Search Results

Search found 7294 results on 292 pages for 'out parameters'.

Page 62/292 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • EPM 11.1.2 - EPM Infrastructure Tuning Guide v11.1.2.1

    - by Ahmed Awan
    Applies To: This edition applies to only 11.1.2, 11.1.2 (PS1). One of the most challenging aspects of performance tuning is knowing where to begin. To maximize Oracle EPM System performance, all components need to be monitored, analyzed, and tuned. This guide describe the techniques used to monitor performance and the techniques for optimizing the performance of EPM components. TOP TUNING RECOMMENDATIONS FOR EPM SYSTEM: Performance tuning Oracle Hyperion EPM system is a complex and iterative process. To get you started, we have created a list of recommendations to help you optimize your Oracle Hyperion EPM system performance. This chapter includes the following sections that provide a quick start for performance tuning Oracle EPM products. Note these performance tuning techniques are applicable to nearly all Oracle EPM products such as Financial PM Applications, Essbase, Reporting and Foundation services. 1. Tune Operating Systems parameters. 2. Tune Oracle WebLogic Server (WLS) parameters. 3. Tune 64bit Java Virtual Machines (JVM). 4. Tune 32bit Java Virtual Machines (JVM). 5. Tune HTTP Server parameters. 6. Tune HTTP Server Compression / Caching. 7. Tune Oracle Database Parameters. 8. Tune Reporting And Analysis Framework (RAF) Services. Click to Download the EPM 11.1.2.1 Infrastructure Tuning Whitepaper (Right click or option-click the link and choose "Save As..." to download this pdf file)

    Read the article

  • Why does my PowerBook display “Fixing recursive fault but reboot is needed!” and stop booting?

    - by Blacklight Shining
    I have an old PowerBook G4 that worked (more or less) fine with a previous installation of Ubuntu Desktop 12.04. A few days ago I decided to install Ubuntu Server instead, and got a copy of Ubuntu Server 12.10. The installation seemed to complete successfully, but now, whenever I try to boot the system, it simply halts at some point after I unlock the hard disk. There is a lot of text on the screen (which is normal for me during a boot, except now it's mostly errors and debug information), the last of which is this: [ 26.338228] Fixing recursive fault but reboot is needed! Pressing control command power to force a reboot yields exactly the same results. A search for the error message turned up many temporary solutions involving kernel parameters, but none of them have worked for me. I don't think I can remove the default set of parameters (which I think is quiet splash), but I can pass additional parameters on boot. I've tried booting on AC and battery power, as well as using these combinations of kernel parameters while on battery power: acpi=enable pci=noacpi pci=assign-busse acpi=ht acpi=off nomodeset nomodeset acpi=off Why am I getting this error and how can I fix it?

    Read the article

  • Does Google submit HTML forms?

    - by Saeed Neamati
    I have a web page, say http://domain/purchase and in this page, I have a web form. User, on submitting this form (which has validation, both client-side and server side and won't be validated until fields are filled appropriately), would be redirected to another page, where (s)he can choose other things, and specify other settings and then purchase our product. Say the second page is http://domain/options. So, user comes to our site and visits http://domain/purchase, fills the form, submits it, and then would be redirected to the second page, http://doamin/options?parameter1=value1&parameter2=value2, which contains parameters from the first page. This is very common in passing parameters between web pages (or technically, between URLs). Now I was reviewing my website, and saw that Google had indexed some of my redirected web pages and URLs, like: http://domain/options?parameter1=value1&parameter2=value2 http://domain/options?parameter1=value3&parameter2=value4 http://domain/options?parameter1=value5&parameter2=value6 http://domain/options?parameter1=value7&parameter2=value8 http://domain/options?parameter1=value9&parameter2=value10 This means that Google Bot has visited our http://domain/purchase page, and has filled our form, and has submitted it, and was being redirected to the other URL, with corresponding parameters. This is the only way that makes sense to me. Does Google really fills forms? PS: All parameters are meaningful, meaning that they are not filled arbitrarily. For example, the phone parameter in indexed pages has correct phone numbers. How is it possible?

    Read the article

  • Strategies for managUse of types in Python

    - by dave
    I'm a long time programmer in C# but have been coding in Python for the past year. One of the big hurdles for me was the lack of type definitions for variables and parameters. Whereas I totally get the idea of duck typing, I do find it frustrating that I can't tell the type of a variable just by looking at it. This is an issue when you look at someone else's code where they've used ambiguous names for method parameters (see edit below). In a few cases, I've added asserts to ensure parameters comply with an expected type but this goes against the whole duck typing thing. On some methods, I'll document the expected type of parameters (eg: list of user objects), but even this seems to go against the idea of just using an object and let the runtime deal with exceptions. What strategies do you use to avoid typing problems in Python? Edit: Example of the parameter naming issues: If our code base we have a task object (ORM object) and a task_obj object (higher level object that embeds a task). Needless to say, many methods accept a parameter named 'task'. The method might expect a task or a task_obj or some other construct such as a dictionary of task properties - it is not clear. It is them up to be to look at how that parameter is used in order to work out what the method expects.

    Read the article

  • Creating Parent-Child Relationships in SSRS

    - by Tim Murphy
    As I have been working on SQL Server Reporting Services reports the last couple of weeks I ran into a scenario where I needed to present a parent-child data layout.  It is rare that I have seen a report that was a simple tabular or matrix format and this report continued that trend.  I found that the processes for developing complex SSRS reports aren’t as commonly described as I would have thought.  Below I will layout the process that I went through to create a solution. I started with a List control which will contain the layout of the master (parent) information.  This allows for a main repeating report part.  The dataset for this report should include the data elements needed to be passed to the subreport as parameters.  As you can see the layout is simply text boxes that are bound to the dataset. The next step is to set a row group on the List row.  When the dialog appears select the field that you wish to group your report by.  A good example in this case would be the employee name or ID. Create a second report which becomes the subreport.  The example below has a matrix control.  Create the report as you would any parameter driven document by parameterizing the dataset. Add the subreport to the main report inside the row of the List control.  This can be accomplished by either dragging the report from the solution explorer or inserting a Subreport control and then setting the report name property. The last step is to set the parameters on the subreport.  In this case the subreport has EmpId and ReportYear as parameters.  While some of the documentation on this states that the dialog will automatically detect the child parameters, but this has not been my experience.  You must make sure that the names match exactly.  Tie the name of the parameter to either a field in the dataset or a parameter of the parent report. del.icio.us Tags: SQL Server Reporting Services,SSRS,SQL Server,Subreports

    Read the article

  • MVC and individual elements of the model under a common base class

    - by Stewart
    Admittedly my experience of using the MVC pattern is limited. It might be argued that I don't really separate the V from the C, though I keep the M separate from the VC to the extent I can manage. I'm considering the scenario in which the application's model includes a number of elements that have a common base class. For example, enemy characters in a video game, or shape types in a vector graphics app. The view wants to render these elements. Of course, the different subclasses call for different rendering. The problem is that the elements are part of the model. Rendering them is conceptually part of the view. But how they are to be rendered depends on parameters of both: Attributes and state of the element are parameters of the model User settings are parameters of the view - and to support multiple platforms and/or view modes, different views may be used What's your preferred way of dealing with this? Put the rendering code in the model classes, passing in any view parameters? Put the rendering code in the view, using a switch or similar to select the right rendering for the model element type? Have some intermediate classes as a model-view interface, of which the model will create objects on demand and the view will then render them? Something else?

    Read the article

  • Design for object with optional and modifiable attributtes?

    - by Ikuzen
    I've been using the Builder pattern to create objects with a large number of attributes, where most of them are optional. But up until now, I've defined them as final, as recommended by Joshua Block and other authors, and haven't needed to change their values. I am wondering what should I do though if I need a class with a substantial number of optional but non-final (mutable) attributes? My Builder pattern code looks like this: public class Example { //All possible parameters (optional or not) private final int param1; private final int param2; //Builder class public static class Builder { private final int param1; //Required parameters private int param2 = 0; //Optional parameters - initialized to default //Builder constructor public Builder (int param1) { this.param1 = param1; } //Setter-like methods for optional parameters public Builder param2(int value) { param2 = value; return this; } //build() method public Example build() { return new Example(this); } } //Private constructor private Example(Builder builder) { param1 = builder.param1; param2 = builder.param2; } } Can I just remove the final keyword from the declaration to be able to access the attributes externally (through normal setters, for example)? Or is there a creational pattern that allows optional but non-final attributes that would be better suited in this case?

    Read the article

  • Best practices: Ajax and server side scripting with stored procedures

    - by Luka Milani
    I need to rebuild an old huge website and probably to port everyting to ASP.NET and jQuery and I would like to ask for some suggestion and tips. Actually the website uses: Ajax (client site with prototype.js) ASP (vb script server side) SQL Server 2005 IIS 7 as web server This website uses hundred of stored procedures and the requests are made by an ajax call and only 1 ASP page that contain an huge select case Shortly an example: JAVASCRIPT + PROTOTYPE: var data = { action: 'NEWS', callback: 'doNews', param1: $('text_example').value, ......: ..........}; AjaxGet(data); // perform a call using another function + prototype SERVER SIDE ASP: <% ...... select case request("Action") case "NEWS" With cmmDB .ActiveConnection = Conn .CommandText = "sp_NEWS_TO_CALL_for_example" .CommandType = adCmdStoredProc Set par0DB = .CreateParameter("Param1", adVarchar, adParamInput,6) Set par1DB = .CreateParameter(".....", adInteger, adParamInput) ' ........ ' can be more parameters .Parameters.Append par0DB .Parameters.Append par1DB par0DB.Value = request("Param1") par1DB.Value = request(".....") set rs=cmmDB.execute RecodsetToJSON rs, jsa ' create JSON response using a sub End With .... %> So as you can see I have an ASP page that has a lot of CASE and this page answers to all the ajax request in the site. My question are: Instead of having many CASES is it possible to create dynamic vb code that parses the ajax request and creates dynamically the call to the desired SP (also implementing the parameters passed by JS)? What is the best approach to handle situations like this, by using the advantages of .Net + protoype or jQuery? How the big sites handle situation like this? Do they do it by creating 1 page for request? Thanks in advance for suggestion, direction and tips.

    Read the article

  • Information about how much time in spent in a function, based on the input of this function

    - by olchauvin
    Is there a (quantitative) tool to measure performance of functions based on its input? So far, the tools I used to measure performance of my code, tells me how much time I spent in functions (like Jetbrain Dottrace for .Net), but I'd like to have more information about the parameters passed to the function in order to know which parameters impact the most the performance. Let's say that I have function like that: int myFunction(int myParam1, int myParam 2) { // Do and return something based on the value of myParam1 and myParam2. // The code is likely to use if, for, while, switch, etc.... } If would like a tool that would allow me to tell me how much time is spent in myFunction based on the value of myParam1 and myParam2. For example, the tool would give me a result looking like this: For "myFunction" : value | value | Number of | Average myParam1 | myParam2 | call | time ---------|----------|-----------|-------- 1 | 5 | 500 | 301 ms 2 | 5 | 250 | 1253 ms 3 | 7 | 1268 | 538 ms ... That would mean that myFunction has been call 500 times with myParam1=1 and myParam2=5, and that with those parameters, it took on average 301ms to return a value. The idea behind that is to do some statistical optimization by organizing my code such that, the blocs of codes that are the most likely to be executed are tested before the one that are less likely to be executed. To put it bluntly, if I know which values are used the most, I can reorganize the if/while/for etc.. structure of the function (and the whole program) to optimize it. I'd like to find such tools for C++, Java or.Net. Note: I am not looking for technical tips to optimize the code (like passing parameters as const, inlining functions, initializing the capacity of vectors and the like).

    Read the article

  • Strategies for managing use of types in Python

    - by dave
    I'm a long time programmer in C# but have been coding in Python for the past year. One of the big hurdles for me was the lack of type definitions for variables and parameters. Whereas I totally get the idea of duck typing, I do find it frustrating that I can't tell the type of a variable just by looking at it. This is an issue when you look at someone else's code where they've used ambiguous names for method parameters (see edit below). In a few cases, I've added asserts to ensure parameters comply with an expected type but this goes against the whole duck typing thing. On some methods, I'll document the expected type of parameters (eg: list of user objects), but even this seems to go against the idea of just using an object and let the runtime deal with exceptions. What strategies do you use to avoid typing problems in Python? Edit: Example of the parameter naming issues: If our code base we have a task object (ORM object) and a task_obj object (higher level object that embeds a task). Needless to say, many methods accept a parameter named 'task'. The method might expect a task or a task_obj or some other construct such as a dictionary of task properties - it is not clear. It is them up to be to look at how that parameter is used in order to work out what the method expects.

    Read the article

  • Learning how to design knowledge and data flow [closed]

    - by max
    In designing software, I spend a lot of time deciding how the knowledge (algorithms / business logic) and data should be allocated between different entities; that is, which object should know what. I am asking for advice about books, articles, presentations, classes, or other resources that would help me learn how to do it better. I code primarily in Python, but my question is not really language-specific; even if some of the insights I learn don't work in Python, that's fine. I'll give a couple examples to clarify what I mean. Example 1 I want to perform some computation. As a user, I will need to provide parameters to do the computation. I can have all those parameters sent to the "main" object, which then uses them to create other objects as needed. Or I can create one "main" object, as well as several additional objects; the additional objects would then be sent to the "main" object as parameters. What factors should I consider to make this choice? Example 2 Let's say I have a few objects of type A that can perform a certain computation. The main computation often involves using an object of type B that performs some interim computation. I can either "teach" A instances what exact parameters to pass to B instances (i.e., make B "dumb"); or I can "teach" B instances to figure out what needs to be done when looking at an A instance (i.e., make B "smart"). What should I think about when I'm making this choice?

    Read the article

  • Recommended design pattern for object with optional and modifiable attributtes? [on hold]

    - by Ikuzen
    I've been using the Builder pattern to create objects with a large number of attributes, where most of them are optional. But up until now, I've defined them as final, as recommended by Joshua Block and other authors, and haven't needed to change their values. I am wondering what should I do though if I need a class with a substantial number of optional but non-final (mutable) attributes? My Builder pattern code looks like this: public class Example { //All possible parameters (optional or not) private final int param1; private final int param2; //Builder class public static class Builder { private final int param1; //Required parameters private int param2 = 0; //Optional parameters - initialized to default //Builder constructor public Builder (int param1) { this.param1 = param1; } //Setter-like methods for optional parameters public Builder param2(int value) { param2 = value; return this; } //build() method public Example build() { return new Example(this); } } //Private constructor private Example(Builder builder) { param1 = builder.param1; param2 = builder.param2; } } Can I just remove the final keyword from the declaration to be able to access the attributes externally (through normal setters, for example)? Or is there a creational pattern that allows optional but non-final attributes that would be better suited in this case?

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • General Purpose ASP.NET Data Source Control

    - by Ricardo Peres
    OK, you already know about the ObjectDataSource control, so what’s wrong with it? Well, for once, it doesn’t pass any context to the SelectMethod, you only get the parameters supplied on the SelectParameters plus the desired ordering, starting page and maximum number of rows to display. Also, you must have two separate methods, one for actually retrieving the data, and the other for getting the total number of records (SelectCountMethod). Finally, you don’t get a chance to alter the supplied data before you bind it to the target control. I wanted something simple to use, and more similar to ASP.NET 4.5, where you can have the select method on the page itself, so I came up with CustomDataSource. Here’s how to use it (I chose a GridView, but it works equally well with any regular data-bound control): 1: <web:CustomDataSourceControl runat="server" ID="datasource" PageSize="10" OnData="OnData" /> 2: <asp:GridView runat="server" ID="grid" DataSourceID="datasource" DataKeyNames="Id" PageSize="10" AllowPaging="true" AllowSorting="true" /> The OnData event handler receives a DataEventArgs instance, which contains some properties that describe the desired paging location and size, and it’s where you return the data plus the total record count. Here’s a quick example: 1: protected void OnData(object sender, DataEventArgs e) 2: { 3: //just return some data 4: var data = Enumerable.Range(e.StartRowIndex, e.PageSize).Select(x => new { Id = x, Value = x.ToString(), IsPair = ((x % 2) == 0) }); 5: e.Data = data; 6: //the total number of records 7: e.TotalRowCount = 100; 8: } Here’s the code for the DataEventArgs: 1: [Serializable] 2: public class DataEventArgs : EventArgs 3: { 4: public DataEventArgs(Int32 pageSize, Int32 startRowIndex, String sortExpression, IOrderedDictionary parameters) 5: { 6: this.PageSize = pageSize; 7: this.StartRowIndex = startRowIndex; 8: this.SortExpression = sortExpression; 9: this.Parameters = parameters; 10: } 11:  12: public IEnumerable Data 13: { 14: get; 15: set; 16: } 17:  18: public IOrderedDictionary Parameters 19: { 20: get; 21: private set; 22: } 23:  24: public String SortExpression 25: { 26: get; 27: private set; 28: } 29:  30: public Int32 StartRowIndex 31: { 32: get; 33: private set; 34: } 35:  36: public Int32 PageSize 37: { 38: get; 39: private set; 40: } 41:  42: public Int32 TotalRowCount 43: { 44: get; 45: set; 46: } 47: } As you can guess, the StartRowIndex and PageSize receive the starting row and the desired page size, where the page size comes from the PageSize property on the markup. There’s also a SortExpression, which gets passed the sorted-by column and direction (if descending) and a dictionary containing all the values coming from the SelectParameters collection, if any. All of these are read only, and it is your responsibility to fill in the Data and TotalRowCount. The code for the CustomDataSource is very simple: 1: [NonVisualControl] 2: public class CustomDataSourceControl : DataSourceControl 3: { 4: public CustomDataSourceControl() 5: { 6: this.SelectParameters = new ParameterCollection(); 7: } 8:  9: protected override DataSourceView GetView(String viewName) 10: { 11: return (new CustomDataSourceView(this, viewName)); 12: } 13:  14: internal void GetData(DataEventArgs args) 15: { 16: this.OnData(args); 17: } 18:  19: protected virtual void OnData(DataEventArgs args) 20: { 21: EventHandler<DataEventArgs> data = this.Data; 22:  23: if (data != null) 24: { 25: data(this, args); 26: } 27: } 28:  29: [Browsable(false)] 30: [DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)] 31: [PersistenceMode(PersistenceMode.InnerProperty)] 32: public ParameterCollection SelectParameters 33: { 34: get; 35: private set; 36: } 37:  38: public event EventHandler<DataEventArgs> Data; 39:  40: public Int32 PageSize 41: { 42: get; 43: set; 44: } 45: } Also, the code for the accompanying internal – as there is no need to use it from outside of its declaring assembly - data source view: 1: sealed class CustomDataSourceView : DataSourceView 2: { 3: private readonly CustomDataSourceControl dataSourceControl = null; 4:  5: public CustomDataSourceView(CustomDataSourceControl dataSourceControl, String viewName) : base(dataSourceControl, viewName) 6: { 7: this.dataSourceControl = dataSourceControl; 8: } 9:  10: public override Boolean CanPage 11: { 12: get 13: { 14: return (true); 15: } 16: } 17:  18: public override Boolean CanRetrieveTotalRowCount 19: { 20: get 21: { 22: return (true); 23: } 24: } 25:  26: public override Boolean CanSort 27: { 28: get 29: { 30: return (true); 31: } 32: } 33:  34: protected override IEnumerable ExecuteSelect(DataSourceSelectArguments arguments) 35: { 36: IOrderedDictionary parameters = this.dataSourceControl.SelectParameters.GetValues(HttpContext.Current, this.dataSourceControl); 37: DataEventArgs args = new DataEventArgs(this.dataSourceControl.PageSize, arguments.StartRowIndex, arguments.SortExpression, parameters); 38:  39: this.dataSourceControl.GetData(args); 40:  41: arguments.TotalRowCount = args.TotalRowCount; 42: arguments.MaximumRows = this.dataSourceControl.PageSize; 43: arguments.AddSupportedCapabilities(DataSourceCapabilities.Page | DataSourceCapabilities.Sort | DataSourceCapabilities.RetrieveTotalRowCount); 44: arguments.RetrieveTotalRowCount = true; 45:  46: if (!(args.Data is ICollection)) 47: { 48: return (args.Data.OfType<Object>().ToList()); 49: } 50: else 51: { 52: return (args.Data); 53: } 54: } 55: } As always, looking forward to hearing from you!

    Read the article

  • Working with Reporting Services Filters–Part 1

    - by smisner
    There are two ways that you can filter data in Reporting Services. The first way, which usually provides a faster performance, is to use query parameters to apply a filter using the WHERE clause in a SQL statement. In that case, the structure of the filter depends upon the syntax recognized by the source database. Another way to filter data in Reporting Services is to apply a filter to a dataset, data region, or a group. Using this latter method, you can even apply multiple filters. However, the use of filter operators or the setup of multiple filters is not always obvious, so in this series of posts, I'll provide some more information about the configuration of filters. First, why not use query parameters exclusively for filtering? Here are a few reasons: You might want to apply a filter to part of the report, but not all of the report. Your dataset might retrieve data from a stored procedure, and doesn't allow you to pass a query parameter for filtering purposes. Your report might be set up as a snapshot on the report server and, in that case, cannot be dynamically filtered based on a query parameter. Next, let's look at how to set up a report filter in general. The process is the same whether you are applying the filter to a dataset, data region, or a group. When you go to the Filters page in the Properties dialog box for whichever of these items you selected (dataset, data region, group), you click the Add button to create a new filter. The interface looks like this: The Expression field is usually a field in the dataset, so to make it easier for you to make a selection,the drop-down list displays all of the current dataset fields. But notice the expression button to the right, which means that you can set up any type of expression-not just a dataset field. To the right of the expression button, you'll find a data type drop-down list. It's important to specify the correct data type for the field or expression you're using. Now for the operators. Here's a list of the options that you have: This Operator Performs This Action =, <>, >, >=, <, <=, Like Compares expression to value Top N, Bottom N Compares expression to Top (Bottom) set of N values (N = integer) Top %, Bottom % Compares expression to Top (Bottom) N percent of values (N = integer or float) Between Determines whether expression is between two values, inclusive In Determines whether expression is found in list of values Last, the Value is what you're comparing to the expression using the operator. The construction of a filter using some operators (=, <>, >, etc.) is fairly simple. If my dataset (for AdventureWorks data) has a Category field, and I have a parameter that prompts the user for a single category, I can set up a filter like this: Expression Data Type Operator Value [Category] Text = [@Category] But if I set the parameter to accept multiple values, I need to change the operator from = to In, just as I would have to do if I were using a query parameter. The parameter expression, [@Category], which translates to =Parameters!Category.Value, doesn’t need to change because it represents an array as soon as I change the parameter to allow multiple values. The “In” operator requires an array. With that in mind, let’s consider a variation on Value. Let’s say that I have a parameter that prompts the user for a particular year – and for simplicity’s sake, this parameter only allows a single value, and I have an expression that evaluates the previous year based on the user’s selection. Then I want to use these two values in two separate filters with an OR condition. That is, I want to filter either by the year selected OR by the year that was computed. If I create two filters, one for each year (as shown below), then the report will only display results if BOTH filter conditions are met – which would never be true. Expression Data Type Operator Value [CalendarYear] Integer = [@Year] [CalendarYear] Integer = =Parameters!Year.Value-1 To handle this scenario, we need to create a single filter that uses the “In” operator, and then set up the Value expression as an array. To create an array, we use the Split function after creating a string that concatenates the two values (highlighted in yellow) as shown below. Expression Data Type Operator Value =Cstr(Fields!CalendarYear.Value) Text In =Split( CStr(Parameters!Year.Value) + ”,” + CStr(Parameters!Year.Value-1) , “,”) Note that in this case, I had to apply a string conversion on the year integer so that I could concatenate the parameter selection with the calculated year. Pay attention to the second argument of the Split function—you must use a comma delimiter for the result to work correctly with the In operator. I also had to change the Expression value from [CalendarYear] (or =Fields!CalendarYear.Value) so that the expression would return a string that I could compare with the values in the string array. More fun with filter expressions in future posts!

    Read the article

  • Functional Adaptation

    - by Charles Courchaine
    In real life and OO programming we’re often faced with using adapters, DVI to VGA, 1/4” to 1/8” audio connections, 110V to 220V, wrapping an incompatible interface with a new one, and so on.  Where the adapter pattern is generally considered for interfaces and classes a similar technique can be applied to method signatures.  To be fair, this adaptation is generally used to reduce the number of parameters but I’m sure there are other clever possibilities to be had.  As Jan questioned in the last post, how can we use a common method to execute an action if the action has a differing number of parameters, going back to the greeting example it was suggested having an AddName method that takes a first and last name as parameters.  This is exactly what we’ll address in this post. Let’s set the stage with some review and some code changes.  First, our method that handles the setup/tear-down infrastructure for our WCF service: 1: private static TResult ExecuteGreetingFunc<TResult>(Func<IGreeting, TResult> theGreetingFunc) 2: { 3: IGreeting aGreetingService = null; 4: try 5: { 6: aGreetingService = GetGreetingChannel(); 7: return theGreetingFunc(aGreetingService); 8: } 9: finally 10: { 11: CloseWCFChannel((IChannel)aGreetingService); 12: } 13: } Our original AddName method: 1: private static string AddName(string theName) 2: { 3: return ExecuteGreetingFunc<string>(theGreetingService => theGreetingService.AddName(theName)); 4: } Our new AddName method: 1: private static int AddName(string firstName, string lastName) 2: { 3: return ExecuteGreetingFunc<int>(theGreetingService => theGreetingService.AddName(firstName, lastName)); 4: } Let’s change the AddName method, just a little bit more for this example and have it take the greeting service as a parameter. 1: private static int AddName(IGreeting greetingService, string firstName, string lastName) 2: { 3: return greetingService.AddName(firstName, lastName); 4: } The new signature of AddName using the Func delegate is now Func<IGreeting, string, string, int>, which can’t be used with ExecuteGreetingFunc as is because it expects Func<IGreeting, TResult>.  Somehow we have to eliminate the two string parameters before we can use this with our existing method.  This is where we need to adapt AddName to match what ExecuteGreetingFunc expects, and we’ll do so in the following progression. 1: Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 2: Func<IGreeting, string, int> -> Func<IGreeting, int>   For the first step, we’ll create a method using the lambda syntax that will “eliminate” the last name parameter: 1: string lastNameToAdd = "Smith"; 2: //Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 3: Func<IGreeting, string, int> addName = (greetingService, firstName) => AddName(greetingService, firstName, lastNameToAdd); The new addName method gets us one step close to the signature we need.  Let’s say we’re going to call this in a loop to add several names, we’ll take the final step from Func<IGreeting, string, int> -> Func<IGreeting, int> in line as a lambda passed to ExecuteGreetingFunc like so: 1: List<string> firstNames = new List<string>() { "Bob", "John" }; 2: int aID; 3: foreach (string firstName in firstNames) 4: { 5: //Func<IGreeting, string, int> -> Func<IGreeting, int> 6: aID = ExecuteGreetingFunc<int>(greetingService => addName(greetingService, firstName)); 7: Console.WriteLine(GetGreeting(aID)); 8: } If for some reason you needed to break out the lambda on line 6 you could replace it with 1: aID = ExecuteGreetingFunc<int>(ApplyAddName(addName, firstName)); and use this method: 1: private static Func<IGreeting, int> ApplyAddName(Func<IGreeting, string, int> addName, string lastName) 2: { 3: return greetingService => addName(greetingService, lastName); 4: } Splitting out a lambda into its own method is useful both in this style of coding as well as LINQ queries to improve the debugging experience.  It is not strictly necessary to break apart the steps & functions as was shown above; the lambda in line 6 (of the foreach example) could include both the last name and first name instead of being composed of two functions.  The process demonstrated above is one of partially applying functions, this could have also been done with Currying (also see Dustin Campbell’s excellent post on Currying for the canonical curried add example).  Matthew Podwysocki also has some good posts explaining both Currying and partial application and a follow up post that further clarifies the difference between Currying and partial application.  In either technique the ultimate goal is to reduce the number of parameters passed to a function.  Currying makes it a single parameter passed at each step, where partial application allows one to use multiple parameters at a time as we’ve done here.  This technique isn’t for everyone or every problem, but can be extremely handy when you need to adapt a call to something you don’t control.

    Read the article

  • Multiple textures on a mesh created in blender and imported in xna

    - by alecnash
    I created a cube in blender which has multiple images applied to its faces. I am trying to import the model into xna and get the same results as shown when rendering the model in blender. I go through every mesh (for the cube its only one) and through every part but only the first image used in blender is displayed in every face. The code I am using to fetch the texture looks like that: foreach (ModelMesh m in model.Meshes) { foreach (Effect e in m.Effects) { foreach (var part in m.MeshParts) { e.CurrentTechnique = e.Techniques["Lambert"]; e.Parameters["view"].SetValue(camera.viewMatrix); e.Parameters["projection"].SetValue(camera.projectionMatrix); e.Parameters["colorMap"].SetValue(modelTextures[part.GetHashCode()]); } } m.Draw(); } Am I missing something?

    Read the article

  • Advanced Data Source Engine coming to Telerik Reporting Q1 2010

    This is the final blog post from the pre-release series. In it we are going to share with you some of the updates coming to our reporting solution in Q1 2010. A new Declarative Data Source Engine will be added to Telerik Reporting, that will allow full control over data management, and deliver significant gains in rendering performance and memory consumption. Some of the engines new features will be: Data source parameters - those parameters will be used to limit data retrieved from the data source to just the data needed for the report. Data source parameters are processed on the data source side, however only queried data is fetched to the reporting engine, rather than the full data source. This leads to lower memory consumption, because data operations are performed on queried data only, rather than on all data. As a result, only the queried data needs to be stored in the memory vs. the whole dataset, which was the case with the old approach Support for stored procedures - they will assist in achieving a consistent implementation of logic across applications, and are especially practical for performing repetitive tasks. A stored procedure stores the SQL statements and logic, which can then be executed in different reports and/or applications. Stored Procedures will not only save development time, but they will also improve performance, because each stored procedure is compiled on the data base server once, and then is reutilized. In Telerik Reporting, the stored procedure will also be parameterized, where elements of the SQL statement will be bound to parameters. These parameterized SQL queries will be handled through the data source parameters, and are evaluated at run time. Using parameterized SQL queries will improve the performance and decrease the memory footprint of your application, because they will be applied directly on the database server and only the necessary data will be downloaded on the middle tier or client machine; Calculated fields through expressions - with the help of the new reporting engine you will be able to use field values in formulas to come up with a calculated field. A calculated field is a user defined field that is computed "on the fly" and does not exist in the data source, but can perform calculations using the data of the data source object it belongs to. Calculated fields are very handy for adding frequently used formulas to your reports; Improved performance and optimized in-memory OLAP engine - the new data source will come with several improvements in how aggregates are calculated, and memory is managed. As a result, you may experience between 30% (for simpler reports) and 400% (for calculation-intensive reports) in rendering performance, and about 50% decrease in memory consumption. Full design time support through wizards - Declarative data sources are a great advance and will save developers countless hours of coding. In Q1 2010, and true to Telerik Reportings essence, using the new data source engine and its features requires little to no coding, because we have extended most of the wizards to support the new functionality. The newly extended wizards are available in VS2005/VS2008/VS2010 design-time. More features will be revealed on the product's what's new page when the new version is officially released in a few days. Also make sure you attend the free webinar on Thursday, March 11th that will be dedicated to the updates in Telerik Reporting Q1 2010. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • XNA 4 Deferred Rendering deforms the model

    - by Tomáš Bezouška
    I have a problem when rendering a model of my World - when rendered using BasicEffect, it looks just peachy. Problem is when I render it using deferred rendering. See for yourselves: what it looks like: http://imageshack.us/photo/my-images/690/survival.png/ what it should look like: http://imageshack.us/photo/my-images/521/survival2.png/ (Please ignora the cars, they shouldn't be there. Nothing changes when they are removed) Im using Deferred renderer from www.catalinzima.com/tutorials/deferred-rendering-in-xna/introduction-2/ except very simplified, without the custom content processor. Here's the code for the GBuffer shader: float4x4 World; float4x4 View; float4x4 Projection; float specularIntensity = 0.001f; float specularPower = 3; texture Texture; sampler diffuseSampler = sampler_state { Texture = (Texture); MAGFILTER = LINEAR; MINFILTER = LINEAR; MIPFILTER = LINEAR; AddressU = Wrap; AddressV = Wrap; }; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; float2 TexCoord : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 Normal : TEXCOORD1; float2 Depth : TEXCOORD2; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); output.TexCoord = input.TexCoord; //pass the texture coordinates further output.Normal = mul(input.Normal,World); //get normal into world space output.Depth.x = output.Position.z; output.Depth.y = output.Position.w; return output; } struct PixelShaderOutput { half4 Color : COLOR0; half4 Normal : COLOR1; half4 Depth : COLOR2; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; output.Color = tex2D(diffuseSampler, input.TexCoord); //output Color output.Color.a = specularIntensity; //output SpecularIntensity output.Normal.rgb = 0.5f * (normalize(input.Normal) + 1.0f); //transform normal domain output.Normal.a = specularPower; //output SpecularPower output.Depth = input.Depth.x / input.Depth.y; //output Depth return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_2_0 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } And here are the rendering parts in XNA: public void RednerModel(Model model, Matrix world) { Matrix[] boneTransforms = new Matrix[model.Bones.Count]; model.CopyAbsoluteBoneTransformsTo(boneTransforms); Game.GraphicsDevice.DepthStencilState = DepthStencilState.Default; Game.GraphicsDevice.BlendState = BlendState.Opaque; Game.GraphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; foreach (ModelMesh mesh in model.Meshes) { foreach (ModelMeshPart meshPart in mesh.MeshParts) { GBufferEffect.Parameters["View"].SetValue(Camera.Instance.ViewMatrix); GBufferEffect.Parameters["Projection"].SetValue(Camera.Instance.ProjectionMatrix); GBufferEffect.Parameters["World"].SetValue(boneTransforms[mesh.ParentBone.Index] * world); GBufferEffect.Parameters["Texture"].SetValue(meshPart.Effect.Parameters["Texture"].GetValueTexture2D()); GBufferEffect.Techniques[0].Passes[0].Apply(); RenderMeshpart(mesh, meshPart); } } } private void RenderMeshpart(ModelMesh mesh, ModelMeshPart part) { Game.GraphicsDevice.SetVertexBuffer(part.VertexBuffer); Game.GraphicsDevice.Indices = part.IndexBuffer; Game.GraphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, part.NumVertices, part.StartIndex, part.PrimitiveCount); } I import the model using the built in content processor for FBX. The FBX is created in 3DS Max. I don't know the exact details of that export, but if you think it might be relevant, I will get them from my collegue who does them. What confuses me though is why the BasicEffect approach works... seems the FBX shouldnt be a problem. Any thoughts? They will be greatly appreciated :)

    Read the article

  • how to enable SQL Application Role via Entity Framework

    - by Ehsan Farahani
    I'm now developing big government application with entity framework. at first i have one problem about enable SQL application role. with ado.net I'm using below code: SqlCommand cmd = new SqlCommand("sys.sp_setapprole"); cmd.CommandType = CommandType.StoredProcedure; cmd.Connection = _sqlConn; SqlParameter paramAppRoleName = new SqlParameter(); paramAppRoleName.Direction = ParameterDirection.Input; paramAppRoleName.ParameterName = "@rolename"; paramAppRoleName.Value = "AppRole"; cmd.Parameters.Add(paramAppRoleName); SqlParameter paramAppRolePwd = new SqlParameter(); paramAppRolePwd.Direction = ParameterDirection.Input; paramAppRolePwd.ParameterName = "@password"; paramAppRolePwd.Value = "123456"; cmd.Parameters.Add(paramAppRolePwd); SqlParameter paramCreateCookie = new SqlParameter(); paramCreateCookie.Direction = ParameterDirection.Input; paramCreateCookie.ParameterName = "@fCreateCookie"; paramCreateCookie.DbType = DbType.Boolean; paramCreateCookie.Value = 1; cmd.Parameters.Add(paramCreateCookie); SqlParameter paramEncrypt = new SqlParameter(); paramEncrypt.Direction = ParameterDirection.Input; paramEncrypt.ParameterName = "@encrypt"; paramEncrypt.Value = "none"; cmd.Parameters.Add(paramEncrypt); SqlParameter paramEnableCookie = new SqlParameter(); paramEnableCookie.ParameterName = "@cookie"; paramEnableCookie.DbType = DbType.Binary; paramEnableCookie.Direction = ParameterDirection.Output; paramEnableCookie.Size = 1000; cmd.Parameters.Add(paramEnableCookie); try { cmd.ExecuteNonQuery(); SqlParameter outVal = cmd.Parameters["@cookie"]; // Store the enabled cookie so that approle can be disabled with the cookie. _appRoleEnableCookie = (byte[]) outVal.Value; } catch (Exception ex) { result = false; msg = "Could not execute enable approle proc." + Environment.NewLine + ex.Message; } But no matter how much I searched I could not find a way to implement on EF. Another question is: how to Add Application Role to Entity data model designer? I'm using the below code for execute parameter with EF: AEntities ar = new AEntities(); DbConnection con = ar.Connection; con.Open(); msg = ""; bool result = true; DbCommand cmd = con.CreateCommand(); cmd.CommandType = CommandType.StoredProcedure; cmd.Connection = con; var d = new DbParameter[]{ new SqlParameter{ ParameterName="@r", Value ="AppRole",Direction = ParameterDirection.Input} , new SqlParameter{ ParameterName="@p", Value ="123456",Direction = ParameterDirection.Input} }; string sql = "EXEC " + procName + " @rolename=@r,@password=@p"; var s = ar.ExecuteStoreCommand(sql, d); When run ExecuteStoreCommand this line return error: Application roles can only be activated at the ad hoc level.

    Read the article

  • How to Resolve Jason issue

    - by Mohammad Nezhad
    I am working in a web scheduling application which uses DayPilot component I started by reading the documentation and use the calendar control. but whenever I do some thing which (fires an event on the Daypilot control) I face with following error An exception was thrown in the server-side event handler: System.InvalidCastException: Instance Of JasonData doesn't hold a double at DayPilot.Jason.JasonData.op_Explicit(JasonData data) at DayPilot.Web.Ui.Events.EventMoveEventArgs..ctor(JasonData parameters, string[] fields, JasonData data) at DayPilot.Web.Ui.DayPilotCalendar.ExecuteEventJASON(String ea) at DayPilot.Web.Ui.DayPilotCalendar.System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent(string ea) at System.Web.UI.Page.PrepareCallback(String callbackControlID) here is the completed code in the ASPX page <DayPilot:DayPilotCalendar ID="DayPilotCalendar1" runat="server" Direction="RTL" Days="7" DataStartField="eventstart" DataEndField="eventend" DataTextField="name" DataValueField="id" DataTagFields="State" EventMoveHandling="CallBack" OnEventMove="DayPilotCalendar1_EventMove" EventEditHandling="CallBack" OnEventEdit="DayPilotCalendar1_EventEdit" EventClickHandling="Edit" OnBeforeEventRender="DayPilotCalendar1_BeforeEventRender" EventResizeHandling="CallBack" OnEventResize="DayPilotCalendar1_EventResize" EventDoubleClickHandling="CallBack" OnEventDoubleClick="DayPilotCalendar1_EventDoubleClick" oncommand="DayPilotCalendar1_Command" and here is the complete codebehind protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) Initialization(); } private void dbUpdateEvent(string id, DateTime start, DateTime end) { // update for move using (SqlConnection con = new SqlConnection(ConfigurationManager.ConnectionStrings["db"].ConnectionString)) { con.Open(); SqlCommand cmd = new SqlCommand("UPDATE [event] SET [eventstart] = @start, [eventend] = @end WHERE [id] = @id", con); cmd.Parameters.AddWithValue("id", id); cmd.Parameters.AddWithValue("start", start); cmd.Parameters.AddWithValue("end", end); cmd.ExecuteNonQuery(); } } private DataTable dbGetEvents(DateTime start, int days) { // get Data SqlDataAdapter da = new SqlDataAdapter("SELECT [id], [name], [eventstart], [eventend], [state], [other] FROM [event] WHERE NOT (([eventend] <= @start) OR ([eventstart] >= @end))", ConfigurationManager.ConnectionStrings["DayPilotTest"].ConnectionString); ; da.SelectCommand.Parameters.AddWithValue("start", start); da.SelectCommand.Parameters.AddWithValue("end", start.AddDays(days)); DataTable dt = new DataTable(); da.Fill(dt); return dt; } protected void DayPilotCalendar1_EventMove(object sender, DayPilot.Web.Ui.Events.EventMoveEventArgs e) { // Drag and Drop dbUpdateEvent(e.Value, e.NewStart, e.NewEnd); DayPilotCalendar1.DataSource = dbGetEvents(DayPilotCalendar1.StartDate, DayPilotCalendar1.Days); DayPilotCalendar1.DataBind(); DayPilotCalendar1.Update(); } private void Initialization() { // first bind DayPilotCalendar1.StartDate = DayPilot.Utils.Week.FirstDayOfWeek(new DateTime(2009, 1, 1)); DayPilotCalendar1.DataSource = dbGetEvents(DayPilotCalendar1.StartDate, DayPilotCalendar1.Days); DataBind(); } protected void DayPilotCalendar1_BeforeEventRender(object sender, BeforeEventRenderEventArgs e) { // change the color based on state if (e.Tag["State"] == "Fixed") { e.DurationBarColor = "Brown"; } } protected void DayPilotCalendar1_EventResize(object sender, DayPilot.Web.Ui.Events.EventResizeEventArgs e) { dbUpdateEvent(e.Value, e.NewStart, e.NewEnd); DayPilotCalendar1.DataSource = dbGetEvents(DayPilotCalendar1.StartDate, DayPilotCalendar1.Days); DayPilotCalendar1.DataBind(); DayPilotCalendar1.Update(); } protected void DayPilotCalendar1_EventDoubleClick(object sender, EventClickEventArgs e) { dbInsertEvent(e.Text , e.Start, e.End, "New", "New Meeting"); DayPilotCalendar1.DataSource = dbGetEvents(DayPilotCalendar1.StartDate, DayPilotCalendar1.Days); DayPilotCalendar1.DataBind(); DayPilotCalendar1.Update(); } note that I remove unnecessary code behinds

    Read the article

  • Mutation Problem - Clojure

    - by Silanglaya Valerio
    having trouble changing an element of my function represented as a list. code for random function: (defn makerandomtree-10 [pc maxdepth maxwidth fpx ppx] (if-let [output (if (and (< (rand) fpx) (> maxdepth 0)) (let [head (nth operations (rand-int (count operations))) children (doall (loop[function (list) width maxwidth] (if (pos? width) (recur (concat function (list (makerandomtree-10 pc (dec maxdepth) (+ 2 (rand-int (- maxwidth 1))) fpx ppx))) (dec width)) function)))] (concat (list head) children)) (if (and (< (rand) ppx) (>= pc 0)) (nth parameters (rand-int (count parameters))) (rand-int 100)))] output )) I will provide also a mutation function, which is still not good enough. I need to be able to eval my statement, so the following is still insufficient. (defn mutate-5 "chooses a node changes that" [function pc maxwidth pchange] (if (< (rand) pchange) (let [output (makerandomtree-10 pc 3 maxwidth 0.5 0.6)] (if (seq? output) output (list output))) ;mutate the children of root ;declare an empty accumulator list, with root as its head (let [head (list (first function)) children (loop [acc(list) walker (next function)] (println "----------") (println walker) (println "-----ACC-----") (println acc) (if (not walker) acc (if (or (seq? (first function)) (contains? (set operations) (first function))) (recur (concat acc (mutate-5 walker pc maxwidth pchange)) (next walker)) (if (< (rand) pchange) (if (some (set parameters) walker) (recur (concat acc (list (nth parameters (rand-int (count parameters))))) (if (seq? walker) (next walker) nil)) (recur (concat acc (list (rand-int 100))) (if (seq? walker) (next walker) nil))) (recur acc (if (seq? walker) (next walker) nil)))) ))] (concat head (list children))))) (side note: do you have any links/books for learning clojure?)

    Read the article

  • SQL Quey slow in .NET application but instantaneous in SQL Server Management Studio

    - by user203882
    Here is the SQL SELECT tal.TrustAccountValue FROM TrustAccountLog AS tal INNER JOIN TrustAccount ta ON ta.TrustAccountID = tal.TrustAccountID INNER JOIN Users usr ON usr.UserID = ta.UserID WHERE usr.UserID = 70402 AND ta.TrustAccountID = 117249 AND tal.trustaccountlogid = ( SELECT MAX (tal.trustaccountlogid) FROM TrustAccountLog AS tal INNER JOIN TrustAccount ta ON ta.TrustAccountID = tal.TrustAccountID INNER JOIN Users usr ON usr.UserID = ta.UserID WHERE usr.UserID = 70402 AND ta.TrustAccountID = 117249 AND tal.TrustAccountLogDate < '3/1/2010 12:00:00 AM' ) Basicaly there is a Users table a TrustAccount table and a TrustAccountLog table. Users: Contains users and their details TrustAccount: A User can have multiple TrustAccounts. TrustAccountLog: Contains an audit of all TrustAccount "movements". A TrustAccount is associated with multiple TrustAccountLog entries. Now this query executes in milliseconds inside SQL Server Management Studio, but for some strange reason it takes forever in my C# app and even timesout (120s) sometimes. Here is the code in a nutshell. It gets called multiple times in a loop and the statement gets prepared. cmd.CommandTimeout = Configuration.DBTimeout; cmd.CommandText = "SELECT tal.TrustAccountValue FROM TrustAccountLog AS tal INNER JOIN TrustAccount ta ON ta.TrustAccountID = tal.TrustAccountID INNER JOIN Users usr ON usr.UserID = ta.UserID WHERE usr.UserID = @UserID1 AND ta.TrustAccountID = @TrustAccountID1 AND tal.trustaccountlogid = (SELECT MAX (tal.trustaccountlogid) FROM TrustAccountLog AS tal INNER JOIN TrustAccount ta ON ta.TrustAccountID = tal.TrustAccountID INNER JOIN Users usr ON usr.UserID = ta.UserID WHERE usr.UserID = @UserID2 AND ta.TrustAccountID = @TrustAccountID2 AND tal.TrustAccountLogDate < @TrustAccountLogDate2 ))"; cmd.Parameters.Add("@TrustAccountID1", SqlDbType.Int).Value = trustAccountId; cmd.Parameters.Add("@UserID1", SqlDbType.Int).Value = userId; cmd.Parameters.Add("@TrustAccountID2", SqlDbType.Int).Value = trustAccountId; cmd.Parameters.Add("@UserID2", SqlDbType.Int).Value = userId; cmd.Parameters.Add("@TrustAccountLogDate2", SqlDbType.DateTime).Value =TrustAccountLogDate; // And then... reader = cmd.ExecuteReader(); if (reader.Read()) { double value = (double)reader.GetValue(0); if (System.Double.IsNaN(value)) return 0; else return value; } else return 0;

    Read the article

  • Memory allocation error from MySql ODBC 5.1 driver in C# application on insert statement

    - by Chinjoo
    I have a .NET Wndows application in C#. It's a simple Windows application that is using the MySql 5.1 database community edition. I've downloaded the MySql ODBC driver and have created a dsn to my database on my local machine. On my application, I can perform get type queries without problems, but when I execute a given insert statement (not that I've tried doing any others), I get the following error: {"ERROR [HY001] [MySQL][ODBC 5.1 Driver][mysqld-5.0.27-community-nt]Memory allocation error"} I'm running on a Windows XP machine. My machine has 1 GB of memory. Anyone have any ideas? See code below OdbcConnection MyConn = DBConnection.getDBConnection(); int result = -1; try { MyConn.Open(); OdbcCommand myCmd = new OdbcCommand(); myCmd.Connection = MyConn; myCmd.CommandType = CommandType.Text; OdbcParameter userName = new OdbcParameter("@UserName", u.UserName); OdbcParameter password = new OdbcParameter("@Password", u.Password); OdbcParameter firstName = new OdbcParameter("@FirstName", u.FirstName); OdbcParameter LastName = new OdbcParameter("@LastName", u.LastName); OdbcParameter sex = new OdbcParameter("@sex", u.Sex); myCmd.Parameters.Add(userName); myCmd.Parameters.Add(password); myCmd.Parameters.Add(firstName); myCmd.Parameters.Add(LastName); myCmd.Parameters.Add(sex); myCmd.CommandText = mySqlQueries.insertChatUser; result = myCmd.ExecuteNonQuery(); } catch (Exception e) { //{"ERROR [HY001] [MySQL][ODBC 5.1 Driver][mysqld-5.0.27-community-nt]Memory // allocation error"} EXCEPTION ALWAYS THROWN HERE } finally { try { if (MyConn != null) MyConn.Close(); } finally { } }

    Read the article

  • Calling a webservice through jquery cross domain

    - by IanCian
    hi there, i am new to jquery so please bare with me, I am trying to connect to a .asmx webservice (cross domain) by means of client-side script now actually i am having problems to use POST since it is being blocked and in firebug is giving me: OPTIONS Add(method name) 500 internal server error. I bypassed this problem by using GET instead, it is working fine when not inputting any parameters but is giving me trouble with parameters. please see below for the code. The following is a simple example I am trying to make work out with the use of parameters. With Parameters function CallService() { $.ajax({ type: "GET", url: "http://localhost:2968/MyService.asmx/Add", data: "{'num1':'" + $("#txtValue1").val() + "','num2':'" + $("#txtValue2").val() + "'}", //contentType: "application/json; charset=utf-8", dataType: "jsonp", success: function(data) { alert(data.d); } }); Webservice [WebMethod, ScriptMethod(UseHttpGet = true, XmlSerializeString = false, ResponseFormat = ResponseFormat.Json)] public string Add(int num1, int num2) { return (num1 + num2).ToString(); }

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >