Search Results

Search found 2074 results on 83 pages for 'arbitrary precision'.

Page 58/83 | < Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >

  • Any ORMs that easily support access to raw table schema?

    - by fizil
    I work with a ASP.NET UI framework that pulls fields for a particular screen off a database. These fields can be associated with particular data fields in another database for binding. The idea with this setup is that if a client needs a new column on a table, they can easily add it, and create a UI field that binds to it without any sort of application restart or recompile. The problem I've always had with this is that it has meant I'm always having to work with untyped datasets in my code. Are there any ORM libraries for .NET out there that could easily accommodate the requirement of being able to access arbitrary columns in the table schema over and above ones mapped to strongly typed fields?

    Read the article

  • Why do I have to set the max length of every damn text column in the database?

    - by John Leidegren
    Why is it that every RDBMS insists that you tell it what the max length of a text field is going to be... why can't it just infer this information form the data that's put into the database? I've mostly worked with MS SQL Server, but every other database I know also demands that you set these arbitrary limits on your data schema. The reality is that this is not particulay helpful or friendly to work with becuase the business requirements change all the time and almost every day some end-user is trying to put a lot of text into that column. Does any one with some inner working knowledge of a RDBMS know why we just don't infer the limits from the data that's put into the storage? I'm not talking about guessing the type information, but guessing the limits of a particular text column. I mean, there's a reason why I don't use nvarchar(max) on every text column in the database.

    Read the article

  • How can I represent URL (possibly including query string) as a filename in Java without obscuring the original URL?

    - by jerluc
    Is there any real way to represent a URL (which more than likely will also have a query string) as a filename in Java without obscuring the original URL completely? My first approach was to simply escape invalid characters with arbitrary replacements (for example, replacing "/" with "_", etc). The problem is, as in the example of replacing with underscores is that a URL such as "app/my_app" would become "app_my_app" thus obscuring the original URL completely. I have also attempted to encode all the special characters, however again, seeing crazy %3e %20 etc is really not clear. Thank you for any suggestions.

    Read the article

  • How do I find the viewable area of a WPF RichTextBox?

    - by shoe
    I'm working on an app where I have a bunch of text in a RichTextBox. I'm jumping to various positions within the text, (hopping to an arbitrary paragraph for example) which seems to work by send the caret to that position but I can't seem to control where in the viewable area the caret ends up. Sometimes the caret ends up at the top of the RichTextBox and sometimes at the bottom. This would be fine if I was only interested in the line that the caret is on but I'm interested in the entire paragraph.Ideally I'd like to get the caret in the middle of the RichTextBox everytime. Unless the Paragraph is longer than the viewable area. My question. Is there a way to determine the viewable area of a RichTextBox and so do a calculation on how to position the caret properly? If I had that value I can then decided whether to put the caret in the middle (and know where the middle is) or at the top. Thanks for you help.

    Read the article

  • Parsing a string for dates in PHP

    - by nickf
    Given an arbitrary string, for example ("I'm going to play croquet next Friday" or "Gadzooks, is it 17th June already?"), how would you go about extracting the dates from there? If this is looking like a good candidate for the too-hard basket, perhaps you could suggest an alternative. I want to be able to parse Twitter messages for dates. The tweets I'd be looking at would be ones which users are directing at this service, so they could be coached into using an easier format, however I'd like it to be as transparent as possible. Is there a good middle ground you could think of?

    Read the article

  • How to implement a tiered "selection tree" in Swing? (Or: is there an existing implementation?)

    - by Sbodd
    I need a Swing component that will let me display a tree-structured list of items, and allow the user to select or de-select an arbitrary subset of those items, with the ability to select or deselect an entire subtree's worth of components by picking that subtree's parent. (Basically, something similar to the Eclipse "Export JAR file's" dialog (an image of the relevant dialog is here - I basically want the "Select resources to export" component, but for a Swing application.) I know I can do this by creating a custom TreeCellRenderer, a custom TreeCellEditor, and a custom TreeModel - but that seems like an awful lot of work. Are there any good off-the-shelf implementations that I can use? Thanks!

    Read the article

  • You have an error in your SQL syntax; check the manual that corresponds to your MySQL

    - by LuisEValencia
    I am trying to run a mysql query to find all occurences of a text. I have a syntax error but dont know where or how to fix it I am using sqlyog to execute this script DECLARE @url VARCHAR(255) SET @url = '1720' SELECT 'select * from ' + RTRIM(tbl.name) + ' where ' + RTRIM(col.name) + ' like %' + RTRIM(@url) + '%' FROM sysobjects tbl INNER JOIN syscolumns col ON tbl.id = col.id AND col.xtype IN (167, 175, 231, 239) -- (n)char and (n)varchar, there may be others to include AND col.length > 30 -- arbitrary min length into which you might store a URL WHERE tbl.type = 'U' -- user defined table 1 queries executed, 0 success, 1 errors, 0 warnings Query: declare @url varchar(255) set @url = '1720' select 'select * from ' + rtrim(tbl.name) + ' where ' + rtrim(col.name) + ' like %' ... Error Code: 1064 You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'declare @url varchar(255)

    Read the article

  • Use of .apply() with 'new' operator. Is this possible?

    - by Premasagar
    In JavaScript, I want to create an object instance (via the new operator), but pass an arbitrary number of arguments to the constructor. Is this possible? What I want to do is something like this (but the code below does not work): function Something(){ // init stuff } function createSomething(){ return new Something.apply(null, arguments); } var s = createSomething(a,b,c); // 's' is an instance of Something The Answer From the responses here, it became clear that there's no in-built way to call .apply() with the new operator. However, people suggested a number of really interesting solutions to the problem. My preferred solution was this one from Matthew Crumley (I've modified it to pass the arguments property): var createSomething = (function() { function F(args) { return Something.apply(this, args); } F.prototype = Something.prototype; return function() { return new F(arguments); } })();

    Read the article

  • Is there a way to write a Python script that creates and executes code?

    - by KaliMa
    Is there a way in Python to create Python code inside the Python script and then execute/test it? My function has the following type of form (as an example) def f(n): if n<=3: return [0, 0, 6, 12][n] return 2*f(n-1) - 4*f(n-2) - 5*f(n-3) + 15*f(n-4) But I want to be able to create these kinds of functions dynamically (or any arbitrary function for that matter) and then test their outputs during runtime (as opposed to copying/pasting this function into the script and then manually testing it). Not sure if this makes sense, please ask for elaboration if needed. I've already looked into eval and exec but couldn't get them to work with entire function definitions, just basic statements like 1+2, etc.

    Read the article

  • Effectively implementing a game view using java

    - by kdavis8
    I am writing a 2d game in java. The game mechanics are similar to the Pokémon game boy advance series e.g. fire red, ruby, diamond and so on. I need a way to draw a huge map maybe 5000 by 5000 pixels and then load individual in game sprites to across the entirety of the map, like rendering a scene. Game sprites would be things like terrain objects, trees, rocks, bushes, also houses, castles, NPC's and so on. But i also need to implement some kind of camera view class that focuses on the player. the camera view class needs to follow the characters movements throughout the game map but it also needs to clip the rest of the map away from the user's field of view, so that the user can only see the arbitrary proximity adjacent to the player's sprite. The proximity's range could be something like 500 pixels in every direction around the player’s sprite. On top of this, i need to implement an independent resolution for the game world so that the game view will be uniform on all screen sizes and screen resolutions. I know that this does sound like a handful and may fall under the category of multiple questions, but the questions are all related and any advice would be very much appreciated. I don’t need a full source code listing but maybe some pointers to effective java API classes that could make doing what i need to do a lot simpler. Also any algorithmic/ design advice would greatly benefit me as well. example of what i am trying to do in source code form below package myPackage; /** * The Purpose of GameView is to: Render a scene using Scene class, Create a * clipping pane using CameraView class, and finally instantiate a coordinate * grid using Path class. * * Once all of these things have been done, GameView class should then be * instantiated and used jointly with its helper classes. CameraView should be * used as the main drawing image. CameraView is the the window to the game * world.Scene passes data constantly to CameraView so that the entire map flows * smoothly. Path uses the x and y coordinates from camera view to construct * cells for path finding algorithms. */ public class GameView { // Scene is a helper class to game view. it renders the entire map to memory // for the camera view. Scene scene; // Camera View is a helper class to game view. It clips the Scene into a // small image that follows the players coordinates. CameraView Camera; // Path is a helper class to game view. It observes and calculates the // coordinates of camera view and divides them into Grids/Cells for Path // finding. Path path; // this represents the player and has a getSprite() method that will return // the current frame column row combination of the passed sprite sheet. Sprite player; }

    Read the article

  • The softer side of BPM

    - by [email protected]
    BPM and RTD are great complementary technologies that together provide a much higher benefit than each of them separately. BPM covers the need for automating processes, making sure that there is uniformity, that rules and regulations are complied with and that the process runs smoothly and quickly processes the units flowing through it. By nature, this automation and unification can lead to a stricter, less flexible process. To avoid this problem it is common to encounter process definition that include multiple conditional branches and human input to help direct processing in the direction that best applies to the current situation. This is where RTD comes into play. The selection of branches and conditions and the optimization of decisions is better left in the hands of a system that can measure the results of its decisions in a closed loop fashion and make decisions based on the empirical knowledge accumulated through observing the running of the process.When designing a business process there are key places in which it may be beneficial to introduce RTD decisions. These are:Thresholds - whenever a threshold is used to determine the processing of a unit, there may be an opportunity to make the threshold "softer" by introducing an RTD decision based on predicted results. For example an insurance company process may have a total claim threshold to initiate an investigation. Instead of having that threshold, RTD could be used to help determine what claims to investigate based on the likelihood they are fraudulent, cost of investigation and effect on processing time.Human decisions - sometimes a process will let the human participants make decisions of flow. For example, a call center process may leave the escalation decision to the agent. While this has flexibility, it may produce undesired results and asymetry in customer treatment that is not based on objective functions but subjective reasoning by the agent. Instead, an RTD decision may be introduced to recommend escalation or other kinds of treatments.Content Selection - a process may include the use of messaging with customers. The selection of the most appropriate message to the customer given the content can be optimized with RTD.A/B Testing - a process may have optional paths for which it is not clear what populations they work better for. Rather than making the arbitrary selection or selection by committee of the option deeped the best, RTD can be introduced to dynamically determine the best path for each unit.In summary, RTD can be used to make BPM based process automation more dynamic and adaptable to the different situations encountered in processing. Effectively making the automation softer, less rigid in its processing.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Camera rotation - First Person Camera using GLM

    - by tempvar
    I've just switched from deprecated opengl functions to using shaders and GLM math library and i'm having a few problems setting up my camera rotations (first person camera). I'll show what i've got setup so far. I'm setting up my ViewMatrix using the glm::lookAt function which takes an eye position, target and up vector // arbitrary pos and target values pos = glm::vec3(0.0f, 0.0f, 10.0f); target = glm::vec3(0.0f, 0.0f, 0.0f); up = glm::vec3(0.0f, 1.0f, 0.0f); m_view = glm::lookAt(pos, target, up); i'm using glm::perspective for my projection and the model matrix is just identity m_projection = glm::perspective(m_fov, m_aspectRatio, m_near, m_far); model = glm::mat4(1.0); I send the MVP matrix to my shader to multiply the vertex position glm::mat4 MVP = camera->getProjection() * camera->getView() * model; // in shader gl_Position = MVP * vec4(vertexPos, 1.0); My camera class has standard rotate and translate functions which call glm::rotate and glm::translate respectively void camera::rotate(float amount, glm::vec3 axis) { m_view = glm::rotate(m_view, amount, axis); } void camera::translate(glm::vec3 dir) { m_view = glm::translate(m_view, dir); } and i usually just use the mouse delta position as the amount for rotation Now normally in my previous opengl applications i'd just setup the yaw and pitch angles and have a sin and cos to change the direction vector using (gluLookAt) but i'd like to be able to do this using GLM and matrices. So at the moment i have my camera set 10 units away from the origin facing that direction. I can see my geometry fine, it renders perfectly. When i use my rotation function... camera->rotate(mouseDeltaX, glm::vec3(0, 1, 0)); What i want is for me to look to the right and left (like i would with manipulating the lookAt vector with gluLookAt) but what's happening is It just rotates the model i'm looking at around the origin, like im just doing a full circle around it. Because i've translated my view matrix, shouldn't i need to translate it to the centre, do the rotation then translate back away for it to be rotating around the origin? Also, i've tried using the rotate function around the x axis to get pitch working, but as soon as i rotate the model about 90 degrees, it starts to roll instead of pitch (gimbal lock?). Thanks for your help guys, and if i've not explained it well, basically i'm trying to get a first person camera working with matrix multiplication and rotating my view matrix is just rotating the model around the origin.

    Read the article

  • VSDB to SSDT part 4 : Redistributable database deployment package with SqlPackage.exe

    - by Etienne Giust
    The goal here is to use SSDT SqlPackage to deploy the output of a Visual Studio 2012 Database project… a bit in the same fashion that was detailed here : http://geekswithblogs.net/80n/archive/2012/09/12/vsdb-to-ssdt-part-3--command-line-deployment-with-sqlpackage.exe.aspx   The difference is we want to do it on an environment where Visual Studio 2012 and SSDT are not installed. This might be the case of your Production server.   Package structure So, to get started you need to create a folder named “DeploymentSSDTRedistributable”. This folder will have the following structure :         The dacpac and dll files are the outputs of your Visual Studio 2012 Database project. If your database project references another database project, you need to put their dacpac and dll here too, otherwise deployment will not work. The publish.xml file is the publish configuration suitable for your target environment. It holds connexion strings, SQLVARS parameters and deployment options. Review it carefully. The SqlDacRuntime folder (an arbitrary chosen name) will hold the SqlPackage executable and supporting libraries   Contents of the SqlDacRuntime folder Here is what you need to put in the SqlDacRuntime folder  :      You will be able to find these files in the following locations, on a machine with Visual Studio 2012 Ultimate installed : C:\Program Files (x86)\Microsoft SQL Server\110\DAC\bin : SqlPackage.exe Microsoft.Data.Tools.Schema.Sql.dll  Microsoft.Data.Tools.Utilities.dll Microsoft.SqlServer.Dac.dll C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.SqlServer.TransactSql.ScriptDom\v4.0_11.0.0.0__89845dcd8080cc91 Microsoft.SqlServer.TransactSql.ScriptDom.dll   Deploying   Now take your DeploymentSSDTRedistributable deployment package to your remote machine. In a standard command window, place yourself inside the DeploymentSSDTRedistributable  folder.   You can first perform a check of what will be updated in the target database. The DeployReport task of SqlPackage.exe will help you do that. The following command will output an xml of the changes:   "SqlDacRuntime/SqlPackage.exe" /Action:DeployReport /SourceFile:./Our.Database.dacpac /Profile:./Release.publish.xml /OutputPath:./ChangesToDeploy.xml      You might get some warnings on Log and Data file like I did. You can ignore them. Also, the tool is warning about data loss when removing a column from a table. By default, the publish.xml options will prevent you from deploying when data loss is occuring (see the BlockOnPossibleDataLoss inside the publish.xml file). Before actual deployment, take time to carefully review the changes to be applied in the ChangesToDeploy.xml file.    When you are satisfied, you can deploy your changes with the following command : "SqlDacRuntime/SqlPackage.exe" /Action:Publish /SourceFile:./Our.Database.dacpac /Profile:./Release.publish.xml   Et voilà !  Your dacpac file has been deployed to your database. I’ve been testing this on a SQL 2008 Server (not R2) but it should work on 2005, 2008 R2 and 2012 as well.   Many thanks to Anuj Chaudhary for his article on the subject : http://www.anujchaudhary.com/2012/08/sqlpackageexe-automating-ssdt-deployment.html

    Read the article

  • Excel Solver vs Solver Foundation

    - by JoshReuben
    I recently read a book http://www.amazon.com/Scientific-Engineering-Cookbook-Cookbooks-OReilly/dp/0596008791/ref=sr_1_1?ie=UTF8&s=books&qid=1296593374&sr=8-1 - the Excel Scientific and Engineering Cookbook.     The 2 main tools that this book leveraged were the Data Analysis Pack and Excel Solver. I had previously been aquanted with Microsoft Solver Foundation - this is a full fledged API for solving optimization problems, and went beyond being a mere Excel plugin - it exposed a C# programmatic interface for in process and a web service interface for out of process integration. were they the same? apparently not!   2 different solver frameworks for Excel: http://www.solver.com/index.html http://www.solverfoundation.com/ I contacted both vendors to get their perspectives.   Heres what the Excel Solver guys had to say:   "The Solver Foundation requires you to learn and use a very specific modeling language (OML). The Excel solver allows you to formulate your optimization problems without learning any new language simply by entering the formulas into cells on the Excel spreadsheet, something that nearly everyone is already familiar with doing.   The Excel Solver also allows you to seamlessly upgrade to products that combine Monte Carlo Simulation capabilities (our Risk Solver Premium and Risk Solver Platform products) which allow you to include uncertainty into your models when appropriate.   Our advanced Excel Solver Products also have a number of built in reporting tools for advanced analysis of the your model and it's results"           And Heres what the Microsoft Solver Foundation guys had to say:   "  With the release of Solver Foundation 3.0, Solver Foundation has the same kinds of solvers (plus a few more) than what is found in Excel Solver. I think there are two main differences:   1.      Problems are described differently. In Excel Solver the goals and constraints are specified inside the spreadsheet, in formulas. In Solver Foundation they are described either in .Net code that uses the Solver Foundation Services API, or using the OML modeling language in Excel. 2.      Solver Foundation’s primary strength is on solving large linear, mixed integer, and constraint models. That is, models that contain arbitrary nonlinear functions (such as trig functions, IF(), powers, etc) are handled a bit better by the Excel Solver at this point. "

    Read the article

  • Will HTML5 make Silverlight redundant?

    - by Laila
    One of the great features of Adobe AIR v2 that was launched this month was its support for some of the 2008 draft of HTML5. The HTML5 specification was started in 2004, but the full spec will probably not be approved by W3C until around 2022. One might have thought that it would take years yet from now to reach the point where any browsers were remotely HTML5-compliant, but enough of HTML5 is published and agreed to make a lot of it possible, and Safari and Adobe have got there thanks to Apple's open-source WebKit. The race for HTML 5 has been fuelled by the demand by Apple and Google for advanced graphics, typography, animations and transitions without having to rely on third party browser plug-ins such as Adobe Flash or Silverlight. There is good reason for this haste: Flash doesn't support touch-devices and has been slow in supporting hardware video decoders such as H.264. There is a strong requirement to do all that Flash can do in an open-standards way. Those with proprietary solutions remain sniffy. In AIR 2, Adobe pointedly disables the HTML5 and tags that allow basic playing of media content, saying that the specification is not final and there is still no standard for the supported formats, and adding that Safari implements a 'disjoint set' of codecs. Microsoft also has little interest in HTML 5 as it has so much invested in Silverlight. Google stands to gain by the Adobe AIR for Android as it will allow a lot of applications to be migrated easily to the platform, so sees Apple's war on Flash as a way of gaining market share. Why do we care? It is because HTML5/CSS3 provides facilities much far beyond HTML4, bring the reality of browser-based applications a lot closer. Probably most generally useful is the advanced typography: Safari and AIR already both support a way of reflowing text in a container across an arbitrary number of columns; Page-specific fonts can also be specified. Then there is 2D drawing, video, transitions, local storage, AJAX navigation and mutable DOM prototypes. HTML5 is likely to provide base functionality that is required but it is too early to be certain that it will render Flash, Silverlight or JavaFX obsolete. In the meantime, Adobe Air provides the best vehicle for developing HTML5/CSS3 applications without a twinge of worry about browser incompatibilities. Cheers, Laila

    Read the article

  • Which is the most practical way to add functionality to this piece of code?

    - by Adam Arold
    I'm writing an open source library which handles hexagonal grids. It mainly revolves around the HexagonalGrid and the Hexagon class. There is a HexagonalGridBuilder class which builds the grid which contains Hexagon objects. What I'm trying to achieve is to enable the user to add arbitrary data to each Hexagon. The interface looks like this: public interface Hexagon extends Serializable { // ... other methods not important in this context <T> void setSatelliteData(T data); <T> T getSatelliteData(); } So far so good. I'm writing another class however named HexagonalGridCalculator which adds some fancy pieces of computation to the library like calculating the shortest path between two Hexagons or calculating the line of sight around a Hexagon. My problem is that for those I need the user to supply some data for the Hexagon objects like the cost of passing through a Hexagon, or a boolean flag indicating whether the object is transparent/passable or not. My question is how should I implement this? My first idea was to write an interface like this: public interface HexagonData { void setTransparent(boolean isTransparent); void setPassable(boolean isPassable); void setPassageCost(int cost); } and make the user implement it but then it came to my mind that if I add any other functionality later all code will break for those who are using the old interface. So my next idea is to add annotations like @PassageCost, @IsTransparent and @IsPassable which can be added to fields and when I'm doing the computation I can look for the annotations in the satelliteData supplied by the user. This looks flexible enough if I take into account the possibility of later changes but it uses reflection. I have no benchmark of the costs of using annotations so I'm a bit in the dark here. I think that in 90-95% of the cases the efficiency is not important since most users wont't use a grid where this is significant but I can imagine someone trying to create a grid with a size of 5.000.000.000 X 5.000.000.000. So which path should I start walking on? Or are there some better alternatives? Note: These ideas are not implemented yet so I did not pay too much attention to good names.

    Read the article

  • How to implement an intelligent enemy in a shoot-em-up?

    - by bummzack
    Imagine a very simple shoot-em-up, something we all know: You're the player (green). Your movement is restricted to the X axis. Our enemy (or enemies) is at the top of the screen, his movement is also restricted to the X axis. The player fires bullets (yellow) at the enemy. I'd like to implement an A.I. for the enemy that should be really good at avoiding the players bullets. My first idea was to divide the screen into discrete sections and assign weights to them: There are two weights: The "bullet-weight" (grey) is the danger imposed by a bullet. The closer the bullet is to the enemy, the higher the "bullet-weight" (0..1, where 1 is highest danger). Lanes without a bullet have a weight of 0. The second weight is the "distance-weight" (lime-green). For every lane I add 0.2 movement cost (this value is kinda arbitrary now and could be tweaked). Then I simply add the weights (white) and go to the lane with the lowest weight (red). But this approach has an obvious flaw, because it can easily miss local minima as the optimal place to go would be simply between two incoming bullets (as denoted with the white arrow). So here's what I'm looking for: Should find a way through bullet-storm, even when there's no place that doesn't impose a threat of a bullet. Enemy can reliably dodge bullets by picking an optimal (or almost optimal) solution. Algorithm should be able to factor in bullet movement speed (as they might move with different velocities). Ways to tweak the algorithm so that different levels of difficulty can be applied (dumb to super-intelligent enemies). Algorithm should allow different goals, as the enemy doesn't only want to evade bullets, he should also be able to shoot the player. That means that positions where the enemy can fire at the player should be preferred when dodging bullets. So how would you tackle this? Contrary to other games of this genre, I'd like to have only a few, but very "skilled" enemies instead of masses of dumb enemies.

    Read the article

  • 2D camera perspective projection from 3D coordinates -- HOW?

    - by Jack
    I am developing a camera for a 2D game with a top-down view that has depth. It's almost a 3D camera. Basically, every object has a Z even though it is in 2D, and similarly to parallax layers their position, scale and rotation speed vary based on their Z. I guess this would be a perspective projection. But I am having trouble converting the objects' 3D coordinates into the 2D space of the screen so that everything has correct perspective and scale. I never learned matrices though I did dig the topic a bit today. I tried without using matrices thanks to this article but every attempt gave awkward results. I'm using ActionScript 3 and Flash 11+ (Starling), where the screen coordinates work like this: Left-handed coordinates system illustration I can explain further what I did if you want to help me sort out what's wrong, or you can directly tell me how you would do it properly. In case you prefer the former, read on. These are images showing the formulas I used: upload.wikimedia.org/math/1/c/8/1c89722619b756d05adb4ea38ee6f62b.png upload.wikimedia.org/math/d/4/0/d4069770c68cb8f1aa4b5cfc57e81bc3.png (Sorry new users can't post images, but both are from the wikipedia article linked above, section "Perspective projection". That's where you'll find what all variables mean, too) The long formula is greatly simplified because I believe a normal top-down 2D camera has no X/Y/Z rotation values (correct ?). Then it becomes d = a - c. Still, I can't get it to work. Maybe you could explain what numbers I should put in a(xyz), c(xyz), theta(xyz), and particularly, e(xyz) ? I don't quite get how e is different than c in my case. c.z is also an issue to me. If the Z of the camera's target object is 0, should the camera's Z be something like -600 ? ( = focal length of 600) Whatever I do, it's wrong. I only got it to work when I used arbitrary calculations that "looked" right, like most cameras with parallax layers seem to do, but that's fake! ;) If I want objects to travel between Z layers I might as well do it right. :) Thanks a lot for your help!

    Read the article

  • Best Practices for serializing/persisting String Object Dictionary entities

    - by Mark Heath
    I'm noticing a trend towards using a dictionary of string to object (or sometimes string to string), instead of strongly typed objects. For example, the new Katana project makes heavy use of IDictionary<string,object>. This approach avoids the need to continually update your entity classes/DTOs and the database tables that persist them with new properties. It also avoids the need to create new derived entity types to support new types of entity, since the Dictionary is flexible enough to store any arbitrary properties. Here's a contrived example: class StorageDevice { public int Id { get; set; } public string Name { get; set; } } class NetworkShare : StorageDevice { public string Path { get; set; } public string LoginName { get; set; } public string Password { get; set; } } class CloudStorage : StorageDevice { public string ServerUri { get; set } public string ContainerName { get; set; } public int PortNumber { get; set; } public Guid ApiKey { get; set; } } versus: class StorageDevice { public IDictionary<string, object> Properties { get; set; } } Basically I'm on the lookout for any talks, books or articles on this approach, so I can pick up on any best practices / difficulties to avoid. Here's my main questions: Does this approach have a name? (only thing I've heard used so far is "self-describing objects") What are the best practices for persisting these dictionaries into a relational database? Especially the challenges of deserializing them successfully with strongly typed languages like C#. Does it change anything if some of the objects in the dictionary are themselves lists of strongly typed entities? Should a second dictionary be used if you want to temporarily store objects that are not to be persisted/serialized across a network, or should you use some kind of namespacing on the keys to indicate this?

    Read the article

  • Rending 2D Tile World (With Player In The Middle)

    - by Mick
    What I have at the moment is a series of data structures I'm using, and I would like to render the world onto the screen (just the visible parts). I've actually already done this several times (lots of rewrites), but it's a bit buggy (rounding seems to make the screen jump ever so slightly every x tiles the player walks past). Basically I've been confusing myself heavily on what I feel should be a pretty simple problem... so here I am asking for some help! OK! So I have a 50x50 array holding the tiles of the world. I have the player position as 2 floats, x ([0, 49]) and y ([0, 49]) in that array. I have the application size exactly in pixels (x and y). I have an arbitrary TILE_SIZE static int (based on screen pixels). What I think is heavily confusing me is using a 2d orthogonal projection in opengl which maps (0,0) to the top left of the screen and (SCREEN_SIZE_X, SCREEN_SIZE_Y) to the bottom right of the screen. gl.glMatrixMode(GL.GL_PROJECTION); gl.glLoadIdentity(); glu.gluOrtho2D(0, getActualWidth(), getActualHeight(), 0); gl.glMatrixMode(GL.GL_MODELVIEW); gl.glLoadIdentity(); The map tiles are set so that the (0,0) in the array is the bottom left. And the player has to be in the middle on the screen (SCREEN_SIZE_X/2, SCREEN_SIZE_Y/2). What I've been doing so far is trying to render 1-2 tiles more all around what would be displayed on the screen so that I don't have to worry about figuring out rendering half a tile from the top left, depending where the player is. It seems like such an easy problem but after spending about 40+hours on it rewriting it many times I think I'm at a point where I just can't think clearly anymore... Any help would be appreciated. It would be great if someone can provide some very basic pseudo code on keeping the player in the middle when your projection is mapped to screen coordinates and only rendering basically the tiles that you would be any be see. Thanks!

    Read the article

  • Accounting for waves when doing planar reflections

    - by CloseReflector
    I've been studying Nvidia's examples from the SDK, in particular the Island11 project and I've found something curious about a piece of HLSL code which corrects the reflections up and down depending on the state of the wave's height. Naturally, after examining the brief paragraph of code: // calculating correction that shifts reflection up/down according to water wave Y position float4 projected_waveheight = mul(float4(input.positionWS.x,input.positionWS.y,input.positionWS.z,1),g_ModelViewProjectionMatrix); float waveheight_correction=-0.5*projected_waveheight.y/projected_waveheight.w; projected_waveheight = mul(float4(input.positionWS.x,-0.8,input.positionWS.z,1),g_ModelViewProjectionMatrix); waveheight_correction+=0.5*projected_waveheight.y/projected_waveheight.w; reflection_disturbance.y=max(-0.15,waveheight_correction+reflection_disturbance.y); My first guess was that it compensates for the planar reflection when it is subjected to vertical perturbation (the waves), shifting the reflected geometry to a point where is nothing and the water is just rendered as if there is nothing there or just the sky: Now, that's the sky reflecting where we should see the terrain's green/grey/yellowish reflection lerped with the water's baseline. My problem is now that I cannot really pinpoint what is the logic behind it. Projecting the actual world space position of a point of the wave/water geometry and then multiplying by -.5f, only to take another projection of the same point, this time with its y coordinate changed to -0.8 (why -0.8?). Clues in the code seem to indicate it was derived with trial and error because there is redundancy. For example, the author takes the negative half of the projected y coordinate (after the w divide): float waveheight_correction=-0.5*projected_waveheight.y/projected_waveheight.w; And then does the same for the second point (only positive, to get a difference of some sort, I presume) and combines them: waveheight_correction+=0.5*projected_waveheight.y/projected_waveheight.w; By removing the divide by 2, I see no difference in quality improvement (if someone cares to correct me, please do). The crux of it seems to be the difference in the projected y, why is that? This redundancy and the seemingly arbitrary selection of -.8f and -0.15f lead me to conclude that this might be a combination of heuristics/guess work. Is there a logical underpinning to this or is it just a desperate hack? Here is an exaggeration of the initial problem which the code fragment fixes, observe on the lowest tessellation level. Hopefully, it might spark an idea I'm missing. The -.8f might be a reference height from which to deduce how much to disturb the texture coordinate sampling the planarly reflected geometry render and -.15f might be the lower bound, a security measure.

    Read the article

  • How can we unify business goals and technical goals?

    - by BAM
    Some background I work at a small startup: 4 devs, 1 designer, and 2 non-technical co-founders, one who provides funding, and the other who handles day-to-day management and sales. Our company produces mobile apps for target industries, and we've gotten a lot of lucky breaks lately. The outlook is good, and we're confident we can make this thing work. One reason is our product development team. Everyone on the team is passionate, driven, and has a great sense of what makes an awesome product. As a result, we've built some beautiful applications that we're all proud of. The other reason is the co-founders. Both have a brilliant business sense (one actually founded a multi-million dollar company already), and they have close ties in many of the industries we're trying to penetrate. Consequently, they've brought in some great business and continue to keep jobs in the pipeline. The problem The problem we can't seem to shake is how to bring these two awesome advantages together. On the business side, there is a huge pressure to deliver as fast as possible as much as possible, whereas on the development side there is pressure to take your time, come up with the right solution, and pay attention to all the details. Lately these two sides have been butting heads a lot. Developers are demanding quality while managers are demanding quantity. How can we handle this? Both sides are correct. We can't survive as a company if we build terrible applications, but we also can't survive if we don't sell enough. So how should we go about making compromises? Things we've done with little or no success: Work more (well, it did result in better quality and faster delivery, but the dev team has never been more stressed out before) Charge more (as a startup, we don't yet have the credibility to justify higher prices, so no one is willing to pay) Extend deadlines (if we charge the same, but take longer, we'll end up losing money) Things we've done with some success: Sacrifice pay to cut costs (everyone, from devs to management, is paid less than they could be making elsewhere. In return, however, we all have creative input and more flexibility and freedom, a typical startup trade off) Standardize project management (we recently started adhering to agile/scrum principles so we can base deadlines on actual velocity, not just arbitrary guesses) Hire more people (we used to have 2 developers and no designers, which really limited our bandwidth. However, as a startup we can only afford to hire a few extra people.) Is there anything we're missing or doing wrong? How is this handled at successful companies? Thanks in advance for any feedback :)

    Read the article

  • "Whole-team" C++ features?

    - by Blaisorblade
    In C++, features like exceptions impact your whole program: you can either disable them in your whole program, or you need to deal with them throughout your code. As a famous article on C++ Report puts it: Counter-intuitively, the hard part of coding exceptions is not the explicit throws and catches. The really hard part of using exceptions is to write all the intervening code in such a way that an arbitrary exception can propagate from its throw site to its handler, arriving safely and without damaging other parts of the program along the way. Since even new throws exceptions, every function needs to provide basic exception safety — unless it only calls functions which guarantee throwing no exception — unless you disable exceptions altogether in your whole project. Hence, exceptions are a "whole-program" or "whole-team" feature, since they must be understood by everybody in a team using them. But not all C++ features are like that, as far as I know. A possible example is that if I don't get templates but I do not use them, I will still be able to write correct C++ — or will I not?. I can even call sort on an array of integers and enjoy its amazing speed advantage wrt. C's qsort (because no function pointer is called), without risking bugs — or not? It seems templates are not "whole-team". Are there other C++ features which impact code not directly using them, and are hence "whole-team"? I am especially interested in features not present in C. Update: I'm especially looking for features where there's no language-enforced sign you need to be aware of them. The first answer I got mentioned const-correctness, which is also whole-team, hence everybody needs to learn about it; however, AFAICS it will impact you only if you call a function which is marked const, and the compiler will prevent you from calling it on non-const objects, so you get something to google for. With exceptions, you don't even get that; moreover, they're always used as soon as you use new, hence exceptions are more "insidious". Since I can't phrase this as objectively, though, I will appreciate any whole-team feature. Appendix: Why this question is objective (if you wonder) C++ is a complex language, so many projects or coding guides try to select "simple" C++ features, and many people try to include or exclude some ones according to mostly subjective criteria. Questions about that get rightfully closed regularly here on SO. Above, instead, I defined (as precisely as possible) what a "whole-team" language feature is, provide an example (exceptions), together with extensive supporting evidence in the literature about C++, and ask for whole-team features in C++ beyond exceptions. Whether you should use "whole-team" features, or whether that's a relevant concept, might be subjective — but that only means the importance of this question is subjective, like always.

    Read the article

  • The term "interface" in C++

    - by Flexo
    Java makes a clear distinction between class and interface. (I believe C# does also, but I have no experience with it). When writing C++ however there is no language enforced distinction between class and interface. Consequently I've always viewed interface as a workaround for the lack of multiple inheritance in Java. Making such a distinction feels arbitrary and meaningless in C++. I've always tended to go with the "write things in the most obvious way" approach, so if in C++ I've got what might be called an interface in Java, e.g.: class Foo { public: virtual void doStuff() = 0; ~Foo() = 0; }; and I then decided that most implementers of Foo wanted to share some common functionality I would probably write: class Foo { public: virtual void doStuff() = 0; ~Foo() {} protected: // If it needs this to do its thing: int internalHelperThing(int); // Or if it doesn't need the this pointer: static int someOtherHelper(int); }; Which then makes this not an interface in the Java sense anymore. Instead C++ has two important concepts, related to the same underlying inheritance problem: virtual inhertiance Classes with no member variables can occupy no extra space when used as a base "Base class subobjects may have zero size" Reference Of those I try to avoid #1 wherever possible - it's rare to encounter a scenario where that genuinely is the "cleanest" design. #2 is however a subtle, but important difference between my understanding of the term "interface" and the C++ language features. As a result of this I currently (almost) never refer to things as "interfaces" in C++ and talk in terms of base classes and their sizes. I would say that in the context of C++ "interface" is a misnomer. It has come to my attention though that not many people make such a distinction. Do I stand to lose anything by allowing (e.g. protected) non-virtual functions to exist within an "interface" in C++? (My feeling is the exactly the opposite - a more natural location for shared code) Is the term "interface" meaningful in C++ - does it imply only pure virtual or would it be fair to call C++ classes with no member variables an interface still?

    Read the article

< Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >