characters needed! If the web developer who created the form wasn't kind enough to provide a unique id, you will need to look for other snippets of the page to uniquely identify it. It could be the action URL, an input field id, or some other markup fragment. You should abstain from using UI text as an identifier it may change in translated versions of the page and prevent the login page logic from working for international users. You may need to turn to regular expression wildcard syntax if no simple matches work. For more information on regular expression, refer to the Resources section. Form Submit Location Now we'll look at the form submit location. If the captured URL contains query string parameters that will likely change from one form submission to the next, you will need to change its type to RegEx. This type will tell Pagelet Producer to parse the login page for the action URL and submit to the value found. The regular expression needs to point at the actual action URL with its first grouping expression. Taking the example form definition above, the form submit location regex would be: action='(.*?)' The parentheses are used to identify the actual action URL, while the rest of the expression provides the context for finding it. Expression .*? is a so-called reluctant wildcard that matches any character excluding the single quote that follows. See Resources section below for further information on regular expressions. Manual Form Field Detection If the Admin UI form field detection wizard fails to populate login form configuration page, you will have to enter the fields by hand. Use a built-in browser developer tool or addon (e.g. Firebug) to inspect the form element and its children input elements. For each input element (including hidden elements), create an entry under Form Fields. Change its Source according to the next section. Form Field Source Change the source of any of the fields not exposed to the users of the login form (i.e. hidden fields) to "Generated". This means Pagelet Producer will just use the values returned by the web app rather than supplying values it stored. For fields that contain sensitive data or vary from user to user (e.g. username & password), change the source to User (Credential) Vault. Logging Support To help you troubleshoot you autologin configuration, PP provides some useful logging support. To turn on detailed logging for the autologin feature, navigate to Settings in Admin UI. Under Logging, change the log level for AutoLogin to Finest. Known Limitations Autologin feature may not work as expected if login form fields (not just the values, but the DOM elements themselves) are generated dynamically by client side JavaScript. Resources RegEx RegEx Reference from Java RegEx Test Tool

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Editing XML Literals Embedded Expressions in Visual Basic 2010 (Avner Aharoni)

    The implicit line continuation feature in Visual Basic 2010 provided an opportunity to improve the code editing experience in XML literals embedded expressions. In Visual Studio 2008, pressing Enter inside an embedded expression would result in the cursor being positioned to the left of the end embedded expression tag. In Visual Studio 2010, pressing Enter inserts a newline for the cursor, and the end embedded expression tag moves to the line below. This minimizes the number of key strokes needed...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • ECMAScript : ajouts et modifications de la 5e édition qui introduisent des incompatibilités avec le 3e

    (une petite traduction rapide des changements impactant entre la v5 et la v3. les numéros correspondent aux chapitres de la norme) Ecma-362 alias EcmaScript5 Annex E Ajouts et modifications dans la 5e édition qui introduisent des incompatibilités avec le 3e édition 7.1: si des caractères de contrôle Unicode sont présent dans une expression String ou une expression d'ExpressionRegulière ils seront inclus dans la l'expression. alors que dans l'édition 3 ils étaient ignorés. 7.2: le caractère Unicode <BOM> (Byte Order Mark) est maintenant traité comme un whitespace alors qu'il provoquait une Syntax Error dans l'édition ...

    Read the article

  • Fluent MVC Route Testing Helper

    - by Nettuce
    static class GetUrlFromController<T> where T : Controller     {         public static string WithAction(Expression<Func<T, ActionResult>> expression)         {             var controllerName = typeof(T).Name.Replace("Controller", string.Empty);             var methodCall = (MethodCallExpression)expression.Body;             var actionName = methodCall.Method.Name;             var routeValueDictionary = new RouteValueDictionary();             for (var i = 0; i < methodCall.Arguments.Count; i++)             {                 routeValueDictionary.Add(methodCall.Method.GetParameters()[i].Name, methodCall.Arguments[i]);             }             var routes = new RouteCollection();             MvcApplication.RegisterRoutes(routes);             return UrlHelper.GenerateUrl(null, actionName, controllerName, routeValueDictionary, routes, ContextMocks.RequestContext, true);         }     } I'm using FluentAssertions too, so you get this: GetUrlFromController<HomeController>.WithAction(x => x.Edit(1)).Should().Be("/Home/Edit/1");

    Read the article

  • SOA 10g Developing a Simple Hello World Process

    - by [email protected]
    Softwares & Hardware Needed Intel Pentium D CPU 3 GHz, 2 GB RAM, Windows XP System ( Thats what i am using ) You could as well use Linux , but please choose High End RAM 10G SOA Suite from Oracle(TM) , Read Installation documents at www.Oracle.com J Developer 10.1.3.3 Official Documents at http://www.oracle.com/technology/products/ias/bpel/index.html java -version Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode)BPEL Introduction - Developing a Simple Hello World Process  Synchronous BPEL Process      This Exercise focuses on developing a Synchronous Process, which mean you give input to the BPEL Process you get output immediately no waiting at all. The Objective of this exercise is to give input as name and it greets with Hello Appended by that name example, if I give input as "James" the BPEL process returns "Hello James". 1. Open the Oracle JDeveloper click on File -> New Application give the name "JamesApp" you can give your own name if it pleases you. Select the folder where you want to place the application. Click "OK" 2. Right Click on the "JamesApp" in the Application Navigator, Select New Menu. 3. Select "Projects" under "General" and "BPEL Process Project", click "OK" these steps remain same for all BPEL Projects 4. Project Setting Wizard Appears, Give the "Process Name" as "MyBPELProc" and Namespace as http://xmlns.james.com/ MyBPELProc, Select Template as "Synchronous BPEL Process click "Next" 5. Accept the input and output schema names as it is, click "Finish" 6. You would see the BPEL Process Designer, some of the folders such as Integration content and Resources are created and few more files 7. Assign Activity : Allows Assigning values to variables or copying values of one variable to another and also do some string manipulation or mathematical operations In the component palette at extreme right, select Process Activities from the drop down, and drag and drop "Assign" between "receive Input" and "replyOutput" 8. You can right click and edit the Assign activity and give any suitable name "AssignHello", 9. Select "Copy Operation" Tab create "Copy Operation" 10. In the From variables click on expression builder, select input under "input variable", Click on insert into expression bar, complete the concat syntax, Note to use "Ctrl+space bar" inside expression window to Auto Populate the expression as shown in the figure below. What we are actually doing here is concatenating the String "Hello ", with the variable value received through the variable named "input" 11. Observe that once an expression is completed the "To Variable" is assigned to a variable by name "result" 12. Finally the copy variable looks as below 13. It's the time to deploy, start the SOA Suite 14. Establish connection to the Server from JDeveloper, this can be done adding a New Application Server under Connection, give the server name, username and password and test connection. 15. Deploy the "MyBPELProc" to the "default domain" 16. http://localhost:8080/ allows connecting to SOA Suite web portal, click on "BPEL Control" , login with the username "oc4jadmin" password what ever you gave during installation 17. "MyBPELProc" is visisble under "Deployed BPEL Processes" in the "Dashboard" Tab, click on the it 18. Initiate tab open to accept input, enter data such as input is "James" click on "Post XML Button" 19. Click on Visual Flow 20. Click on receive Input , it shows "James" as input received 21. Click on reply Output, it shows "Hello James" so the BPEL process is successfully executed. 22. It may be worth seeing all the instance created everytime a BPEL process is executed by giving some inputs. Purge All button allows to delete all the unwanted previous instances of BPEL process, dont worry it wont delete the BPEL process itself :-) 23. It may also be some importance to understand the XSD File which holds input & output variable names & data types. 24. You could drag n drop variables as elements over sequence at the designer or directly edit the XML Source file. 

    Read the article

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

  • LINQ to SQL exception: System.OutOfMemoryException

    - by Adam
    Not sure why I keep getting an OutOfMemory exception. I'm using ASP.NET MVC with LINQ to SQL. Here's some of the stack trace: [OutOfMemoryException: Exception of type 'System.OutOfMemoryException' was thrown.] System.Runtime.CompilerServices.RuntimeHelpers._CompileMethod(IntPtr method) +0 System.Reflection.Emit.DynamicMethod.CreateDelegate(Type delegateType) +7652553 System.Data.Linq.SqlClient.ObjectReaderCompiler.Compile(SqlExpression expression, Type elementType) +442 System.Data.Linq.SqlClient.SqlProvider.GetReaderFactory(SqlNode node, Type elemType) +100 System.Data.Linq.SqlClient.SqlProvider.System.Data.Linq.Provider.IProvider.Execute(Expression query) +253 System.Data.Linq.Table1.System.Linq.IQueryProvider.Execute(Expression expression) +49 System.Linq.Queryable.Single(IQueryable1 source, Expression`1 predicate) +301 WorkGrabber.Web.Models.WorkGrabberDataContext.GetJob(Int32 id) +233 WorkGrabber.Web.Controllers.BidsController.New(Int32 jobId) +19

    Read the article

  • Handle "Cannot access a closed resource set"

    - by Philip
    I have a website with several languages in a database. From the database I use ResXResourceWriter to create my .resx files. This is working really good but sometimes I get this exception: MESSAGE: Cannot access a closed resource set. SOURCE: mscorlib FORM: QUERYSTRING: TARGETSITE: System.Object GetObject(System.String, Boolean, Boolean) STACKTRACE: at System.Resources.RuntimeResourceSet.GetObject(String key, Boolean ignoreCase, Boolean isString) at System.Resources.RuntimeResourceSet.GetString(String key, Boolean ignoreCase) at System.Resources.ResourceManager.GetString(String name, CultureInfo culture) at System.Linq.Expressions.Expression.ValidateStaticOrInstanceMethod(Expression instance, MethodInfo method) at System.Linq.Expressions.Expression.Call(Expression instance, MethodInfo method, IEnumerable`1 arguments) at System.Data.Linq.DataContext.GetMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at System.Data.Linq.DataContext.ExecuteMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at Business.DatabaseModelDataContext.Web_GetMostPlayedEvents(String cultureCode) at Presentation.Default.Page_Load(Object sender, EventArgs e) at System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) I don't know why this is happening or how to solve it. Does anyone know anything about this? Thanks, Philip

    Read the article

  • Using constructor to load data in subsonic3?

    - by Dennis
    I'm getting an error while trying to load an record through the constructor. The constructor is: public Document(Expression<Func<Document,bool>> expression); and i try to load a single item in like this var x = new Document(f=>f.publicationnumber=="xxx"); publicationnumber isn't a key but tried making an it an unique key and still no go.. Am i totally wrong regarding the use of the constructor? and can someone please tell me how to use that constructor? The error i'm getting is: Test method TestProject1.UnitTest1.ParseFileNameTwoProductSingleLanguage threw exception: System.NullReferenceException: with the following stacktrace: SubSonic.Query.SqlQuery.Where[T](Expression1` expression) Load`[T]`(T item, Expression1expression) db.Document..ctor(Expression``1 expression) in C:\@Projects\DocumentsSearchAndAdmin\DocumentsSearchAndAdmin\Generated\ActiveRecord.cs: line 5613 rest removed for simplicity Regards Dennis

    Read the article

  • Function approximation with Maclaurin series

    - by marines
    I need to approx (1-x)^0.25 with given accuracy (0.0001 e.g.). I'm using expansion found on Wikipedia for (1+x)^0.25. I need to stop approximating when current expression is less than the accuracy. long double s(long double x, long double d) { long double w = 1; long double n = 1; // nth expression in series long double tmp = 1; // sum while last expression is greater than accuracy while (fabsl(tmp) >= d) { tmp *= (1.25 / n - 1) * (-x); // the next expression w += tmp; // is added to approximation n++; } return w; } Don't mind long double n. :P This works well when I'm not checking value of current expression but when I'm computing 1000 or more expressions. Domain of the function is <-1;1 and s() calculates approximation well for x in <-1;~0.6. The bigger the argument is the bigger is the error of calculation. From 0.6 it exceeds the accuracy. I'm not sure if the problem is clear enough because I don't know English math language well. The thing is what's the matter with while condition and why the function s() doesn't approximate correctly.

    Read the article

  • Regular exp to validate email in C

    - by Liju Mathew
    Hi, We need to write a email validation program in C. We are planning to use GNU Cregex.h) regular expression. The regular expression we prepared is [a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])? But the below code is failing while compiling the regex. #include <stdio.h> #include <regex.h> int main(const char *argv, int argc) { const char *reg_exp = "[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?"; int status = 1; char email[71]; regex_t preg; int rc; printf("The regex = %s\n", reg_exp); rc = regcomp(&preg, reg_exp, REG_EXTENDED|REG_NOSUB); if (rc != 0) { if (rc == REG_BADPAT || rc == REG_ECOLLATE) fprintf(stderr, "Bad Regex/Collate\n"); if (rc == REG_ECTYPE) fprintf(stderr, "Invalid Char\n"); if (rc == REG_EESCAPE) fprintf(stderr, "Trailing \\\n"); if (rc == REG_ESUBREG || rc == REG_EBRACK) fprintf(stderr, "Invalid number/[] error\n"); if (rc == REG_EPAREN || rc == REG_EBRACE) fprintf(stderr, "Paren/Bracket error\n"); if (rc == REG_BADBR || rc == REG_ERANGE) fprintf(stderr, "{} content invalid/Invalid endpoint\n"); if (rc == REG_ESPACE) fprintf(stderr, "Memory error\n"); if (rc == REG_BADRPT) fprintf(stderr, "Invalid regex\n"); fprintf(stderr, "%s: Failed to compile the regular expression:%d\n", __func__, rc); return 1; } while (status) { fgets(email, sizeof(email), stdin); status = email[0]-48; rc = regexec(&preg, email, (size_t)0, NULL, 0); if (rc == 0) { fprintf(stderr, "%s: The regular expression is a match\n", __func__); } else { fprintf(stderr, "%s: The regular expression is not a match: %d\n", __func__, rc); } } regfree(&preg); return 0; } The regex compilation is failing with the below error. The regex = [a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])? Invalid regex main: Failed to compile the regular expression:13 What is the cause of this error? Whether the regex need to be modified? Thanks, Mathew Liju

    Read the article

  • LINQ Generic Query with inherited base class?

    - by sah302
    I am trying to write some generic LINQ queries for my entities, but am having issue doing the more complex things. Right now I am using an EntityDao class that has all my generics and each of my object class Daos (such as Accomplishments Dao) inherit it, am example: using LCFVB.ObjectsNS; using LCFVB.EntityNS; namespace AccomplishmentNS { public class AccomplishmentDao : EntityDao<Accomplishment>{} } Now my entityDao has the following code: using LCFVB.ObjectsNS; using LCFVB.LinqDataContextNS; namespace EntityNS { public abstract class EntityDao<ImplementationType> where ImplementationType : Entity { public ImplementationType getOneByValueOfProperty(string getProperty, object getValue) { ImplementationType entity = null; if (getProperty != null && getValue != null) { //Nhibernate Example: //ImplementationType entity = default(ImplementationType); //entity = Me.session.CreateCriteria(Of ImplementationType)().Add(Expression.Eq(getProperty, getValue)).UniqueResult(Of InterfaceType)() LCFDataContext lcfdatacontext = new LCFDataContext(); //Generic LINQ Query Here lcfdatacontext.GetTable<ImplementationType>(); lcfdatacontext.SubmitChanges(); lcfdatacontext.Dispose(); } return entity; } public bool insertRow(ImplementationType entity) { if (entity != null) { //Nhibernate Example: //Me.session.Save(entity, entity.Id) //Me.session.Flush() LCFDataContext lcfdatacontext = new LCFDataContext(); //Generic LINQ Query Here lcfdatacontext.GetTable<ImplementationType>().InsertOnSubmit(entity); lcfdatacontext.SubmitChanges(); lcfdatacontext.Dispose(); return true; } else { return false; } } } }             I have gotten the insertRow function working, however I am not even sure how to go about doing getOnebyValueOfProperty, the closest thing I could find on this site was: http://stackoverflow.com/questions/2157560/generic-linq-to-sql-query How can I pass in the column name and the value I am checking against generically using my current set-up? It seems like from that link it's impossible since using a where predicate because entity class doesn't know what any of the properties are until I pass them in. Lastly, I need some way of setting a new object as the return type set to the implementation type, in nhibernate (what I am trying to convert from) it was simply this line that did it: ImplentationType entity = default(ImplentationType); However default is an nhibernate command, how would I do this for LINQ? EDIT: getOne doesn't seem to work even when just going off the base class (this is a partial class of the auto generated LINQ classes). I even removed the generics. I tried: namespace ObjectsNS { public partial class Accomplishment { public Accomplishment getOneByWhereClause(Expression<Action<Accomplishment, bool>> singleOrDefaultClause) { Accomplishment entity = new Accomplishment(); if (singleOrDefaultClause != null) { LCFDataContext lcfdatacontext = new LCFDataContext(); //Generic LINQ Query Here entity = lcfdatacontext.Accomplishments.SingleOrDefault(singleOrDefaultClause); lcfdatacontext.Dispose(); } return entity; } } } Get the following error: Error 1 Overload resolution failed because no accessible 'SingleOrDefault' can be called with these arguments: Extension method 'Public Function SingleOrDefault(predicate As System.Linq.Expressions.Expression(Of System.Func(Of Accomplishment, Boolean))) As Accomplishment' defined in 'System.Linq.Queryable': Value of type 'System.Action(Of System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean))' cannot be converted to 'System.Linq.Expressions.Expression(Of System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean))'. Extension method 'Public Function SingleOrDefault(predicate As System.Func(Of Accomplishment, Boolean)) As Accomplishment' defined in 'System.Linq.Enumerable': Value of type 'System.Action(Of System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean))' cannot be converted to 'System.Func(Of LCFVB.ObjectsNS.Accomplishment, Boolean)'. 14 LCF Okay no problem I changed: public Accomplishment getOneByWhereClause(Expression<Action<Accomplishment, bool>> singleOrDefaultClause) to: public Accomplishment getOneByWhereClause(Expression<Func<Accomplishment, bool>> singleOrDefaultClause) Error goes away. Alright, but now when I try to call the method via: Accomplishment accomplishment = new Accomplishment(); var result = accomplishment.getOneByWhereClause(x=>x.Id = 4) It doesn't work it says x is not declared. I also tried getOne, and various other Expression =(

    Read the article

  • [Cocoa] Can't find leak in my code.

    - by ryyst
    Hi, I've been spending the last few hours trying to find the memory leak in my code. Here it is: NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; expression = [expression stringByTrimmingCharactersInSet: [NSCharacterSet whitespaceAndNewlineCharacterSet]]; // expression is an NSString object. NSArray *arguments = [NSArray arrayWithObjects:expression, [@"~/Desktop/file.txt" stringByExpandingTildeInPath], @"-n", @"--line-number", nil]; NSPipe *outPipe = [[NSPipe alloc] init]; NSTask *task = [[NSTask alloc] init]; [task setLaunchPath:@"/usr/bin/grep"]; [task setArguments:arguments]; [task setStandardOutput:outPipe]; [outPipe release]; [task launch]; NSData *data = [[outPipe fileHandleForReading] readDataToEndOfFile]; [task waitUntilExit]; [task release]; NSString *string = [[NSString alloc] initWithBytes:[data bytes] length:[data length] encoding:NSUTF8StringEncoding]; string = [string stringByReplacingOccurrencesOfString:@"\r" withString:@""]; int linesNum = 0; NSMutableArray *possibleMatches = [[NSMutableArray alloc] init]; if ([string length] > 0) { NSArray *lines = [string componentsSeparatedByString:@"\n"]; linesNum = [lines count]; for (int i = 0; i < [lines count]; i++) { NSString *currentLine = [lines objectAtIndex:i]; NSArray *values = [currentLine componentsSeparatedByString:@"\t"]; if ([values count] == 20) [possibleMatches addObject:currentLine]; } } [string release]; [pool release]; return [possibleMatches autorelease]; I tried to follow the few basic rules of Cocoa memory management, but somehow there still seems to be a leak, I believe it's an array that's leaking. It's noticeable if possibleMatches is large. You can try the code by using any large file as "~/Desktop/file.txt" and as expression something that yields many results when grep-ing. What's the mistake I'm making? Thanks for any help! -- Ry

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >