Search Results

Search found 6928 results on 278 pages for 'calling'.

Page 62/278 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • Analytics for Windows 8 apps using Markedup

    - by nmarun
    The Windows 8 store does provide some analytics information to you in terms of downloads by market or by age group, ratings, in-app purchases. I find that a little too limiting. What if I want to know what page my users are spending most of their time or what events are being raised more frequently or are my users calling my app through the search contract I implemented or how many times was the share contract called. To answer questions like this, you need a more mature analytics framework. Markedup...(read more)

    Read the article

  • when including a file using php function not work?

    - by John Smiith
    MY PHP FUNCTION IS function functionName() { include($_SERVER['DOCUMENT_ROOT']."/path/file.php"); } Content of File.php is $foo = 'bar'; Calling function (content of file test.php) functionName(); When call function and variable not work echo $foo; <- not works But when adding code below its works (content of file test.php) include($_SERVER['DOCUMENT_ROOT']."/path/file.php"); echo $foo; <- its works

    Read the article

  • 3 Tools to Automate Your SEO Efforts

    When it boils down to it, a lot of SEO is pretty autonomous and mundane. We all know that we need links to get the high rankings but the thought of having to spend hours submitting to directories is enough to make me find a million and one other jobs - even going as far as calling the in-laws! You can outsource the submission process but it's become debatable just how effective these submissions are, you could be throwing the money away.

    Read the article

  • The Connection String Reference Site

    - by Yousef_Jadallah
    In this great site http://www.connectionstrings.com/ you can find about 517 connection strings and 120 providers, drivers and class libraries listed in the database. These for Database Servers as well Data Files. Just you need to choose the needed element then you will get all the information that you calling for.   Hope this helps,

    Read the article

  • Single API Architecture

    - by user1901686
    When people refer to an architecture that involves a single service API that all clients talk to (a client can be an iPad app, etc), what is the "client" for the web app -- is it A) the web browser itself. Thus, the entire app is written in html/css/javascript and ajax calls to the service are made to fetch data and changes are made through javascript or B) you have an MVC-like stack on a server, only instead of the controllers calling to the model layer directly, they call to the service API which return models that are used to render the traditional views or C) something else?

    Read the article

  • Using dates, and times in SQL Server: a workbench approach

    In this workbench, Robyn Page provides a gentle introduction to the use of dates in SQL Server. In this new version of her article, it is brought up to date with the newer Datetime features in SQL Server 2005 and 2008. Calling all Exceptional DBAs...Enter the awards now for your chance to become 2010’s Exceptional DBA and don’t forget to download your free copy of Brad McGehee’s Day-to-Day DBA Best Practices poster. Nominate now.

    Read the article

  • The Importance of Website Optimisation

    Website optimisation is crucial for any business wanting to succeed online. Having a business website is effectively your calling card on the internet. With an estimated 1,802,330,457 people using the internet worldwide, website optimisation could improve your chances of getting traffic to your website.

    Read the article

  • Search Engine Optimization Is, And Always Has Been, The Future

    If we look back not even ten years ago, the idea of Search Engine Optimization was something that lot of us would have scoffed at the thought of. With the Internet being an underdeveloped idea at the time, we all still referred to the phone book when trying to find a business, or even calling directory assistance.

    Read the article

  • Parallel Tasks in .NET 3.0

    Provide a mechanism to execute a list of tasks in parallel on multiple threads and communicate back to the calling thread useful state such as exceptions, timeouts and successful task completion.

    Read the article

  • Search Engine Optimization Is, And Always Has Been, The Future

    If we look back not even ten years ago, the idea of Search Engine Optimization was something that lot of us would have scoffed at the thought of. With the Internet being an underdeveloped idea at the time, we all still referred to the phone book when trying to find a business, or even calling directory assistance.

    Read the article

  • Problem inserting in two different tables [closed]

    - by imvarunkmr
    I have written an insert statement which inserts a record into Table1. Table1 has a column "ID" which is an auto_increment(Identity) primary key. How can I fetch the newly generated "ID" and as I need to Insert this value as foreign key in Table2? Note : I have written INSERT statement in a stored procedure and I am calling this procedure using C# Alternative suggestions to link both tables are also welcomed :)

    Read the article

  • How to use cyg-wrapper to fork a new tab in win32 gvim

    - by Peter Nore
    I would like to set up an alias in my cygwin .bashrc that translates pathnames unix-to-dos and passes them to windows gvim in a new tab of an existing instance. I am trying to use Luc Hermitte's cyg-wrapper script for running native win32 applications from Cygwin as per this vim tip. Luc's example of how to use his script is: alias vi= 'cyg-wrapper.sh "C:/Progra~1/Edition/vim/vim63/gvim.exe" --binary-opt=-c,--cmd,-T,-t,--servername,--remote-send,--remote-expr' I do not understand this example because most of these vim parameters (-c,--cmd,--servername,--remote-send,--remote-expr, etc) require more information, and I have not found any example of how to supply the additional information to cyg-wrapper.sh. For example, calling C:/Progra~1/Edition/vim/vim63/gvim.exe --servername=GVIM --remote-tab-silent file1 & will open file1 in a new tab of existing (or non existing) instance GVIM, but calling gvim --servername accomplishes nothing on its own. Unfortunately, though, the corresponding cyg-wrapper phrase does not work: cyg-wrapper.sh "C:/Progra~1/Edition/vim/vim63/gvim.exe" --binary-opt=--servername=GVIM,--remote-tab-silent --fork=2 file1 If ran twice, this actually opens up two instances of gvim; it is as if the servername 'GVIM' is being stripped and ignored. How do you supply a servername to gvim --servername or a .vimrc to gvim -u using cyg-wrapper.sh? Furthermore, why is it that programs must be passed to cyg-wrapper.sh in the relatively obscure "mixed form?" For example, if I try cyg-wrapper.sh "/cygdrive/c/path/to/GVimPortable.exe" --binary-opt=--servername=GVIM,--remote-tab-silent --fork=2 I get "Invalid switch - "/cygdrive"." See also: getting-gvim-to-automatically-translate-a-cygwin-path alias-to-open-gvim-cream-version-from-cygwin-shell

    Read the article

  • Tomcat 6 Windows Server 64 Redirect Connector Fails

    - by Rafe
    So is there some problem with running the Tomcat connectors under a 64 bit windows OS? Here's my configuration: Windows Server 2003 64 bit Intel Xeon Tomcat 6.0.26 JVM 1.6.0 (64bit) ISAPI Redirect Connector 1.2.30.0 (64 bit) Calling the IP address of the site with :8080 brings up the tomcat page so I know that's running and the examples all work so its obviously not having a problem with the JVM. Calling the site ip on port 80 however gives me error 324 - looking at the application log on windows shows "Could not load all ISAPI filters for site/service. Therefore startup aborted". The ISAPI filter page under the web site properties shows the status of this filter to be down with a red arrow. The ISAPI filter name is jakarta and there is a corresponding virtual directory set up in the root of the site pointing to the same directory as the filter. The jakarta web service extension is also pointing to the required dll (c:\program files\apache software foundation\jakarta isapi redirector\bin\isapi_redirect.dll). Incidentally, this same problem occurs when trying to use Tomcat 5.5. I've also tried swapping out various redirect versions. It's really odd because I got it to work once with a version of the redirector that came with Plesk but I've since uninstalled everything to do with plesk and even trying to use the plesk-compiled dll doesn't work now. I am pulling my hair out on this, any ideas?

    Read the article

  • WRTU54G-TM router with 3rd party firmware; Can custom firmware include stock binary portions?

    - by dlamblin
    I've been doing a lot of reading online about the Linksys WRTU54G-TM router model that I now own. It seems getting a custom firmware onto it is not a problem. But no one is talking about retaining the Voip features (yet). So far they're all disappointed that it's not a SIP machine and used GSM over IPSec. Personally I don't care about using it with non-t-mobile. If I take the original firmware, shouldn't I be able to extract it, and it's SquashFS image, and then move all of the t-mobile specific binaries for enabling the calling features over to a custom firmware installation (maybe OpenWRT)? You might ask why, and the reason is, that if I do this I could retain my calling features, which I do want, and ssh to the router and use it to run additional software, as any OpenWRT router could do. Does anyone know if this can be done, and how the firmware's binaries could be gotten at and installed correctly? Update I have found someone working on 3rd party WRTU54G-TM firmware. I am still interested in my second part of the questions, that is can't the stock firmware images be pulled apart and have the close-source, if any, binary kernel modules moved into another more flexible custom firmware?

    Read the article

  • Apache + mod_fcgid + perl = error 500

    - by f-aminov
    Hi guys! I'm trying to setup Apache2.2 with mod_fcgid and libapache2-mod-perl2 with no luck. I've created a fcgi-bin directory in the root directory of my website and put there a test.fcgi file with the following content: #!/usr/bin/perl use CGI; print "This is test.fcgi!\n"; While trying to access it via http://www.website.dom/fcgi-bin/test.fcgi I get error 500 (Internal Server Error). Here is my vhost config: <VirtualHost 95.131.29.226:8080> ServerName website.com DocumentRoot /var/www/data/website.com SuexecUserGroup user group ServerAlias www.website.com AddType application/x-httpd-php .php .php3 .php4 .php5 .phtml <Directory "/var/www/data/website.com/fcgi-bin/"> Options +ExecCGI Allow from all Order allow,deny AddHandler fcgid-script .fcgi </Directory> </VirtualHost> fcgid.conf: <IfModule mod_fcgid.c> AddHandler fcgid-script .fcgi SocketPath /var/lib/apache2/fcgid/sock IdleTimeout 3600 ProcessLifeTime 7200 MaxProcessCount 8 DefaultMaxClassProcessCount 2 IPCConnectTimeout 8 IPCCommTimeout 60 </IfModule> SuExec log: [2010-04-06 03:02:47]: uid: (500/equ) gid: (502/equ) cmd: test.fcgi Apache error log: test! test! [Tue Apr 06 03:02:51 2010] [notice] mod_fcgid: process /var/www/data/website.com/fcgi-bin/test.fcgi(26267) exit(communication error), terminated by calling exit(), return code: 0 [Tue Apr 06 03:02:53 2010] [notice] mod_fcgid: process /var/www/data/website.com/fcgi-bin/test.fcgi(26261) exit(server exited), terminated by calling exit(), return code: 0 I've no clue why I'm getting error 500, but when I'm trying to access this file using console ($ perl /var/www/data/website.com/fcgin-bin/test.fcgi) everthing works fine without any errors... Any suggestions on how to solve this problem would be greatly appreciated. Thank you!

    Read the article

  • PHP extension causes symbol lookup error

    - by Christian
    Dear, I installed - or better tried to - the NMCryptGate Extension for PHP on my Debian 5.0.8 server. I did this by compiling the sources which came up with no error message. Calling phpinfo() I can see the extension as enabled. BUT, whenever I try calling a method from this extension I get an error logged to the apache error log: /usr/sbin/apache2: symbol lookup error: /usr/lib/php5/20060613+lfs/nmcryptgate.so: undefined symbol: nmlistalloc What is missing? I got two packages from the software company: the php module sources and some files which should - according to their path inside the tar - go to /usr/local/bin|doc|include|lib. I moved them there without any effect. Each of these two packages has its own config file almost looking the same: \# libnmcryptgate.la - a libtool library file \# Generated by ltmain.sh - GNU libtool 1.3.4 (1.385.2.196 1999/12/07 21:47:57) \# \# Please DO NOT delete this file \# It is necessary for linking the library \# The name that we can dlopen(3) dlname='' \# Names of this library library_names='libnmcryptgate.so.1 libnmcryptgate.so libnmcryptgate.so' \# The name of the static archive old_library='' \# Libraries that this one depends upon dependency_libs=' -L. -L/usr/ssl/lib -L/usr/local/ssl/lib -L/usr/local/lib -lssl -lcrypto' \# Version information for libnmcryptgate current=1 age=0 revision=29 \# Is this an already installed library installed=yes \# Directory that this library needs to be installed in libdir='/usr/local/lib' I tried several ways to get it right: moving files, symlinking, changing configurations - always followed by restarting apache - no success. I guess I just have to move the files to the correct location or change the libdir inside the config files but meanwhile I'm totally confused by the two packages: do I need both, which config rules what, do I have to use the libdir variable? And for what? ... Anybody out there hinting me to my source of failure? Thank you in advance, regards, Christian

    Read the article

  • WRTU54G-TM router with 3rd party firmware; Can custom firmware include stock binary portions?

    - by dlamblin
    I've been doing a lot of reading online about the Linksys WRTU54G-TM router model that I now own. It seems getting a custom firmware onto it is not a problem. But no one is talking about retaining the Voip features (yet). So far they're all disappointed that it's not a SIP machine and used GSM over IPSec. Personally I don't care about using it with non-t-mobile. If I take the original firmware, shouldn't I be able to extract it, and it's SquashFS image, and then move all of the t-mobile specific binaries for enabling the calling features over to a custom firmware installation (maybe OpenWRT)? You might ask why, and the reason is, that if I do this I could retain my calling features, which I do want, and ssh to the router and use it to run additional software, as any OpenWRT router could do. Does anyone know if this can be done, and how the firmware's binaries could be gotten at and installed correctly? Update I have found someone working on 3rd party WRTU54G-TM firmware. I am still interested in my second part of the questions, that is can't the stock firmware images be pulled apart and have the close-source, if any, binary kernel modules moved into another more flexible custom firmware?

    Read the article

  • asterisk extensions.conf & sip.conf

    - by Josh
    I'm trying to get my Dialplan to work. When I call, the only thing I get is a dial tone to enter extension "no Background(thanks-calling) is played". When extension 123 is dialed, busy signal is triggered and asterisk CLI get frozen. Any help will be appreciate it. Conf files below. ; PSTN on sip.conf [pstn] type=friend host=dynamic context=pstn username=pstn secret=password nat=yes canreinvite=no dtmfmode=rfc2833 qualify=yes insecure=port,invite disallow=all allow=ulaw ; PSTN on extensions.conf [pstn] exten => s,1,Answer exten => s,2,Wait,2 exten => s,4,DigitTimeout,5 exten => s,5,ResponseTimeout,10 exten => s,6,Background(thanks-calling) exten => 0,1,Goto(incoming,123,1) ; (Member Services) [incoming] exten => 123,1,NoOP(${CALLERID}) ; show the caller ID info in the console exten => 123,n,Ringing() exten => 123,n,Answer() exten => 123,n,Playback(silence/1) exten => 123,n,Playback(connecting1) exten => 123,n,Wait(3) exten => 123,n,Dial(SIP/line1,60) exten => 123,n,Congestion

    Read the article

  • How to read cell data in excel and output to command prompt

    - by Max Ollerenshaw
    Hi All, I'm a sys admin and I am trying to learn how to use powershell... I have never done any type of scripting or coding before and I have been teaching myself online by learning from the technet script centre and online forums. What I am trying to accomplish is to open an excel spreadsheet get information from it (usernames and password) and then output it into the command prompt in powershell. When ever I try to do this I get an Exception calling "InvokeMember" anyway, here is the code I have so far: function Invoke([object]$m, [string]$method, $parameters) { $m.PSBase.GetType().InvokeMember( $method, [Reflection.BindingFlags]::InvokeMethod, $null, $m, $parameters,$ciUS ) } $ciUS = [System.Globalization.CultureInfo]'en-US' $objExcel = New-Object -comobject Excel.Application $objExcel.Visible = $False $objExcel.DisplayAlerts = $False $objWorkbook = Invoke $objExcel.Workbooks.Open "C:\PS\User Data.xls" Write-Host "Numer of worksheets: " $objWorkbook.Sheets.Count $objWorksheet = $objWorkbook.Worksheets.Item(1) Write-Host "Worksheet: " $objWorksheet.Name $Forename = $objWorksheet.Cells.Item(2,1).Text $Surname = $objWorksheet.Cells.Item(2,2).Text Write-Host "Forename: " $Forename Write-Host "Surname: " $Surname $objExcel.Quit() If (ps excel) { kill -name excel} I have read many different posts on forums and articles on how to try and get around the en-US problem but I cannot seem to get around it and hope that someone here can help! Here is the Exeption problem I mentioned: Exception calling "InvokeMember" with "6" argument(s): "Method 'System.Management.Automation.PSMethod.C:\PS\User Data.x ls' not found." At C:\PS\excel.ps1:3 char:33 + $m.PSBase.GetType().InvokeMember <<<< ( + CategoryInfo : NotSpecified: (:) [], MethodInvocationException + FullyQualifiedErrorId : DotNetMethodException Numer of worksheets: You cannot call a method on a null-valued expression. At C:\PS\excel.ps1:18 char:45 + $objWorksheet = $objWorkbook.Worksheets.Item <<<< (1) + CategoryInfo : InvalidOperation: (Item:String) [], RuntimeException + FullyQualifiedErrorId : InvokeMethodOnNull Worksheet: You cannot call a method on a null-valued expression. At C:\PS\excel.ps1:21 char:37 + $Forename = $objWorksheet.Cells.Item <<<< (2,1).Text + CategoryInfo : InvalidOperation: (Item:String) [], RuntimeException + FullyQualifiedErrorId : InvokeMethodOnNull You cannot call a method on a null-valued expression. At C:\PS\excel.ps1:22 char:36 + $Surname = $objWorksheet.Cells.Item <<<< (2,2).Text + CategoryInfo : InvalidOperation: (Item:String) [], RuntimeException + FullyQualifiedErrorId : InvokeMethodOnNull Forename: Surname: This is the first question I have ever asked, try to be nice! :)) Many Thanks Max

    Read the article

  • asterisk extensions.conf & sip.conf

    - by Josh
    I'm trying to get my Dialplan to work. When I call, the only thing I get is a dial tone to enter extension "no Background(thanks-calling) is played". When extension 123 is dialed, busy signal is triggered and asterisk CLI get frozen. Any help will be appreciate it. Conf files below. ; PSTN on sip.conf [pstn] type=friend host=dynamic context=pstn username=pstn secret=password nat=yes canreinvite=no dtmfmode=rfc2833 qualify=yes insecure=port,invite disallow=all allow=ulaw ; PSTN on extensions.conf [pstn] exten => s,1,Answer exten => s,2,Wait,2 exten => s,4,DigitTimeout,5 exten => s,5,ResponseTimeout,10 exten => s,6,Background(thanks-calling) exten => 0,1,Goto(incoming,123,1) ; (Member Services) [incoming] exten => 123,1,NoOP(${CALLERID}) ; show the caller ID info in the console exten => 123,n,Ringing() exten => 123,n,Answer() exten => 123,n,Playback(silence/1) exten => 123,n,Playback(connecting1) exten => 123,n,Wait(3) exten => 123,n,Dial(SIP/line1,60) exten => 123,n,Congestion

    Read the article

  • Windows File Access Denied

    - by Tom
    I seem to have a general problem with "access denied on Windows". It manifests itself every time if e.g: My bat file calls a compiler creates a file on disk My bat file renames a file But I also have files downloaded (FireFox) to Windows desktop where Windows is giving me "access denied" if I try delete the file. Tried disable AVG + make exception in AVG resident shield (I have tried checking with Task Manager + Winternals process explorer that it is not process running still running that should cause the locks.) Windows 7. My user account is an administrator. All files are created by same user account. The problem is recent, but some things I first noticed yesterday (when I started calling .bat files again which I have used for many years) I have tried: Starting e.g. Windows Explorer with "run as administrator", but that makes no difference right-click - properties - security and changes permissions/ownership (I also get "access denied" when trying this so this does not help) Here is a ascreenshot if I try change security of a "locked" file. (The problem here is the locking occurs continously every time the file is created) ! If I click on, it states I am not the owner? Which baffles me as I just created it. (Yes, through a .bat file calling executables that create the file. But all running under my administrator user account. Interestingly after having this dialog open, the file somehow sometimes suddenly seem to allow me delete it)

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >