Search Results

Search found 2074 results on 83 pages for 'arbitrary precision'.

Page 62/83 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • Linux security: The dangers of executing malignant code as a standard user

    - by AndreasT
    Slipping some (non-root) user a piece of malignant code that he or she executes might be considered as one of the highest security breaches possible. (The only higher I can see is actually accessing the root user) What can an attacker effectively do when he/she gets a standard, (let's say a normal Ubuntu user) to execute code? Where would an attacker go from there? What would that piece of code do? Let's say that the user is not stupid enough to be lured into entering the root/sudo password into a form/program she doesn't know. Only software from trusted sources is installed. The way I see it there is not really much one could do, is there? Addition: I partially ask this because I am thinking of granting some people shell (non-root) access to my server. They should be able to have normal access to programs. I want them to be able to compile programs with gcc. So there will definitely be arbitrary code run in user-space...

    Read the article

  • Increasing time resolution of BOOST::progress timer

    - by feelfree
    BOOST::progress_timer is a very useful class to measure the running time of a function. However, the default implementation of progress_timer is not accurate enough and a possible way of increasing time resolution is to reconstruct a new class as the following codes show: #include <boost/progress.hpp> #include <boost/static_assert.hpp> template<int N=2> class new_progress_timer:public boost::timer { public: new_progress_timer(std::ostream &os=std::cout):m_os(os) { BOOST_STATIC_ASSERT(N>=0 &&N<=10); } ~new_progress_timer(void) { try { std::istream::fmtflags old_flags = m_os.setf(std::istream::fixed,std::istream::floatfield); std::streamsize old_prec = m_os.precision(N); m_os<<elapsed()<<"s\n" <<std::endl; m_os.flags(old_flags); m_os.precison(old_prec); } catch(...) { } } private: std::ostream &m_os; }; However, when I compile the codes with VC10, the following error appear: 'precison' : is not a member of 'std::basic_ostream<_Elem,_Traits>' Any ideas? Thanks.

    Read the article

  • Disable touch pad for mouse button region on new HP pavillion models?

    - by John
    i bought a new hp pavillion dv6 series laptop. the laptop itself is fine but it has the new hp touchpad mouse which i absolutely hate. its such a stupid problem to have with a computer. the left and right mouse buttons are, themselves, part of of the touchpad, meaning that if i tap the buttons without actually pressing them down, it registers the same way as the mouse pad (the cursor moves, tap to click activates, etc.) this is a major annoyance because it prevents you from operating the mouse pad with anything more than a single finger; if for example i use my right hand index finger to move the cursor using the touch pad and rest my left hand index finger on the left mouse button for more efficient mouse-ing, the mouse will react as if im trying to use 2 fingers to move it and it will either just sit there or will spaz out. the only way this works is if i keep the finger that is resting on the mouse button absolutely still, which is very difficult and, therefore, very annoying. also, even if i do abide by the arbitrary new decree of single-finger mousepad operation, i still have a problem because when i press down on the left or right click buttons, the mouse moves slightly, what with the buttons also being part of the touch pad and all. this would not be that hard to avoid except that they decided to also make the buttons much harder to press down. now whenever i go to click something, i press hard on the mouse button, causing my finger to slightly move or roll or flatten out a bit, causing the cursor to move slightly, and causing me to click on something different. what i would like to know is if there is anyway that i can disable the touch pad on the buttons. i have gone through all of the settings under the synaptics menus but i cannot find anything about this. did i miss something in one of the menus? if not, then are there any updated drivers that allow for toggling of this function?

    Read the article

  • How to convert Big Endian and how to flip the highest bit?

    - by Robert Frank
    I am using a TStream to read binary data (thanks to this post: http://stackoverflow.com/questions/2878180/how-to-use-a-tfilestream-to-read-2d-matrices-into-dynamic-array). My next problem is that the data is Big Endian. From my reading, the Swap() method is seemingly deprecated. How would I swap the types below? 16-bit two's complement binary integer 32-bit two's complement binary integer 64-bit two's complement binary integer IEEE single precision floating-point - Are IEEE affected by Big Endian? And, finally, since the data is unsigned, the creators of this dataset have stored the unsigned values as signed integers (excluding the IEEE). They instruct that one need only add an offset (2^15, 2^31, and 2^63) to recover the unsigned data. But, they note that flipping the most significant bit is the fastest way to do that. How does one efficiently flip the most significant bit of a 16, 32, or 64-bit integer? So, if the data on disk (16-bit) is "85 FB" - the desired result after reading the data and swapping and bit flipping would be 1531. Is there a way to accomplish the swapping and bit flipping with generics so it fits into the generic answer at the link above? Yes, kids, THIS is how scientific astronomical data is stored by NASA, ESO, and all professional astronomers. This FITS standard is considered by some to be one of the most successful standards ever created in its proliferation and flexibility!

    Read the article

  • Ping with explicit next-hop selection (aka Monitoring multiple default gateways)

    - by Michuelnik
    I have a linux (debian) router with two internet connections (A) and (B). (A) is preferred, (B) is fallback. I want to monitor the internet connection (and not only the availability of the gateways!) and change the default route appropriately. If (A) is not providing internet, switch to (B) If (A) is providing internet again, switch back to (A). Only problem I have is in case (2). My routing table points towards a working internet so I cannot easily detect whether internet is working over link (A) again. I am search for a ping or traceroute (or other diagnosis-tool) which can select the next-hop explicitly. ping -r looks promising, but can only ping a host on the lan. (It only has to write another destination address in the packet, damnit!) traceroute -g gateway looks even more promising and nearly does what I want - but sets source routing options which my next-hops deny. (Not within my administrative boundary...) I just want a $ping, that can: select a source interface (and address) select a next-hop on that interface ping any arbitrary ip address I could do evil trickery with policy-based routing but that would have production impact for all users. I would like to see a side-effect-free solution....

    Read the article

  • Large scale file replication with an option to "unsubscribe" from a replicated file on a given machine

    - by Alexander Gladysh
    I have a 100+ GB files per day incoming on one machine. (File size is arbitrary and can be adjusted as needed.) I have several other machines that do some work on these files. I need to reliably deliver each incoming file to the worker machines. A worker machine should be able to free its HDD from a file once it is done working with it. It is preferable that a file would be uploaded to the worker only once and then processed in place, and then deleted, without copying somewhere else — to minimize already high HDD load. (Worker itself requires quite a bit of bandwidth.) Please advise a solution that is not based on Java. None of existing replication solutions that I've seen can do the "free HDD from the file once processed" stuff — but maybe I'm missing something... A preferable solution should work with files (from the POV of our business logic code), not require the business logic to connect to some queue or other. (Internally the solution may use whatever technology it needs to — except Java.)

    Read the article

  • Mail-Merge on Steroids: Can Word 2003 do this?

    - by richardtallent
    I have a huge report to put together, made up of over 1,000 smaller, nearly-identical reports. Each report includes: General 1:1 information (basic mail-merge stuff) Lots of text, some of which may need to be disabled or have alternate text based on a boolean field. A few embedded images, preferably loaded via HTTP URL, but if they have to be on the a file system thing I can do that. (Filenames will be provided as a field in the data source.) Fortunately, all images are roughly the same size/shape. Several 1:m tables with a few fields apiece. The kicker is the master/child tables. I've seen examples for Word 2000 for doing this by left-joining the master and child table and using some IF/THEN logic to know whether to jump to the next master record. But in my case, I have several of these subtables, so that approach won't really work. So, can Word 2003 handle arbitrary master/child tables? If so, how? If not, I considered InfoPath, but I haven't used it before, and it seems to be made for data entry, not long formatted reports. I'm a software developer, so I could always hack something together with a massive VBA macro, or generating the report in HTML on the web server (where the data is coming from anyway). But I'm hoping Word will work without such gymnastics, since it will give the ultimate users of the report template better control over formatting and making minor changes.

    Read the article

  • Out-of-memory algorithms for addressing large arrays

    - by reve_etrange
    I am trying to deal with a very large dataset. I have k = ~4200 matrices (varying sizes) which must be compared combinatorially, skipping non-unique and self comparisons. Each of k(k-1)/2 comparisons produces a matrix, which must be indexed against its parents (i.e. can find out where it came from). The convenient way to do this is to (triangularly) fill a k-by-k cell array with the result of each comparison. These are ~100 X ~100 matrices, on average. Using single precision floats, it works out to 400 GB overall. I need to 1) generate the cell array or pieces of it without trying to place the whole thing in memory and 2) access its elements (and their elements) in like fashion. My attempts have been inefficient due to reliance on MATLAB's eval() as well as save and clear occurring in loops. for i=1:k [~,m] = size(data{i}); cur_var = ['H' int2str(i)]; %# if i == 1; save('FileName'); end; %# If using a single MAT file and need to create it. eval([cur_var ' = cell(1,k-i);']); for j=i+1:k [~,n] = size(data{j}); eval([cur_var '{i,j} = zeros(m,n,''single'');']); eval([cur_var '{i,j} = compare(data{i},data{j});']); end save(cur_var,cur_var); %# Add '-append' when using a single MAT file. clear(cur_var); end The other thing I have done is to perform the split when mod((i+j-1)/2,max(factor(k(k-1)/2))) == 0. This divides the result into the largest number of same-size pieces, which seems logical. The indexing is a little more complicated, but not too bad because a linear index could be used. Does anyone know/see a better way?

    Read the article

  • Tips for submitting a library to Boost?

    - by AraK
    Hi everyone, Summer is coming, and a group of friends and I are getting ready for it :) We decided to build a compile-time Arbitrary precision Unsigned Integers. We would like to provide a set of integers algorithms(functions) with the library. We have seen a number of requests for such a library(SoC2010, C++0x Standard Library wishlist). Also, a regular run-time bigint is requested usually with that, but we don't want to go into the hassle of memory management. The idea came to me from a library called TTMath, unfortunately this library works only on specific platforms because Assembly was used extensively in the library. We would like to write a standard library, depending on the C++ standard library and Boost. Also, we would like to use the available C++0x facilities in current compilers like user-defined literals and others. This would technically make the library non-standard for a while, but we think that it is a matter of time the new standards will be official. Your hints on the whole process including design, implementation, documentation, maintainable of the library are more than welcom. We are a group of students and fresh graduates who are looking for something interesting in the summer, but we see that Boost is full of gurus and we don't want to forget something too obvious. We are communicating on-line, so there is no shared white-boards :( Thanks,

    Read the article

  • Zend_Db Enum Values [Closed]

    - by scopus
    I find this solution $metadata = $result->getTable()->info('metadata'); echo $metadata['Continent']['DATA_TYPE']; Hi, I want to get enum values in Zend_Db. My Code: $select = $this->select(); $result = $select->fetchAll(); print_r($result->getTable()); Output: Example Object ( [_name] => country [query] => Zend_Db_Table_Select Object ( [_info:protected] => Array ( [schema] => [name] => country [cols] => Array ( [0] => Code [1] => Continent ) [primary] => Array ( [1] => Code ) [metadata] => Array ( [Continent] => Array ( [SCHEMA_NAME] => [TABLE_NAME] => country [COLUMN_NAME] => Continent [COLUMN_POSITION] => 3 [DATA_TYPE] => enum('Asia','Europe','North America','Africa','Oceania','Antarctica','South America') [DEFAULT] => Asia [NULLABLE] => [LENGTH] => [SCALE] => [PRECISION] => [UNSIGNED] => [PRIMARY] => [PRIMARY_POSITION] => [IDENTITY] => ) I see enum values in data_type but i don't get this values. How can get data_type?

    Read the article

  • java warnings on linux

    - by Geo Papas
    Hello i am getting warnings after i have installed java on kubuntu 11.10. The java programs run but i always get 4 warnings: $ java Warning: no leading - on line 1 of `/usr/lib/jvm/java-6-sun-1.6.0.26/jre/lib/amd64/jvm.cfg' Warning: missing VM type on line 1 of `/usr/lib/jvm/java-6-sun-1.6.0.26/jre/lib/amd64/jvm.cfg' Warning: no leading - on line 1 of `/usr/lib/jvm/java-6-sun-1.6.0.26/jre/lib/amd64/jvm.cfg' Warning: missing VM type on line 1 of `/usr/lib/jvm/java-6-sun-1.6.0.26/jre/lib/amd64/jvm.cfg' What am i missing? Thanks in advance! Here is the file content /usr/lib/jvm/java-6-sun-1.6.0.26/jre/lib/amd64/jvm.cfg : /usr/lib/jvm/java-6-sun # # %W% %E% # # Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved. # ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. # # List of JVMs that can be used as an option to java, javac, etc. # Order is important -- first in this list is the default JVM. # NOTE that this both this file and its format are UNSUPPORTED and # WILL GO AWAY in a future release. # # You may also select a JVM in an arbitrary location with the # "-XXaltjvm=<jvm_dir>" option, but that too is unsupported # and may not be available in a future release. # -server KNOWN -client IGNORE -hotspot ERROR -classic WARN -native ERROR -green ERROR

    Read the article

  • How to use a TFileStream to read 2D matrices into dynamic array?

    - by Robert Frank
    I need to read a large (2000x2000) matrix of binary data from a file into a dynamic array with Delphi 2010. I don't know the dimensions until run-time. I've never read raw data like this, and don't know IEEE so I'm posting this to see if I'm on track. I plan to use a TFileStream to read one row at a time. I need to be able to read as many of these formats as possible: 16-bit two's complement binary integer 32-bit two's complement binary integer 64-bit two's complement binary integer IEEE single precision floating-point For 32-bit two's complement, I'm thinking something like the code below. Changing to Int64 and Int16 should be straight forward. How can I read the IEEE? Am I on the right track? Any suggestions on this code, or how to elegantly extend it for all 4 data types above? Since my post-processing will be the same after reading this data, I guess I'll have to copy the matrix into a common format when done. I have no problem just having four procedures (one for each data type) like the one below, but perhaps there's an elegant way to use RTTI or buffers and then move()'s so that the same code works for all 4 datatypes? Thanks! type TRowData = array of Int32; procedure ReadMatrix; var Matrix: array of TRowData; NumberOfRows: Cardinal; NumberOfCols: Cardinal; CurRow: Integer; begin NumberOfRows := 20; // not known until run time NumberOfCols := 100; // not known until run time SetLength(Matrix, NumberOfRows); for CurRow := 0 to NumberOfRows do begin SetLength(Matrix[CurRow], NumberOfCols); FileStream.ReadBuffer(Matrix[CurRow], NumberOfCols * SizeOf(Int32)) ); end; end;

    Read the article

  • What are the hibernate annotations used to persist a Map with an enumerated type as a key?

    - by Jason Novak
    I am having trouble getting the right hibernate annotations to use on a Map with an enumerated class as a key. Here is a simplified (and extremely contrived) example. public class Thing { public String id; public Letter startLetter; public Map<Letter,Double> letterCounts = new HashMap<Letter, Double>(); } public enum Letter { A, B, C, D } Here are my current annotations on Thing @Entity public class Thing { @Id public String id; @Enumerated(EnumType.STRING) public Letter startLetter; @CollectionOfElements @JoinTable(name = "Thing_letterFrequencies", joinColumns = @JoinColumn(name = "thingId")) @MapKey(columns = @Column(name = "letter", nullable = false)) @Column(name = "count") public Map<Letter,Double> letterCounts = new HashMap<Letter, Double>(); } Hibernate generates the following DDL to create the tables for my MySql database create table Thing (id varchar(255) not null, startLetter varchar(255), primary key (id)) type=InnoDB; create table Thing_letterFrequencies (thingId varchar(255) not null, count double precision, letter tinyblob not null, primary key (thingId, letter)) type=InnoDB; Notice that hibernate tries to define letter (my map key) as a tinyblob, however it defines startLetter as a varchar(255) even though both are of the enumerated type Letter. When I try to create the tables I see the following error BLOB/TEXT column 'letter' used in key specification without a key length I googled this error and it appears that MySql has issues when you try to make a tinyblob column part of a primary key, which is what hibernate needs to do with the Thing_letterFrequencies table. So I would rather have letter mapped to a varchar(255) the way startLetter is. Unfortunately, I've been fussing with the MapKey annotation for a while now and haven't been able to make this work. I've also tried @MapKeyManyToMany(targetEntity=Product.class) without success. Can anyone tell me what are the correct annotations for my letterCounts map so that hibernate will treat the letterCounts map key the same way it does startLetter?

    Read the article

  • Connecting to network device behind NAT from local LAN using the external port and IP

    - by lumbric
    I noticed at several different LANs connected to the Internet through a NAT the following phenomena. There is a server in the LAN and there is a port forwarding to reach this server also from outside the LAN through the NAT. E.g. consider a LAN with the address 192.168.0.* and a SSH server at 192.168.0.2 with port 22 and a forwarding from port 2222 at the NAT 192.168.0.1 to 192.168.0.2:22. If the NAT's external IP is 44.33.22.11, one can connect to the SSH server through 44.33.22.11:2222. Surprisingly this works only from outside the LAN. If one tries to connect to 44.33.22.11:2222 from behind the NAT, there is no answer. Of course one could simply use 192.168.0.2:22, but often it is simpler to use the external IP. The typical use case for me is the configuration on a laptop computer. Usually the user uses any arbitrary Internet connection to connect to his home or office server, but sometimes he will use also the LAN to connect to it and it would be annoying to have to different configurations or bookmarks. Why does it fail to connect from inside the LAN? Is there any good work around?

    Read the article

  • Caching vector addition over changing collections

    - by DRMacIver
    I have the following setup: I have a largish number of uuids (currently about 10k but expected to grow unboundedly - they're user IDs) and a function f : id - sparse vector with 32-bit integer values (no need to worry about precision). The function is reasonably expensive (not outrageously so, but probably on the order of a few 100ms for a given id). The dimension of the sparse vectors should be assumed to be infinite, as new dimensions can appear over time, but in practice is unlikely to ever exceed about 20k (and individual results of f are unlikely to have more than a few hundred non-zero values). I want to support the following operations efficiently: add a new ID to the collection invalidate an existing ID retrieve sum f(id) in O(changes since last retrieval) i.e. I want to cache the sum of the vectors in a way that's reasonable to do incrementally. One option would be to support a remove ID operation and treat invalidation as a remove followed by an add. The problem with this is that it requires us to keep track of all the old values of f, which is expensive in space. I potentially need to use many instances of this sort of cached structure, so I would like to avoid that. The likely usage pattern is that new IDs are added at a fairly continuous rate and are frequently invalidated at first. Ids which have been invalidated recently are much more likely to be invalidated again than ones which have remained valid for a long time, but in principle an old Id can still be invalidated. Ideally I don't want to do this in memory (or at least I want a way that lets me save the result to disk efficiently), so an idea which lets me piggyback off an existing DB implementation of some sort would be especially appreciated.

    Read the article

  • IIS 7: launch unique site instance per host name

    - by OlduwanSteve
    Is it possible to configure IIS 7 so that a single site with multiple bindings (or wildcard bindings) will launch a unique instance for each unique host name? To explain why this is desirable, we have an application that retrieves its configuration from a remote system. The behaviour of the application is governed by this configuration and not by the 'web.config'. The application uses its host name as a key to retrieve the configuration. Currently it is a manual process to create an identical IIS site for each instance of the application, differing only by the bindings. My thought, if it were possible, is that it would be nice to have one IIS site that effectively works as a template for an arbitrary number of dynamic sites. Whenever it is accessed by a unique host name a new instance of the site would be launched, and all further requests to that host name would go to that instance just as though I had created the site by hand. I use IIS regularly, but only for fairly straightforward site hosting. I'd like to know if this could be configured with vanilla IIS 7, but would also welcome answers that require a plugin or 3rd party product. Programming/architectural suggestions about changes to the app wouldn't really be appropriate for serverfault.

    Read the article

  • Is there a Java data structure that is effectively an ArrayList with double indicies and built-in in

    - by Bob Cross
    I am looking for a pre-built Java data structure with the following characteristics: It should look something like an ArrayList but should allow indexing via double-precision rather than integers. Note that this means that it's likely that you'll see indicies that don't line up with the original data points (i.e., asking for the value that corresponds to key "1.5"). As a consequence, the value returned will likely be interpolated. For example, if the key is 1.5, the value returned could be the average of the value at key 1.0 and the value at key 2.0. The keys will be sorted but the values are not ensured to be monotonically increasing. In fact, there's no assurance that the first derivative of the values will be continuous (making it a poor fit for certain types of splines). Freely available code only, please. For clarity, I know how to write such a thing. In fact, we already have an implementation of this and some related data structures in legacy code that I want to replace due to some performance and coding issues. What I'm trying to avoid is spending a lot of time rolling my own solution when there might already be such a thing in the JDK, Apache Commons or another standard library. Frankly, that's exactly the approach that got this legacy code into the situation that it's in right now.... Is there such a thing out there in a freely available library?

    Read the article

  • Simulate Golf Game Strategy

    - by Mitchel Sellers
    I am working on what at best could be considered a "primitive" golf game, where after a certain bit of randomness is introduced I need to play out a hole of golf. The hole is static and I am not concerned about the UI aspect as I just have to draw a line on a graphic of the hole after the ball has been hit showing where it traveled. I'm looking for input on thoughts of how to manage the "logic" side of the puzzle, below are some of my thoughts on the matter, input, suggestions, or references are greatly appreciated. Map out the hole into an array with a specific amount of precision, noting the type of surface: out of bounds, fairway, rough, green, sand, water, and most important the hole. Map out "regions" and if the ball is contained inside one of these regions setup parameters for "maximum" angle of departure. (For example the first part of the hole the shot must be between certain angles Using the current placement of the ball, and the region contained in #2, define a routine to randomly select the shooting angle, and power then move the ball, adjust the trajectory and move again. I know this isn't the "most elegant" solution, but in reality, we are looking for a quick and dirty solution, as I just have to do this a few times, set it and forget it afterward. From a languages perspective I'll be using ASP.NET and C# to get this done.

    Read the article

  • Is is possible to guide installation of new programs using %ProgramFiles%? [closed]

    - by ??????? ???????????
    The purpose of this is to have the default "program files" (32 and 64 bit) folders located under an arbitrary path, possibly on a drive separate from where windows lives. Initially I thought that this may be done using a system environment variable through the dialog located under Control Panel - System - Advanced - Environment Variables. These variables turned out to be set in the registry under the key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion. However, one particular entry is confusing. The ProgramFilesPath entry seems to point at an environment variable that is not defined under the same registry key. I could assume that the difference between ProgramFilesDir and ProgramFilesPath is none and that one of them exists as a backwards compatibility, but having some legitimate resource from Microsoft to look at would be better than guessing. After receiving some worrying feedback about having both 32 and 64bit applications in the same folder, I have decided not to ask about the feasibility of this to avoid discussion. The real question is if the desired effect is possible to attain by "cutting into" the windows setup process and modifying those registry entries as early as possible. These settings should be system wide and not only for software installed by a particular user. If this is indeed something that can be done, I wonder if there are any subtle pitfalls. Programs that expect libraries and other resources to be in default locations can probably be dealt with using the same technique as employed by Windows to re-map the "Documents and Settings" folders and the like (i.e. breaking legacy applications is not real concern).

    Read the article

  • How do NTP Servers Manage to Stay so Accurate?

    - by Akemi Iwaya
    Many of us have had the occasional problem with our computers and other devices retaining accurate time settings, but a quick sync with an NTP server makes all well again. But if our own devices can lose accuracy, how do NTP servers manage to stay so accurate? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. Photo courtesy of LEOL30 (Flickr). The Question SuperUser reader Frank Thornton wants to know how NTP servers are able to remain so accurate: I have noticed that on my servers and other machines, the clocks always drift so that they have to sync up to remain accurate. How do the NTP server clocks keep from drifting and always remain so accurate? How do the NTP servers manage to remain so accurate? The Answer SuperUser contributor Michael Kjorling has the answer for us: NTP servers rely on highly accurate clocks for precision timekeeping. A common time source for central NTP servers are atomic clocks, or GPS receivers (remember that GPS satellites have atomic clocks onboard). These clocks are defined as accurate since they provide a highly exact time reference. There is nothing magical about GPS or atomic clocks that make them tell you exactly what time it is. Because of how atomic clocks work, they are simply very good at, having once been told what time it is, keeping accurate time (since the second is defined in terms of atomic effects). In fact, it is worth noting that GPS time is distinct from the UTC that we are more used to seeing. These atomic clocks are in turn synchronized against International Atomic Time or TAI in order to not only accurately tell the passage of time, but also the time. Once you have an exact time on one system connected to a network like the Internet, it is a matter of protocol engineering enabling transfer of precise times between hosts over an unreliable network. In this regard a Stratum 2 (or farther from the actual time source) NTP server is no different from your desktop system syncing against a set of NTP servers. By the time you have a few accurate times (as obtained from NTP servers or elsewhere) and know the rate of advancement of your local clock (which is easy to determine), you can calculate your local clock’s drift rate relative to the “believed accurate” passage of time. Once locked in, this value can then be used to continuously adjust the local clock to make it report values very close to the accurate passage of time, even if the local real-time clock itself is highly inaccurate. As long as your local clock is not highly erratic, this should allow keeping accurate time for some time even if your upstream time source becomes unavailable for any reason. Some NTP client implementations (probably most ntpd daemon or system service implementations) do this, and others (like ntpd’s companion ntpdate which simply sets the clock once) do not. This is commonly referred to as a drift file because it persistently stores a measure of clock drift, but strictly speaking it does not have to be stored as a specific file on disk. In NTP, Stratum 0 is by definition an accurate time source. Stratum 1 is a system that uses a Stratum 0 time source as its time source (and is thus slightly less accurate than the Stratum 0 time source). Stratum 2 again is slightly less accurate than Stratum 1 because it is syncing its time against the Stratum 1 source and so on. In practice, this loss of accuracy is so small that it is completely negligible in all but the most extreme of cases. Have something to add to the explanation? Sound off in the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.

    Read the article

  • Adobe Photoshop CS5 vs Photoshop CS5 extended

    - by Edward
    Adobe Photoshop has been an industry standard for most web designers & photographers worldwide. Photoshop CS5 has made photography editing much more refined and the composition process has become much easier than ever before.  To study the advantage of Photoshop CS5 extended over Photoshop CS5 we have written this comparison article, with both a Designer’s & Photographer’s perspective. Hopefully it shall help you in your buying/upgrade decision. Photoshop CS5 Photoshop CS5 has refining feature with powerful photography tools. It made editing process easy as fewer steps are involved to remove noise, add grain, create vignettes, correct lens distortions, sharpen, and create HDR images. It has quick image correction and color and tone control for professional purpose. Intelligent image editing and enhancement , extraordinary advanced compositing has made it a better tool than earlier versions for photographers. It allows users to accelerate workflow with fast performance on 64-bit Windows® and Mac hardware systems and smoother interactions due to more GPU-accelerated features. It also boasts of a state-of-the-art processing with Adobe Photoshop Camera Raw 6 and helps to maximize creative impact. It provides for tremendous precision and freedom. It allows user to easily select intricate image elements, such as hair and create realistic painting effects. It also allows to remove any image element and see the space fill in almost magically. It has easy access to core editing and streamlined work flow and flexible work ambience. It has creative tools and contents. Photoshop CS5 Extended Photoshop CS5 extended is quite innovative and has incorporated 3D elements to 2D artwork directly within digital imaging application, which enables user to do an easy on-ramp to 3D image creation. It also provides for 3D editing. It has intelligent image editing and enhancement. It offers advance composing and has extraordinary painting and drawing toolset. It provides for video and animation designing. It helps to work with specialized images for architecture, manufacturing, engineering, science, and medicine. Where CS5 extended scores over CS5 CS5 extended has many features, which were not included in CS5. These features make it score more over CS5. These features are: Technology for creating 3D extrusion 3D material library and picker Field depth for 3D 3D merging and scene composition improvements 3D workflow improvement Customization of 3D features Image based light source Shadow catcher for shadow creation Enhanced ray tracer Context sensitive widgets, which allows easy control of objects, lights and cameras. Overlays for materials and mesh boundaries Photoshop CS5 extended is far better than CS5 as it incorporates all the features of CS5 and have more advanced features. It allows 3D creation and editing and has other advanced tools to make it better. Redefining the Image-Editing Experience  : A Photographer’s point of View Photoshop CS5 delivers amazing features and creative options so even new users can perform advanced image manipulations and compositions. Breath taking image intelligence behind Content-Aware Fill magically removes any image detail or object, examines the surroundings and seamlessly fills in the space left behind. Lighting, tone and noise of the surrounding area can be matched. New Refine Edge makes nearly-impossible image selections possible. Masking was never easier, the toughest types of edges, such as hair and foliage seem easier to fix. To sum up following are few advantages of CS5 extended over previous versions 64-bit processing Content Aware Fill Refine Edge, “makes nearly-impossible image selections impossible” HDR Pro, including ghost artifact removal and HDR toning, which gives the look of HDR with a single exposure New brush options Improved image management with enhanced Adobe Bridge Lens corrections Improved black-and-white conversions Puppet Warp: Precisely reposition or warp any image element Adobe Camera Raw 6 Upgrade Buy Online Pricing and Availability Adobe Photoshop CS5 and CS5 Extended are available through Adobe Authorized Resellers & the Adobe Store. Estimated street price for Adobe Photoshop CS5 is US$699 and US$999 for Photoshop CS5 Extended. Upgrade pricing and volume licensing are also available. Related posts:10 Free Alternatives for Adobe Photoshop Software Web based Alternatives to Photoshop 15 Useful Adobe Illustrator Tutorials For Designers

    Read the article

  • Code is not the best way to draw

    - by Bertrand Le Roy
    It should be quite obvious: drawing requires constant visual feedback. Why is it then that we still draw with code in so many situations? Of course it’s because the low-level APIs always come first, and design tools are built after and on top of those. Existing design tools also don’t typically include complex UI elements such as buttons. When we launched our Touch Display module for Netduino Go!, we naturally built APIs that made it easy to draw on the screen from code, but very soon, we felt the limitations and tedium of drawing in code. In particular, any modification requires a modification of the code, followed by compilation and deployment. When trying to set-up buttons at pixel precision, the process is not optimal. On the other hand, code is irreplaceable as a way to automate repetitive tasks. While tools like Illustrator have ways to repeat graphical elements, they do so in a way that is a little alien and counter-intuitive to my developer mind. From these reflections, I knew that I wanted a design tool that would be structurally code-centric but that would still enable immediate feedback and mouse adjustments. While thinking about the best way to achieve this goal, I saw this fantastic video by Bret Victor: The key to the magic in all these demos is permanent execution of the code being edited. Whenever a parameter is being modified, everything is re-executed immediately so that the impact of the modification is instantaneously visible. If you do this all the time, the code and the result of its execution fuse in the mind of the user into dual representations of a single object. All mental barriers disappear. It’s like magic. The tool I built, Nutshell, is just another implementation of this principle. It manipulates a list of graphical operations on the screen. Each operation has a nice editor, and translates into a bit of code. Any modification to the parameters of the operation will modify the bit of generated code and trigger a re-execution of the whole program. This happens so fast that it feels like the drawing reacts instantaneously to all changes. The order of the operations is also the order in which the code gets executed. So if you want to bring objects to the front, move them down in the list, and up if you want to move them to the back: But where it gets really fun is when you start applying code constructs such as loops to the design tool. The elements that you put inside of a loop can use the loop counter in expressions, enabling crazy scenarios while retaining the real-time edition features. When you’re done building, you can just deploy the code to the device and see it run in its native environment: This works thanks to two code generators. The first code generator is building JavaScript that is executed in the browser to build the canvas view in the web page hosting the tool. The second code generator is building the C# code that will run on the Netduino Go! microcontroller and that will drive the display module. The possibilities are fascinating, even if you don’t care about driving small touch screens from microcontrollers: it is now possible, within a reasonable budget, to build specialized design tools for very vertical applications. Direct feedback is a powerful ally in many domains. Code generation driven by visual designers has become more approachable than ever thanks to extraordinary JavaScript libraries and to the powerful development platform that modern browsers provide. I encourage you to tinker with Nutshell and let it open your eyes to new possibilities that you may not have considered before. It’s open source. And of course, my company, Nwazet, can help you develop your own custom browser-based direct feedback design tools. This is real visual programming…

    Read the article

  • Developing an Implementation Plan with Iterations by Russ Pitts

    - by user535886
    Developing an Implementation Plan with Iterations by Russ Pitts  Ok, so you have come to grips with understanding that applying the iterative concept, as defined by OUM is simply breaking up the project effort you have estimated for each phase into one or more six week calendar duration blocks of work. Idea being the business user(s) or key recipient(s) of work product(s) being developed never go longer than six weeks without having some sort of review or prototyping of the work results for an iteration…”think-a-little”, “do-a-little”, and “show-a-little” in a six week or less timeframe…ideally the business user(s) or key recipients(s) are involved throughout. You also understand the OUM concept that you only plan for that which you have knowledge of. The concept further defined, a project plan initially is developed at a high-level, and becomes more detailed as project knowledge grows. Agreeing to this concept means you also have to admit to the fallacy that one can plan with precision beyond six weeks into a project…Anything beyond six weeks is a best guess in most cases when dealing with software implementation projects. Project planning, as defined by OUM begins with the Implementation Plan view, which is a very high-level perspective of the effort estimated for each of the five OUM phases, as well as the number of iterations within each phase. You might wonder how can you predict the number of iterations for each phase at this early point in the project. Remember project planning is not an exact science, and initially is high-level and abstract in nature, and then becomes more detailed and precise as the project proceeds. So where do you start in defining iterations for each phase for a project? The following are three easy steps to initially define the number of iterations for each phase: Step 1 => Start with identifying the known factors… …Prior to starting a project you should know: · The agreed upon time-period for an iteration (e.g 6 weeks, or 4 weeks, or…) within a phase (recommend keeping iteration time-period consistent within a phase, if not for the entire project) · The number of resources available for the project · The number of total number of man-day (effort) you have estimated for each of the five OUM phases of the project · The number of work days for a week Step 2 => Calculate the man-days of effort required for an iteration within a phase… Lets assume for the sake of this example there are 10 project resources, and you have estimated 2,536 man-days of work effort which will need to occur for the elaboration phase of the project. Let’s also assume a week for this project is defined as 5 business days, and that each iteration in the elaboration phase will last a calendar duration of 6 weeks. A simple calculation is performed to calculate the daily burn rate for a single iteration, which produces a result of… ((Number of resources * days per week) * duration of iteration) = Number of days required per iteration ((10 resources * 5 days/week) * 6 weeks) = 300 man days of effort required per iteration Step 3 => Calculate the number of iterations that can occur within a phase Next calculate the number of iterations that can occur for the amount of man-days of effort estimated for the phase being considered… (number of man-days of effort estimated / number of man-days required per iteration) = # of iterations for phase (2,536 man-days of estimated effort for phase / 300 man days of effort required per iteration) = 8.45 iterations, which should be rounded to a whole number such as 9 iterations* *Note - It is important to note this is an approximate calculation, not an exact science. This particular example is a simple one, which assumes all resources are utilized throughout the phase, including tech resources, etc. (rounding down or up to a whole number based on project factor considerations). It is also best in many cases to round up to higher number, as this provides some calendar scheduling contingency.

    Read the article

  • Math with Timestamp

    - by Knut Vatsendvik
    table.sql { border-width: 1px; border-spacing: 2px; border-style: dashed; border-color: #0023ff; border-collapse: separate; background-color: white; } table.sql th { border-width: 1px; padding: 1px; border-style: none; border-color: gray; background-color: white; -moz-border-radius: 0px 0px 0px 0px; } table.sql td { border-width: 1px; padding: 3px; border-style: none; border-color: gray; background-color: white; -moz-border-radius: 0px 0px 0px 0px; } .sql-keyword { color: #0000cd; background-color: inherit; } .sql-result { color: #458b74; background-color: inherit; } Got this little SQL quiz from a colleague.  How to add or subtract exactly 1 second from a Timestamp?  Sounded simple enough at first blink, but was a bit trickier than expected. If the data type had been a Date, we knew that we could add or subtract days, minutes or seconds using + or – sysdate + 1 to add one day sysdate - (1 / 24) to subtract one hour sysdate + (1 / 86400) to add one second Would the same arithmetic work with Timestamp as with Date? Let’s test it out with the following query SELECT   systimestamp , systimestamp + (1 / 86400) FROM dual; ---------- 03.05.2010 22.11.50,240887 +02:00 03.05.2010 The first result line shows us the system time down to fractions of seconds. The second result line shows the result as Date (as used for date calculation) meaning now that the granularity is reduced down to a second.   By using the PL/SQL dump() function, we can confirm this with the following query SELECT   dump(systimestamp) , dump(systimestamp + (1 / 86400)) FROM dual; ---------- Typ=188 Len=20: 218,7,5,4,8,53,9,0,200,46,89,20,2,0,5,0,0,0,0,0 Typ=13 Len=8: 218,7,5,4,10,53,10,0 Where typ=13 is a runtime representation for Date. So how can we increase the precision to include fractions of second? After investigating it a bit, we found out that the interval data type INTERVAL DAY TO SECOND could be used with the result of addition or subtraction being a Timestamp. Let’s try again our first query again, now using the interval data type. SELECT systimestamp,    systimestamp + INTERVAL '0 00:00:01.0' DAY TO SECOND(1) FROM dual; ---------- 03.05.2010 22.58.32,723659000 +02:00 03.05.2010 22.58.33,723659000 +02:00 Yes, it worked! To finish the story, here is one example showing how to specify an interval of 2 days, 6 hours, 30 minutes, 4 seconds and 111 thousands of a second. INTERVAL ‘2 6:30:4.111’ DAY TO SECOND(3)

    Read the article

  • Best approach to depth streaming via existing codec

    - by Kevin
    I'm working on a development system (and game) intended for games set mostly in static third-person views. We produce our scenery by CG and photographic techniques. Our background art is rendered off-line by a production-grade renderer. To allow the runtime imagery to properly interact with the background art, I wrote a program to convert from depth output by Mental Ray into a texture, and a pixel shader to draw a quad such that the Z data comes from the texture. This technique is working out very well, but now we've decided that some of the camera angle changes between scenes should be animated. The animation itself is straightforward to produce from our CG models. We intend to encode it to some HD video codec such as H.264. The problem is that in order to maintain our runtime imagery on the screen, the depth buffer will need to be loaded for each video frame. Due to the bandwidth, the video's depth data will need to be compressed efficiently. I've looked into methods for performing temporal compression of depth info and found an interesting research paper here: http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/depth-streaming.pdf The method establishes a mapping between 16-bit depth values and YCbCr values. The mapping is tuned to the properties of existing video codecs in order to maximize precision of the decoded depths after the YCbCr has undergone video compression. It allows an existing, unmodified video codec to be used on the backend. I'm looking at how to pull this off with the least possible work. (This design change was unplanned.) Our game engine itself is native C++, presently for Win32 and DirectX, although we've worked hard to keep platform dependence segregated because we intend other ports. We don't have motion video facilities in the engine yet but will ultimately need that anyway for cinematics. I was planning on using some off-the-shelf motion video solution we can plug into our engine, and haven't chosen one yet. This new added requirement makes selecting one harder since, among other things, we'll now need to bypass colourspace conversion on one of the streams, and also will need to be playing two streams simultaneously in lockstep, on top of in some cases audio on one of them (for the cinematics). I'm also wondering if it's possible (or even useful) to do the conversion from YCbCr to depth in a pixel shader, or if it's better to just do it in CPU and separately load the resulting depth values into a locked tex. The conversion unfortunately does involve branching logic per-pixel. (There are more naive mappings that don't need branching, but they produce inferior results.) It could be reduced to a table lookup but the table would be 32MB. Programming is second-nature to me but I'm not that experienced with pix shaders and have zero knowledge of off-the-shelf video solutions. I'd therefore be interested in advice from others who may have dealt more with depth streaming, pixel shaders, and/or off-the-shelf codecs, regarding how feasible the proposed application is and what off-the-shelf video systems out there would best get along with this usage case.

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >